View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

NBER WORKING PAPER SERIES

MANAGING SELF-CONFIDENCE:
THEORY AND EXPERIMENTAL EVIDENCE

Markus M. Mobius
Muriel Niederle
Paul Niehaus
Tanya S. Rosenblat

Working Paper 17014
http://www.nber.org/papers/w17014

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 2011

We are grateful to Nageeb Ali, Roland Benabou, Gary Chamberlain, Rachel Croson, Gordon Dahl,
Asen Ivanov, John List, Al Roth, Joel Sobel, Lise Vesterlund and Roberto Weber for helpful discussions.
We would like to thank seminar participants at University of Chicago, Clemson University, lowa State
University, Federal Reserve Bank of Boston, the Institute for Advanced Study (Princeton), Princeton,
Experimental Economics Conference (UCSB), Workshop in Behavioral Public Economics (Innsbruck),
and 2009 North American Meetings of the Economic Science Association for their feedback. Aislinn
Bohren provided outstanding research assistance. Niederle and Rosenblat are grateful for the hospitality
of the Institute for Advanced Study where part of this paper was written. We thank the National Science
Foundation, Harvard University and Wesleyan University for financial support. Niehaus acknowledges
financial support from an NSF Graduate Research Fellowship. The views expressed herein are those
of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2011 by Markus M. Mobius, Muriel Niederle, Paul Niehaus, and Tanya S. Rosenblat. All rights
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission
provided that full credit, including © notice, is given to the source.


https://core.ac.uk/display/6424582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Managing Self-Confidence: Theory and Experimental Evidence

Markus M. Mobius, Muriel Niederle, Paul Niehaus, and Tanya S. Rosenblat
NBER Working Paper No. 17014

May 2011

JEL No. C91,C93,D83

ABSTRACT

Evidence from social psychology suggests that agents process information about their own ability
in a biased manner. This evidence has motivated exciting research in behavioral economics, but has
also garnered critics who point out that it is potentially consistent with standard Bayesian updating.
We implement a direct experimental test. We study a large sample of 656 undergraduate students,
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1 Introduction

Standard economic theory assumes that agents process information about their own ability as
dispassionate Bayesians do. Social psychologists have questioned this assumption by pointing
out that people systematically rate their own ability as “above average.” To take one classic
and widely cited example, 88% of US drivers consider themselves safer than the median driver
(Svenson 1981).1 A quickly expanding literature in behavioral economics (Koszegi 2006) and
finance (Barber and Odean 2001, Malmendier and Tate 2008) has explored the implications of
overconfidence for economic decision-making.

At the same time, economists have pointed out that much of the commonly cited evidence
on biased information processing is in fact consistent with fully rational information processing.
Zabojnik (2004) and Benoit and Dubra (forthcoming) have shown that Bayesian updating can
easily generate highly skewed belief distributions. For example, if there are equally many safe
and unsafe drivers and only unsafe drivers have accidents, then a majority of drivers — the
good drivers and the bad drivers who have not yet had accidents — will rate themselves safer
than average. People might also disagree on the definition of what constitutes a safe driver
(Santos-Pinto and Sobel 2005) or tend to (rationally) choose activities for which they over-rate
their abilities (Van den Steen 2004). As these arguments illustrate, inference about information
processing from cross-sectional data is intrinsically difficult.

Our paper makes two contributions. First, we analyze theoretically the problem of opti-
mally managing one’s self-confidence. Building on Brunnermeier and Parker’s (2005) concept
of optimal expectations, we show that agents who derive utility directly from their beliefs (for
example, ego or anticipatory utility) will exhibit a range of distinctive and measurable biases
in both the way they acquire and the way they process information. This lets us interpret tests
for these behaviors as tests of a unified theory, rather than tests for isolated behavioral anoma-
lies. Second, we implement these tests in a carefully controlled experimental environment. We
repeatedly elicit subjects’ beliefs about well-defined events in an incentive-compatible manner
and study their evolution. In effect, we sidestep the ambiguities inherent in cross-sectional
data by opening the “black box” of belief updating itself.

The model describes an agent who has either high or low ability. She will at some point
have to choose whether or not to take an action whose payoff is positive only if her type is high,
so she places an instrumental value on information. She also derives utility from believing she
is the high type, however, which is interpretable as ego or anticipatory utility. We suppose
that the agent is a “biased Bayesian” updater who uses Bayes’ rule to process information but

decides at an initial stage how to interpret the informativeness of signals and how to value

!See Englmaier (2006) or Benoit and Dubra (forthcoming) for overviews of the evidence on over-confidence.



information, taking into account the competing demands of belief utility and decision-making.
When the weight placed on belief utility is zero, the model reproduces “perfect” (unbiased)
Bayesian updating.

Like other behavioral models ours can explain why agents are asymmetric updaters, putting
greater weight on positive information about their own ability than on negative information.
Our model also reveals close connections, however, between asymmetry and other biases. We
predict that agents are conservative, responding less than a perfect Bayesian would to infor-
mation. Intuitively, asymmetry on its own increases the agent’s mean belief in her ability in
the low state of the world. However, asymmetry also increases the variance of the low-type’s
beliefs: this increases the likelihood of costly investment mistakes where the low-type agent
takes the action appropriate for the high type. By also becoming conservative, the agent can
reduce the variance of her belief distribution in the bad state of the world. The model also
predicts that less confident agents will be information-averse, willing to pay to avoid learning
their types, since this would upset the careful balance they have struck between belief and
decision utility.

We test these predictions in a large-scale experiment with 656 undergraduate students.
Subjects first perform an IQ test, after which we elicit their belief that they are among the
top half of performers. We then repeat the following procedure four times. We first provide
each subject with an independent binary signal of their performance; each signal tells them
whether they are among the top or bottom half of performers and is correct with probability
75%. Second, after each signal we again elicit subjects’ beliefs that they are among the top
half of performers. By explicitly measuring priors and posteriors, and clearly defining the
data-generating process, we eliminate the major confounds found in social psychology studies.
Repeating the process four times gives us a rich data set to study how beliefs change with
information.

Our focus on the binary event “scoring in the top half” is a novel and convenient design
feature that allows us to summarize relevant beliefs in a single number, the subjective prob-
ability of being among the top half of performers. This facilitates a further methodological
advance: we elicit beliefs by asking subjects for what value of x they would be indifferent
between receiving a payoff with probability x and receiving a payoff if their score is among the
top half. Unlike the widely-used quadratic scoring mechanism, this approach is robust to risk
aversion, and also to non-standard models of preferences, provided these are monotonic in the
sense that lotteries that pay out a fixed amount with higher probability are preferred.?

We estimate empirical specifications of belief updating that nest perfect Bayesian updating

2 As Schlag and van der Weele (2009) discuss, our mechanism was also described by Allen (1987) and Grether
(1992) and has since been independently discovered by Karni (2009).



and our own model of biased Bayesian updating. Consistent with both, we find that information
is persistent in the sense that subjects’ priors are fully incorporated into their posteriors.
Consistent only with the latter, we find that subjects are both conservative and asymmetric
updaters. On average our subjects revise their beliefs by only 35% as much as perfect Bayesians
with the same priors would. Moreover, subjects who receive positive feedback revise their
beliefs by 15% more on average than those who receive negative feedback. Strikingly, even
subjects who received two positive and two negative signals — and thus learned nothing —
ended up significantly more confident than they began. We take this as unambiguous evidence
of self-serving bias.?

An important question about these results is whether they reflect motivated behavior as
posited by our model or merely cognitive limitations. It is, in fact, widely recognized that
standard Bayesian updating is an imperfect positive model even when self-confidence is not
at stake.* We conduct two tests to study whether our results reflect motivated behavior or
cognitive limitations. First, we show that agents who are of high ability according to our 1Q
quiz, and hence arguably cognitively more able, are just as conservative and asymmetric as
those who score in the bottom half of the IQ) quiz. Second, we conduct a placebo experiment,
structurally identical to our initial experiment except that subjects report beliefs about the
performance of a “robot” rather than their own performance. Belief updating in this second
experiment is significantly and substantially closer to perfect Bayesian, implying that the desire
to manage self-confidence is an important driver of updating biases.

We also measure subjects’ demand for feedback by allowing them to bid for noiseless infor-
mation on their relative performance. We then test the null hypothesis that subjects’ valuations
for feedback are weakly positive, as would hold if subjects used information purely to improve
their decision-making. On the contrary, we find that approximately 10% of our subjects are
information-averse, willing to pay to avoid learning their type. We also find that less confident
subjects are more likely to be information-averse, as predicted by our model. To address the
concern that confidence may be correlated with other determinants of information demand,

we show that this result continues to hold when we instrument for confidence using exogenous

3Evidence from psychology of “attribution biases” has two limitations in this regard: attribution does not
require learning, and much of the evidence provided for attribution bias is also consistent with perfect Bayesian
updating due to ambiguities in the experimental designs (Ajzen and Fishbein 1975, Wetzel 1982). We discuss
these issues in greater depth in Section

1A large literature in psychology during the 1960s tested Bayes’ rule for ego-independent problems such
as predicting which urn a series of balls were drawn from; see Slovic and Lichtenstein (1971), Fischhoff and
Beyth-Marom (1983), and Rabin (1998) for reviews. See also Grether (1980), Grether (1992) and El-Gamal
and Grether (1995) testing whether agents use the “representativeness heuristic” proposed by Kahneman and
Tversky (1973). Charness and Levin (2005) test for reinforcement learning and the role of affect using revealed
preference data to draw inferences about how subjects update. Rabin and Schrag (1999) and Rabin (2002)
study the theoretical implications of specific cognitive forecasting and updating biases.



variation generated by our experimental design.

Our results provide support for recent theories that imply a demand for self-confidence man-
agement. In one strand of this literature, self-confidence directly enhances well-being (Akerlof
and Dickens 1982, Caplin and Leahy 2001, Brunnermeier and Parker 2005, Koszegi 2006),
while other papers examine self-confidence as a means to compensate for limited self-control
(Brocas and Carrillo 2000, Benabou and Tirole 2002) or to enhance performance (Compte
and Postlewaite 2004). These models differ in their assumptions about how people manage
their self-confidence, some emphasizing updating, others information acquisition, and others
selective memory. Our results suggest that the first two mechanisms are relevant (but do not
bear on the third, given the short time frame of the experiment).

The most closely related empirical work is by Eil and Rao (forthcoming), who use the
quadratic scoring rule to repeatedly elicit beliefs about intelligence and beauty. Their findings
on updating (agents’ posteriors are less predictable and less sensitive to signal strength after
receiving negative feedback) are not directly comparable with ours (persistence, asymmetry,
and conservatism) due to differences in the design of the experiment and methods of analysis,
but are broadly consistent with motivated information processing. Their estimates of infor-
mation demand match ours — subjects with low confidence are averse to further feedback —
though they treat confidence as exogenous.’

Finally, this paper also contributes to the research on gender differences in confidence. A
large literature in psychology and a growing one in economics have emphasized that men tend
to be more (over-)confident than women, with important economic implications. There are
three possible sources for gender differences in confidence: they could be driven by gender
differences in priors, gender differences in updating about beliefs, and gender differences in
demand for information. Our experiment is designed to answer which combination of these
factors is present. We find that in our data women differ significantly in their priors, are
significantly more conservative updaters than men while not significantly more asymmetric,
and significantly more likely to be averse to feedback. These gender differences are consistent
with our theoretical framework if a larger proportion of women than men value belief utility.

The rest of the paper is organized as follows. Section (2 develops the model. Section
describes the details of our experimental design, and Section @] summarizes the experimental
data. Section [ discusses econometric methods and presents results for belief updating dy-
namics, and Section [0 presents results on information acquisition behavior. Section [7ldiscusses

gender differences, and Section [§] concludes.

®In other related work, Charness, Rustichini and Jeroen van de Ven (2011) find that updating about own
relative performance is noisier than updating about objective events. Grossman and Owens (2010), using the
quadratic scoring rule and a smaller sample of 78 subjects, do not find evidence of biased updating about
absolute performance.



2 Theory

We consider an agent who can either be of high type H or low type L.° There are T discrete
time periods and the agent observes i.i.d. binary signals about her type in each period; T thus
measures the information-richness of the environment. For 7 € [0, 1] we associate with relative
time 7 the corresponding absolute time |77'].

In period 1 < T < T the agent has to decide whether to make an investment at cost ¢ that
pays 1 in the final period if she is of high type and 0 otherwise.” Not investing gives utility 0.
Both the timing of the investment period T and the cost ¢ are ex ante unknown to the agent.
Nature chooses T with equal probability among periods 1 to T and the cost ¢ from a twice
continuously differentiable and strictly increasing distribution G' € C2[0,1] over the interval

[0,1]. The timeline of the model is shown in Figure [Il

Figure 1: Timeline of model

Cost c realized; agent chooses
whether to invest.

t=0 t=1 t=2 (..) t=T t =
| | | | | |
[ [ [ [ [ ]

Agent has subjec-
tive prior belief °
of being of type H

Agent receives binary signals in period t = 1,..,T
about her type and derives a posterior belief.

We first analyze this model under the assumption that the agent is a “perfect Bayesian”
who uses the correct signal distribution when applying Bayes’ rule to form a posterior. We
then examine the information processing of an “optimally biased Bayesian” who also uses
Bayes’ rule but can choose at time ¢ = 0 how to interpret the informativeness of positive and
negative signals. The biased Bayesian derives utility from believing that she is a high-type
agent. Biased information processing can increase belief utility at the cost of being more likely

to make the wrong investment decision.

5The binary nature of types anticipates our experimental design in which a subject’s type is either “scoring
in the top half” or not.

"The assumption that the instrumental value of investing is realized in the last period simplifies our calcula-
tion of belief utility because the agent only learns her type in the final period and therefore manages her belief
utility over all time periods 1 <t < T



2.1 Information Processing of a “Perfect Bayesian”

The agent has a subjective prior belief 4 € (0,1) that she is a high type and in each period
t =1,..,T receives a binary signal s, € {H, L} about her type. The signals are conditionally
independently distributed: a high type agent receives a high signal with probability p and a
low type agent receives a high signal with probability ¢ < p. The perfect Bayesian derives her
posterior u! using Bayes’ rule. In the investment period T the agent will invest if ,uT > ¢, that
is, if she is sufficiently sure that her type is high.® Denote by St (S%) the number of H (L)

signals the agent has received by time ¢. One can show that the Bayesian posterior u! satisfies

logit(p!) = logit(u’) + S%1n <§) + 8% In <1;§> , (1)
where logit(z) = In(xz/(1 — z)). Let Ay = In (g) and A\ =In (}%{;) denote the log likelihood
ratios or informativeness of positive and negative signals. The vector X = (Mg, AL) summarizes
the signal structure of the game.

Logit-beliefs evolve as a random walk with a drift that depends on the agent’s type. The
ex-ante expected logit-belief v, (7%) of a high (low) type agent are, respectively,

v = logit(u®) +t [pAm + (1 — p)AL] (2)
~p, = logit (1) + ¢ [ghm + (1 — @) AL] (3)

with +%, increasing and +} decreasing over time. The standard deviations of; and o of the

two types’ logit-beliefs evolve as

oy’ = tp(1—p) (A — Ar)? (4)
ot 2 =tq(1—q) (A — Ap)?. (5)

Figure [ graphs the distribution of beliefs for high and low type agents. The solid lines
show the evolving mean logit-beliefs of low and high types while the two curves indicate that
the distribution of logit-beliefs in the investment period T' will be approximately normally
distributed for large T. The graph is useful for understanding the investment decision of the
perfect Bayesian for large T'. The agent will invest at time 7T if and only if her logit-belief is
greater than the realized cutoff logit(c). As the agent accumulates more and more signals, the
mean logit-beliefs of the low and high type agents converge to minus and plus infinity at rate
T, respectively. At the same time, the standard deviation increases only at rate v/T in both

cases. Therefore, the agent will make fewer and fewer investment mistakes as T' — oo because

8We adopt the tie-breaking convention that an indifferent agent does not invest.



Figure 2: Evolution of logit-beliefs for low and high types as a function of time

logit(c)

logit(u°)

i o (w)

Time

the probability that her logit-belief is on the correct side of the cutoff converges to 1 in each
state. The expected utility of the low and high type agents will converge to 0 and 1 — E(c),

respectively, where E(c) = fol xdG(z) is the expected investment cost.

Proposition 1 The expected utility of a perfect Bayesian decision-maker who makes an in-

vestment decision at time T is (1 — E(c)) + O(exp(—aT)) for some constant a > 0.

All proofs are delegated to the Appendix.

2.2 Information Processing of a “Biased Bayesian”

The “biased Bayesian” differs in two dimensions from the perfect Bayesian. First, the biased
Bayesian derives direct belief utility ji'(1 — E(c)) in every period 1 < ¢t < T and cares about
maintaining a high mean belief over the time interval [0,7]. By defining preferences directly
over beliefs, we follow the growing literature in behavioral economics in which agents derive
utility from their beliefs in non-standard ways.? Note, that the agent’s belief utility is linear in
her subjective belief ji* and hence does not predispose the agent to either a high or low demand

for information: concavity in the belief utility function tends to generate information aversion

9The literature has examined various mechanisms including direct “ego” utility (Akerlof and Dickens 1982,
Koszegi 2006), utility from the anticipation of future events (Caplin and Leahy 2001, Brunnermeier and Parker
2005), self-confidence as a means of compensating for a lack of self-control (Carrillo and Mariotti 2000, Benabou
and Tirole 2002), and confidence-enhanced performance (Compte and Postlewaite 2004).



(see, for example, Koszegi (2006)) and we will show that aversion is a rational strategy in our
model even with linear belief utility. The scaling factor 1 — E(c) allows us to motivate belief
utility as a form of anticipatory utility of a perfect Bayesian who expects to learn her type
with probability one before acting and whose expected utility is therefore i'(1 — E(c)).
Second, we allow the biased Bayesian to choose at time ¢t = 0 how to interpret the informa-
tiveness of positive and negative signals, as well as her initial belief. Formally, she chooses to
believe that the log-likelihood ratio of a positive signaLis Mg > 0 and that of a negative signal

AL < 0, along with an initial belief 4°. The vector = (S\H,S\L) thus summarizes how the

biased Bayesian interprets the signal structure. We also define the parameters Sy = :\\Z and

8L = L as the decision-maker’s relative responsiveness to negative and positive information,
respectlvely; we will directly estimate these parameters in our experiment.
The biased Bayesian’s posterior belief fi' evolves according to Bayes’ rule but using her

chosen interpretations:
logit(a') = logit(i®) + ShAm + StAL. (6)

We denote the mean logit-beliefs of the low and high type biased Bayesian with 4} and 4%, and
the standard deviations with 6% and 6%,.!° We define the total utility of the decision-maker as

the sum of average belief utility and realized utility from actual investment in the investment

period:
7 1 & 1
U N, 1%, X) = By | Zﬂ (1- +TZEC (Lptse (1" —¢)) (7)
t:l t=1
average belief utility realized utility

Note that the outer expectation is taken over all possible signal realizations {st}thl, which de-
termine ;! and fif; importantly, this expectation is evaluated using the correct data generating
process described by p® and a1

The parameter « captures the relative importance of belief utility. We assume 0 < a <
E(c)
T—E(c)’
Bayesian, if she knew she were in fact the low type, would not want to bias her beliefs so

which we refer to as the long-term learning condition. It ensures that the biased

. 1OFormally, these expressions are defined through Equations BH5l replacing u®, Ag and A1 with i°, Ar and
AL.

111 our model, the belief and real utility generated in every period receives weight % The analysis of our
model would not change if we would introduce discounting, as long as both belief and real utility were discounted
at the same rate. If period T is not chosen uniformly, then our steady state analysis would no longer apply;
Proposition [3] would still hold, however, as long as the minimum probability of taking an action in any period ¢
is bounded below by 7 for some m > 0.



extremely as to convince herself she was the high type. (Such a bias would generate belief
utility a(1 — E(c)) at a cost of E(c), resulting in negative net utility.) Read as a condition on
«, long-run learning requires that a be sufficiently low; for example, if the cost distribution G
is uniform over [0, 1], then the long-term learning condition is @ < 1. Alternatively, long-run
learning rules out distributions where most of the mass is close to zero, since in that case there
is little cost to biasing one’s belief. Note that when the long-run learning condition holds, the
trade-off between belief utility and decision-making binds and hence we do not need to appeal

to any additional cognitive costs to impose any limit on self-deception.

2.3 Optimally Biased Bayesians

The optimally biased Bayesian chooses (fi°, 5\) to maximize her utility (7). Note that in stan-
dard models, perfectly Bayesian beliefs are self-consistent in the sense that the decision-maker
would not wish to alter her beliefs if she could. While in our model this property will not

generally hold when a > 0, we recover the standard model when a = 0:

Proposition 2 An optimally biased Bayesian who derives no utility from anticipation (o =0)

processes information like a perfect Bayesian and always chooses By = B, = 1.

In order to describe the optimal Bayesian bias when the decision-maker has belief utility

(a > 0), we introduce the notions of conservatism and asymmetry.

Definition 1 We say that a biased Bayesian is conservative if the agent’s relative responsive-
ness to positive information (Bg) and to negative information (Br) are less than 1. We say
that the agent is asymmetric if her relative responsiveness to positive information is greater

than her relative responsiveness to negative information, that is, if By > Or.

Our next result shows that, for large T', optimally biased Bayesian decision-makers are both

asymmetric and conservative.

Proposition 3 The responsiveness of the optimally biased Bayesian to both positive and neg-
ative information converges to 0 as T — oo, so that for sufficiently large T she is conservative.

Moreover, the optimally biased Bayesian is asymmetric for sufficiently large T.

The intuition for the tight connection between asymmetry and conservatism is the following:
a biased Bayesian can only increase her belief utility by preventing her future self from fully
learning her true type in the low state of the world (in the high state, the unbiased Bayesian
already enjoys high belief and realized utility as her belief quickly converges to 1). Asymmetry
partially achieves this by pivoting the mean logit-belief lines in Figure Plupwards. Asymmetry

does not hurt the high type and can slow or even eliminate the drift of mean logit-beliefs of a

10



perfect Bayesian in the low state towards —oo (as indicated in Figure[3). However, asymmetry
without conservatism makes the low type agent’s belief very volatile: her belief will often
be very high, which exposes the agent to costly mistakes. The optimally biased Bayesian
can reduce belief volatility in the low state by also becoming conservative: this allows her to
maintain a level of self-confidence that remains bounded away from zero without ever becoming
too high and inducing her to overinvest.'? Conversely, conservatism alone is insufficient to
implement the optimal Bayesian bias. While conservatism can keep the low type’s belief high,
it also prevents the high type from learning her type.

We can obtain a tighter characterization of the optimal Bayesian bias under some weak
additional assumptions. The key idea is to first solve the optimally biased Bayesian’s problem
for an environment where she can freely choose her beliefs in every period ¢ and for both
states H and L. This environment is less restricted than our model where beliefs have to
be derived through Bayes’ rule, albeit with modified informativeness of signals. Let /i3, , and
ﬂz,t denote solutions to this relaxed problem. Clearly, the decision-maker would set ﬂ?{,t =1,
which maximizes both her belief utility and her realized utility, conditional on being the high

type. She would choose i, ; to maximize

Lauz) = aus(1 = B(e)) - [ edG() (3)

Note that this problem is independent of ¢, as we are considering an agent who can choose
beliefs for each period independently. The differentiable function L, (p1,) always has an interior
maximum 0 < pj < 1.13

For large T, the biased Bayesian can approximate the utility achieved in the solution of

this unrestricted problem through the following bias which we term downward-neutral bias:

~ONT *
(1" = u
M = 779y, where 1<o<1
Moo= Ly, (9)

l—gq

Figure [ illustrates the downward neutral bias by plotting the evolution of induced beliefs in
the high and low state. This bias has three important properties: (a) the low type’s logit-

belief follows a driftless random walk, which allows her to maintain her initial logit-belief in

12Epstein, Noor and Sandroni (2010), studying the class of updating dynamics axiomatized in Epstein, Noor
and Sandroni (2008) make the related point that an agent who over-weights new information relative to his
prior may converge to an incorrect forecast.

3We know that L.(0) = 0 and La(1) < 0. Moreover, for small j; we have La(pz) > 0 because G’ is
continuous and hence bounded and therefore [}'* cdG(c) < [I'* cmaxce(o,1) (G'(c)) de = $u7 maxecpo,1) (G'(c)).

11



Figure 3: Evolution of logit-beliefs of optimally-biased agent for large T’

I ohw) =0

O 7k — o0
I oT(m) =0
logit(u,) VE = logit(u;)

Time

expectation; (b) the agent is asymmetric and responds relatively more strongly to positive
than to negative information than a perfect Bayesian does; (c) the agent becomes increasingly
conservative, which ensures that the low type’s actual logit-belief stays close to its mean.
Lemma 2] in the Appendix shows that as 7' — oo the expected payoff from the downward
neutral bias converges to the agent’s payoff in the unrestricted problem: the downward-neutral
bias induces beliefs at any fixed relative time 7, which converge in probability to 1 in the high
state while low state beliefs stay within an arbitrarily close neighborhood around p7, with
probability approaching 1.

We now show that the downward-neutral bias essentially characterizes the optimal Baysian

bias:

Proposition 4 If Ly(pr) has a unique mazimum at pf and L7 (1)) < 0, then the following
hold as T — oo: (a) the agent’s initial belief at time 0, i°, converges to u%; (b) the ratio of
the agent’s responsiveness to positive versus negative information converges to % (so that
the ratio of the optimally biased Bayesian’s relative responsiveness to positive and negative
information 1is strictly greater than 1 in the limit); and (c) the agent’s responsiveness to both
positive and negative information converges to 0 faster than /T, that is, (S\E — S\ZLF)\/T — 0.
Moreover, at any relative time T > 0, the agent’s high state belief converges in probability to 1,

while the agent’s low state belief converges in probability to uj .

The condition on L, holds, for example, for any cost distribution that is uniform or has an
increasing density. The proof proceeds by showing that any sequence of strategies that does

not have one of the given properties must yield a strictly lower asymptotic payoff than the

12



Figure 4: Bayesian and Biased Bayesian Strategies: Numerical Optima for Finite T’
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Plots of optimal strategies for the perfect Bayesian (o = 0, solid lines) and optimally biased Bayesian (o = 0.5,
dotted lines) cases. (4a) plots responsiveness to positive and negative signals (8 and —8.) for 1 < T < 80.
(@D) plots information values for realizable values of ™"} for T'= 31, and [rT] = 10. The remaining parameters
are fixed in both cases at u° = 0.5, ¢ ~ U[0, 1], p = 0.75, ¢ = 0.25

(feasible) downward-neutral bias, a contradiction. The result shows that there is no tradeoff in
the limit between maintaining a moderate belief in one’s ability in the low state while rapidly
converging to a high belief in the high state. Interestingly, Proposition [4 has no role for the
initial prior x°. In particular, the optimal initial belief 4° does not depend on p° for large
T: the empirical content of the proposition, just like the focus of our experiment, concerns
information acquisition and processing.

Proposition Ml characterizes optimal behavior for large 7', or in other words, as the environ-
ment becomes information-rich. For finite T', the model is amenable to numerical optimization:
since the set of possible signal realizations is also finite, we can calculate the optimal policy
exactly without Monte Carlo techniques. Figure [dal shows the calculated optimal policy for
the case a = %, p’ = % and uniform cost distribution over the range 1 < T < 80. Signals are
symmetric and each signal is correct with probability 0.75. The calculations confirm that the

decision-maker rapidly becomes both conservative and asymmetric for finite 7'

2.4 Value of Information

We now analyze how biased agents value information. Suppose that at relative time 7 a biased

Bayesian with subjective belief x who has not yet made an investment decision is presented
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with an opportunity to purchase a perfectly informative signal. We are interested in the agent’s
willingness to pay, WT P(x,7). Consistent with our modeling approach we assume that the
decision-maker chooses her willingness to pay at time 0. To simplify our analysis and build
on the results from the previous section, we assume that the decision-maker does not take the
possibility of buying information into account when choosing her bias. This assumption seems
appropriate when the probability of purchasing information is small.

To derive WT' P(x,7) we first characterize the biased Bayesian’s utility at relative time 7

if she declines to purchase information:

T

. 1 .
Unome(x’T) - E{St}?zl ar Z i1 — E(c)
t=|7T]

remaining belief

utility
T
- o (t — N |alT) =
+ T_LTTJHt:Z[:TT]EC(IHtZC(M c)) i —x] (10)

realized utility

We take the expectation over all signal realizations {s;} ; such that g™l = . Since the
biased Bayesian’s belief can take on at most |77 + 1 distinct values at relative time 7, this
expectation is only defined for those values. Note that belief utility becomes relatively less
important than realized utility as 7 increases because there are only T'— |77'] + 1 periods
left. In fact, the biased Bayesian’s total utility at relative time 7 equals the utility of a biased
agent at time 0 who weighs belief utility with weight a%, has initial belief z, and faces
T — |7T] + 1 periods.

Next, we derive the agent’s expected utility if she purchases a perfect signal at time 7:14

T—|7T]+1

info
U ( T

1) = By, W™ 0= BE)| Al o]
We can now formally define the agent’s willingness to pay for information:

WTP(z,7) = U0z, r) — ghOnO(4 1) (12)

In the special case where the agent is a perfect Bayesian (a = 0) and takes an action immedi-

14Note that each sample path determining /i’ also uniquely determines p’.
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ately (7 = 1), the above expression reduces to the short-term willingness to pay W1 P (x):
WTPS(z) =z(1 — E(c)) — / (x — ¢)dG(c) (13)
0

It is easy to see that WTP%(x) is zero when 2 = 0 or 2 = 1 and strictly positive for 0 < z < 1:
a perfect Bayesian decision-maker values information the least when she is sure about her
ability. Moreover, the short-term willingness to pay for information is never negative.

Our first result looks at the willingness to pay for information of the perfect Bayesian:

Lemma 1 Consider some belief 0 < x < 1 and relative time 0 < 7 < 1. The perfect Bayesian’s

willingness to pay, WT P(x,T), converges to zero as T — oc.

The intuition for this result is simply that with enough periods to go and imprecise beliefs
(0 < z < 1), the perfect Bayesian will accumulate sufficient information to take the correct
action with probability approaching 1. Hence, the value of a perfect signal converges to zero.
In contrast, an optimally biased Bayesian’s asymptotic valuation can be either positive or

negative:

Proposition 5 Consider a biased Bayesian who places weight o« > 0 on belief utility. Fix

0 < <1 and relative time 0 < 7 < 1. The agent’s willingness to pay satisfies:
lim WT'P(x,7) = —Loaq-r)(T) (14)
T—o0

Intuitively, for any < 1 the agent is likely to be a low type because otherwise her logit-beliefs
would have converged rapidly to 1. Proposition F] implies that her beliefs in the low state
follow a driftless random walk with vanishing variance and hence stay around z. This implies
that her utility over the remaining relative time 1 — 7 is approximately L,1_-) (7). Buying
information, on the other hand, would reveal her to be a low type and yield a payoff of 0.
The difference — L 1) (7) is negative for low values of z since in that region the benefits of
sustaining belief utility exceed the costs of mistaken choices, but positive for high values of z
since in that region this relationship is reversed. Thus Proposition [ implies that the biased
Bayesian will have a negative value of information when her belief is low and a positive value
of information when her belief is high.

Figure 4] plots an example of the numerical demands generated by our model for both
an unbiased and a biased Bayesian. In the former case, information is valued most highly at
intermediate beliefs where uncertainty is highest; in the latter case, valuations are negative for
low levels of confidence but then are positive above a threshold level of confidence.

Proposition [l characterizes the biased Bayesian’s preferred demand function if she could

commit in advance to information demand at time 7. We can also characterize her demand
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function in the absence of commitment. In keeping with our earlier assumptions, consider a
“naive biased Bayesian” who evaluates the return to acquiring information at relative time 7
using belief x that she is the high type and believing that the remaining signals she will receive

have informativeness \:

T

1 X
WTPNE(2,7) = Eyr | AR ;J Ee (Intse (A" —¢))
t=|7T

b = :c] (15)

Note that the agent believes that her beliefs are correct and that A accurately describes the
data-generating process. This implies that (i) belief utility does not enter into the expression
for WTPNBB(z, 1), and (ii) she evaluates future decision utility using /i’ rather than u’. We

can then show:

Proposition 6 Under the assumptions of Proposition [4), the naive Bayesian’s willingness to
pay satisfies:
lim WTPNBB(z 1) = WTP%(x) (16)

T—o00
Intuitively, the optimally biased agent updates her beliefs so slowly that she does not expect
to learn much until taking an action. Hence, the Bayesian component of her willingness to
pay converges to a perfect Bayesian’s immediate value of information. Comparing this to
Proposition [§] we see that the period 0 self prefers to impose a strong dislike for information on
future selves with low self-confidence but an additional taste for information on future selves

with high self-confidence.

3 Experimental Design and Methodology

The aim of the experiment is twofold: to test how agents update their beliefs when they receive
noisy feedback, and to assess their demand for information. To understand the mapping from
the model into the experiment, recall that in the model agents cared about the level of their
beliefs because of belief utility and about the accuracy of their beliefs because of an anticipated
future decision. In the experiment we study subjects’ beliefs about their performance in an
IQ quiz. Participants may obtain utility from beliefs about their relative performance in an
IQ quiz for a variety of reasons: because they want to believe they are intelligent (ego utility),
because they want to believe their future is bright (anticipatory utility), or because they believe
confidence will enhance their subsequent motivation or performance. At the same time relative
1Q is potentially an important factor to take into account when making future decisions. We
think of these as being outside of the experiment, as for example when subjects make future

educational and career choices.

16



The experiment consisted of four stages, which are explained in detail below. During the
quiz stage, a subject completed an online 1Q test. We measured each subject’s belief about
being among the top half of performers both before the IQ quiz and after the IQ quiz. During
the feedback stage we repeated the following protocol four times. First, a subject receives a
binary signal that indicates whether the subject was among the top half of performers that was
correct with 75% probability. We then measure each subject’s belief about being among the top
half of performers. Overall, subjects receive four independent signals, and we track subjects’
updated beliefs after each signal. In the information purchasing stage we gave subjects the
opportunity to purchase precise information about whether her performance put her in the top
half of all performers. A sub-sample of subjects were invited one month later for a follow-up
which repeated the feedback stage but with reference to the performance of a robot rather

than to their own performance.

3.1 Quiz Stage

Subjects had four minutes to answer as many questions as possible out of 30. Since the
experiment was web-based and different subjects took the test at different times, we randomly
assigned each subject to one of 9 different versions of the IQ test. Subjects were informed that
their performance would be compared to the performance of all other students taking the same

test version. The tests consisted of standard logic questions such as:

Question: Which one of the five choices makes the best comparison? LIVED is to
DEVIL as 6323 is to (i) 2336, (ii) 6232, (iii) 3236, (iv) 3326, or (v) 6332.

Question: A fallacious argument is (i) disturbing, (ii) valid, (iii) false, or (iv)

necessary?

A subject’s final score was the number of correct answers minus the number of incorrect
answers. Earnings for the quiz were the score multiplied by $0.25. During the same period
an unrelated experiment on social learning was conducted and the combined earnings of all
parts of all experiments were transferred to subjects’ university debit cards at the end of the
study. Since earnings were variable and not itemized (and even differed across IQ tests), it
would have been very difficult for subjects to infer their relative performance from earnings.
Types. Subjects with IQ scores above the median for their particular IQ quiz correspond
to high types in our model, those with scores below the median to low types. Because types are
binary, a subject’s belief about her type at any point in time is given by a single number, her

subjective probability of being a high type. This will prove crucial when devising incentives
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to elicit beliefs, and distinguishes our work from much of the literature where only several

moments of more complicated belief distributions are elicited.!®

3.2 Feedback Stage

Signal Accuracy. Signals were independent and correct with probability 75%: if a subject
was among the top half of performers, she would get a “Top” signal with probability p = 0.75
and a “Bottom” signal with probability 1 — p. If a subject was among the bottom half of
performers, she would get a Top signal with probability ¢ = 0.25 and a Bottom signal with
probability 1 — ¢g. The informativeness of Top and Bottom signals was therefore Ay = In(3)
and A;, = —In(3), respectively. To explain the accuracy of signals over the web, subjects were
told that the report on their performance would be retrieved by one of two “robots” — “Wise
Bob” or “Joke Bob.” Each was equally likely to be chosen. Wise Bob would correctly report
Top or Bottom. Joke Bob would return a random report using Top or Bottom with equal
probability. We explained that this implied that the resulting report would be correct with
75% probability.

Belief elicitation. We used a novel crossover mechanism each time we elicited beliefs.

Subjects were presented with two options,

1. Receive $3 if their score was among the top half of scores (for their quiz version).

2. Receive $3 with probability = € {0,0.01,0.02,...,0.99, 1}.

and asked for what value of « they would be indifferent between them. We then draw a random
number y € {0,0.01,0.02,...,0.99,1}. Subjects were paid $3 with probability y when y > = and
otherwise received $3 when their own score was among the top half of scores. To present this
mechanism in a simple narrative form, we told subjects that they were paired with a “robot”
who had a fixed but unknown probability y between 0 and 100% of scoring among the top half
of subjects. Subjects could base their chance of winning $3 on either their own performance
or their robot’s, and had to indicate the threshold level of x above which they preferred to use
the robot’s performance. We explained to subjects that they would maximize their probability
of earning the $3 by choosing their own subjective probability of being in the top half as the
threshold. Subjects were told at the outset that we would elicit their beliefs several times but
would implement only one choice at random for payment.

To the best of our knowledge, ours is the first paper to implement the crossover mechanism

in an experiment.'® The crossover mechanism has two main advantages over the quadratic

5For example, Niederle and Vesterlund (2007) elicit the mode of subjects’ beliefs about their rank in groups
of 4.

16 After running our experiment we became aware that the same mechanism was also independently discovered
by Allen (1987) and Grether (1992), and has since been proposed by Karni (2009).
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scoring rule commonly used in experimental papers. First, quadratic scoring is truth-inducing
only for risk-neutral subjects;'” the crossover mechanism is strictly incentive-compatible pro-
vided only that subjects’ preferences are monotone in the sense that among lotteries that pay
$3 with probability ¢ and $0 with probability 1—gq, they strictly prefer those with higher q. This
property holds for all von-Neumann-Morgenstern preferences as well as for many non-standard
preferences such as Prospect theory.

A second advantage is that the crossover mechanism does not generate perverse incentives
to “hedge” performance on the quiz. Consider the incentives facing a subject who has predicted
that she will score in the top half with probability ji. Under a quadratic scoring rule she will
earn a piece rate of $0.25 per point she scores and lose an amount proportional to (Ig.g — )2,
where S is her score and S the median score. If she believes the latter to be distributed

according to F' then her total payoff is

§0.25- 5 — k- / (Iyos — i)2dF(S) (17)

for some k > 0; this may be decreasing in S for low values of [i, generating incentives to

“hedge.” In contrast, her quiz payoff under the crossover mechanism is
$0.25 % .S + $3.00 = /1 * /IS>§dF(§), (18)

which unambiguously increases with S. Intuitively, conditional on her own performance being

the relevant one (which happens with probability ji), she always wants to do the best she can.

3.3 Information Purchasing Stage

In the final stage of the experiment we elicited subjects’ demand for noiseless feedback on
their relative performance. Subjects stated their willingness to pay for the following bundles:
receiving $2, receiving $2 and receiving feedback through a private email, or receiving $2 and
receiving feedback on a web page visible to all study participants as well as by email. We
offered two variants of the latter two bundles, one in which subjects learned whether they
scored in the top half or not, and another in which they learned their exact quantile in the
score distribution. In total, subjects thus bid for five bundles. We bounded responses between
$0.00 and $4.00.

One of the choices was randomly selected and subjects purchased the corresponding bundle

if and only if their reservation price exceeded a randomly generated price. This design is a

17See Offerman, Sonnemans, Van de Kuilen and Wakker (2009) for an overview of the risk problem for scoring
rules and a proposed risk-correction. One can of course eliminate distortions entirely by not paying subjects,
but unpaid subjects tend to report inaccurate and incoherent beliefs (Grether 1992).
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standard application of the Becker-DeGroot-Marschak mechanism (BDM), with the twist that
we measure information values by netting out subjects’ valuations for $2 alone from their other

valuations. This addresses the concern that subjects may under-bid for objective-value prizes.

3.4 Follow-up Stage

We invited a random sub-sample of subjects through email to a follow-up experiment one
month later. Subjects were told they had been paired with a robot who had a probability
0 of being a high type. We then repeated the feedback stage of the experiment except that
this time subjects received signals of the robot’s ability and we tracked their beliefs about the
robot being a high type.

The purpose of this follow-up was to compare subjects’ processing of information about
a robot’s ability as opposed to their own ability. To make this within-subject treatment as
effective as possible, we matched experimental conditions in the follow-up as closely as possible
to those in the baseline. We set the robot’s initial probability of being a high type, 6, to the
multiple of 5% closest to the subject’s post-IQ quiz confidence. For example, if the subject
had reported a confidence level of 63% after the quiz we would pair the subject with a robot
that was a high type with probability = 65%. We then randomly picked a high or low type
robot for each subject with probability 6. If the type of the robot matched the subject’s type
in the earlier experiment then we generated the same sequence of signals for the robot. If the
types were different, we chose a new sequence of signals. In either case, signals were correctly

distributed conditional on the robot’s type.

4 Data

4.1 Subject Pool

The experiment was conducted in April 2005 as part of a larger sequence of experiments at a
large private university with an undergraduate student body of around 6,400. A total of 2,356
students signed up in November 2004 to participate in this series of experiments by clicking
a link on their home page on www.facebook.com, a popular social networking site.'® These
students were invited by email to participate in the belief updating study, and 1,058 of them
accepted the invitation and completed the experiment online. This final sample is 45% male
and distributed across academic years as follows: 26% seniors, 28% juniors, 30% sophomores,

and 17% freshmen. Our sample includes about 33% of all sophomores, juniors, and seniors

18Tn November 2004 more than 90% of students were members of the site and at least 60% of members logged
into the site daily.
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enrolled during the 2004-2005 academic year, and is thus likely to be unusually representative
of the student body as a whole.

An important concern with an online experiment is whether subjects understood and were
willing to follow instructions. In light of that concern, our software required subjects to make
an active choice each time they submitted a belief — they were free to report beliefs that are
clearly inconsistent with both perfect and biased Bayesian updating, such as updates in the
wrong direction and neutral updates (reporting the same belief as in the previous round). After
each of the 4 signals, a stable proportion of about 36% of subjects reported the same belief
as in the previous round.'® About 16% of subjects did not change their beliefs at all during
all four rounds of the feedback stage. In contrast, the share of subjects who updated in the
wrong direction declined over time (13%, 9%, 8% and 7%), and most subjects made at most
one mistake.?’

For most of our analysis we use a restricted sample of subjects who (1) made no updates
in the wrong direction, and (2) revised their beliefs at least once. These restrictions exclude
25% and 13% of our sample, respectively, and leave us with 342 women and 314 men. We
view this exclusion as a conservative way to exclude subjects who misunderstood or ignored
the instructions. Our main conclusions hold on the full sample as well, however, and we also
provide those estimates as robustness checks where appropriate.

We invited 120 subjects to participate in the follow-up stage one month later, and 78
completed this final stage of the experiment. The pattern of wrong and neutral moves was
similar to the first stage of the experiment. Slightly fewer subject made neutral updates (28%
of all updates) and 10% always made neutral updates. Slightly more subjects made wrong
updates (22% made one mistake, 10% made two mistakes, 5% made three mistakes and 3%

made 4 mistakes). The restricted sample for the follow-up has 39 subjects.

4.2 Quiz Scores

The mean score of the 656 subjects was 7.4 (s.d. 4.8), generated by 10.2 (s.d. 4.3) correct
answers and 2.7 (s.d. 2.1) incorrect answers. The distribution of quiz scores (number of correct
answers minus number of incorrect answers) is approximately normal, with a handful of outliers
who appear to have guessed randomly. The most questions answered by a subject was 29, so
the 30-question limit did not induce bunching at the top of the distribution. Table [A=1]in the
supplementary appendix provides further descriptive statistics broken down by gender and by

quiz type. An important observation is that the 9 versions of the quiz varied substantially in

9The exact proportions were 36%, 39%, 37% and 36% for the four rounds, respectively.
200verall, 19% of subjects made only one mistake, 6% made two mistake, 2% made 3 mistakes and 0.4%
made 4 mistakes.
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difficulty, with mean scores on the easiest version (#6) fives time higher than on the hardest
version (#5). Subjects who were randomly assigned to harder quiz versions were significantly
less confident that they had scored in the top half after taking the quiz, presumably because
they attributed some of their difficulty in solving the quiz to being a low type.?! We will

exploit this variation below, using quiz assignment as an instrument for beliefs.

5 Information Processing

In this section we analyze belief updating in the feedback and follow-up stages, comparing our

model’s predictions to the perfect Bayesian benchmark.

5.1 Summary Statistics

Figure [l plots the empirical cumulative distribution function of subjects’ beliefs, directly after
the quiz and after four rounds of updating. Updating yields a flatter distribution as mass shifts
towards 0 (for low types) and 1 (for high types). Note that the distribution of beliefs is quite
smooth and not merely bunched around a few focal numbers. This provides some support for
the idea that the new elicitation method generates reasonable answers.??

Our design with only two states (top half and bottom half of the distribution) allows us to
easily compare the belief updates of subjects to perfectly Bayesian updates. Figure[@ shows the
mean belief revision in response to a Top and Bottom signal by decile of prior belief in being a
top half type for each of the four observations of the 656 subjects. First, note that subjects are
conservative and update much less than the perfect Bayesian benchmark would predict. To
assess whether subjects update asymmetrically, Figure [[] compares subjects whose prior belief
was 1 and who received positive feedback with subjects whose prior belief was 1 — i and who
received negative feedback. According to Bayes’ rule, the magnitude of the belief change in
these situations should be identical. However, Figure [7] shows that subjects tend to respond
more strongly to positive feedback. We will study both of these phenomena using a regression

approach next and will confirm the pattern revealed by the figures.

2IMoore and Healy (2008) document a similar pattern.
22Tn work in progress, Hollard, Massoni and Vergnaud (2010) compare beliefs obtained using several elicitation
procedures and show that using the crossover procedure results in the smoothest distribution of beliefs.
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Figure 5: Belief Distributions
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Empirical cumulative distributions of subjects’ beliefs following the quiz (Post Quiz) and after four rounds of
noisy feedback (Post Signal 4).

5.2 Empirical Specification

Our empirical strategy mirrors the theory section, expressing information processing in terms

of the logistic function. For a (possibly biased) Bayesian,
logit (') = logit (i) + I(sit = H) - Ay + (s = L) - AL (19)
This motivates the following linear empirical specification:

logit(jf) = & - logit(f; ) + B - I(sie = H)Aw + Br - I(sie = L)AL + €ir (20)
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Figure 6: Conservatism
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Mean belief revisions broken down by decile of prior belief in being of type “Top.” Responses to positive and
negative signals are plotted separately in the top and bottom halves, respectively. The corresponding means that
would have been observed if all subjects were perfect Bayesians are provided for comparison. T-bars indicate
95% confidence intervals.

In our experiment, we have Ay = —Ar = In(3), and the error term €;; captures unsystematic
errors that subject ¢ made when updating her belief at time t. Note that we do not have to
include a constant in this regression because I(s; = H) + I(siy = L) = 1. The coefficient
0 captures the persistence of prior information; our model predicts § = 1 for both biased
and perfect Bayesians. The coefficients Sy and §r, capture relative responsiveness to positive
and negative information and allow us to distinguish perfect and biased Bayesians. A perfect
Bayesian is fully responsive to positive and negative information (Sg = S = 1). In contrast,
a biased Bayesian is conservative — less responsive to new information overall (Sp,Sr < 1)
— and asymmetric — more responsive to positive than negative information (g > 5r).

Identifying Equation 20lis non-trivial because we include lagged logit-beliefs (that is, priors)
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Figure 7: Asymmetry
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Mean absolute belief revisions by decile of prior belief in being of type equal to the signal received. For example,
a subject with prior belief i = 0.8 of being in the top half who received a signal T and a subject with prior
belief i = 0.2 who received a signal B are both plotted at x = 80%. T-bars indicate 95% confidence intervals.

as a dependent variable. If there is unobserved heterogeneity in subjects’ responsiveness to
information, Br, and By, then OLS estimation may yield upwardly biased estimates of § due
to correlation between the lagged logit-beliefs and the unobserved components 5;;, — 8 and
Bim — B in the error term. Removing individual-level heterogeneity through first-differencing
or fixed-effects estimation does not solve this problem but rather introduces a negative bias
(Nickell 1981). In addition to these issues, there may be measurement error in self-reported

logit-beliefs because subjects make mistakes or are imprecise in recording their beliefs.??

23Gee Arellano and Honore (2001) for an overview of the issues raised in this paragraph. Instrumental
variables techniques have been proposed that use lagged difference as instruments for contemporaneous ones
(see, for example, Arellano and Bond (1991)); these instruments would be attractive here since the theory clearly
implies that the first lag of beliefs should be a sufficient statistic for the entire preceding sequence of beliefs,
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To address these issues we exploit the fact that subjects’ random assignment to different
versions of the I1Q quiz generated substantial variation in their post-quiz beliefs. This allows
us to construct instruments for lagged prior logit-beliefs. For each subject ¢ we calculate
the average quiz score of subjects other than ¢ who took the same quiz variant to obtain a
measure of the quiz difficulty level that is not correlated with subject ¢’s own ability but highly
correlated with the subject’s beliefs. We will report both OLS and IV estimates of Equation
120

5.3 Results from Feedback Stage

Table [ presents round-by-round and pooled estimates of Equation B0l2* Estimates in Panel
A are via OLS and those in Panel B are via IV using quiz type indicators as instruments. The
F-statistics reported in Panel B indicate that our instrument is strong enough to rule out weak

instrument concerns (Stock and Yogo 2002).

Result 1 (Persistence) Subjects weigh prior information similarly to perfect Bayesian up-

daters.

Our model implies a coefficient § = 1 on prior logit-beliefs for both perfect and biased
Bayesians. OLS estimates for the early rounds of belief updating put it close to but sig-
nificantly less than unity. Although it climbs by round, we fail to reject that it equals one
only in Round 4 (p = 0.57). These estimates may be biased upward by heterogeneity in the
responsiveness coefficients, 8;1 and f5;f7, or may be biased downwards if subjects report beliefs
with noise. The IV estimates suggest that the latter bias is more important: the pooled point
estimate of 0.963 is larger and none of the estimates are significantly different from unity.
All told, we find strong evidence that information persists once it has been incorporated into

agents’ beliefs.

Result 2 (Conservatism) Subjects respond less to both positive and negative information

than a perfect Bayesian.

Figure [6] suggests that our subjects respond less to new information than a perfect Bayesian.
This observation is reflected in the regressions. Our OLS estimates of S and Sz, 0.370 and
0.302, are substantially and significantly less than unity. Round-by-round estimates do not

follow any obvious trend — therefore, this observation does not seem to be a mere cognitive

but unfortunately higher-order lags have little predictive power when the autocorrelation coefficient d is close
to one, as our model predicts for both perfect and biased Bayesians.

24The logit function is defined only for priors and posteriors in (0, 1); to balance the panel we further restrict
the sample to subjects i for whom this holds for all rounds ¢. Results using the ragged panel, which includes
another 101 subject-round observations, are essentially identical.
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error that can be reduced through practice. The IV and OLS estimates are almost identical,

suggesting there is little bias through correlation with lagged prior beliefs.

Result 3 (Asymmetry) Controlling for prior beliefs, subjects respond more to positive than

to negative signals.

The regressions also confirm that subjects respond differently to positive and negative infor-
mation as suggested in Figure [l To quantify asymmetry we compare estimates of Sy and
B, the responsiveness to positive and negative signals. The difference S — 5r, is consistently
positive across all rounds and significantly different from zero in the first round, fourth round,
and for the pooled specification. While estimates of this difference in Rounds 2 and 3 are not
significantly different from zero, we cannot reject the hypothesis that the estimates are equal
across all four rounds (p = 0.32). The IV estimates are somewhat more variable but are again
uniformly positive, and significantly so in Rounds 1 and 4 and in the pooled specification. The
size of the difference is substantial, implying that the effect of receiving both a positive and a
negative signal (that is, no information) is 26% as large as the effect of receiving only a positive
signal.?® As an alternative non-parametric test we can study the net change in beliefs among
the 224 subjects who received two positive and two negative signals. These subjects should
have ended with the same beliefs as they began; instead their beliefs increased by an average
of 4.8 points (p < 0.001).

A key benefit of our empirical design is that it not only rejects the perfect Baysian model
but shows us exactly in which ways it fails. If instead we simply regress subjects’ logit-beliefs
on those predicted by Bayes’ rule, we estimate a correlation of 0.57, which lets us reject the
perfect Bayesian null but does not disentangle persistence, conservatism, or asymmetry.

Finally, we can summarize the extent to which subjects deviate from perfect Bayesian
updating by comparing their payoffs mqcruar to those they would have earned if they updated
using Bayes’ rule (mpayes) or if they reported uniformly random posteriors (7,andom). The
ratio Tectual—Trandom g () 64, implying that non-Bayesian updating behavior costs subjects 36%

TBayes ~Trandom
of the potential gains from processing information within this experiment.

5.4 Confidence Management or Cognitive Mistakes?

Our model of self-confidence management explains both conservatism and asymmetry. How-
ever, there are other interpretations unrelated to ego that might explain some of our results.
For example, conservatism might arise if subjects are perfect Bayesians who simply misin-

terpret the informativeness of signals and believe that the signal is only correct with 60%

25Table in the supplementary appendix shows that the results of the regression continue to hold when
we pool all four rounds of observation, even when we eliminate all observations in which subjects do not change
their beliefs. That is, the effect is not driven by an effect of simply not updating at all.
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Table 2: Heterogeneity in Updating

(a) Heterogeneity by Ability (b) Heterogeneity by Gender
Regressor OLS v Regressor OLS v
B 0.918 0.966 ) 0.925 0.988
(0.015)*** (0.075)*** (0.015)*** (0.103)***
sAble 0.010 -0.002 gMale -0.007 -0.047
(0.022) (0.138) (0.023) (0.125)
B 0.381 0.407 B 0.331 0.344
(0.026)*** (0.050)*** (0.017)*** (0.031)***
Br 0.317 0.296 BL 0.280 0.258
(0.016)*** (0.034)*** (0.015)*** (0.040)***
Babte -0.017 -0.048 BMale 0.080 0.063
(0.030) (0.054) (0.027)*** (0.038)*
Able -0.041 -0.011 Male 0.052 0.073
(0.025) (0.049) (0.026)** (0.044)*
N 2448 2448 N 2448 2448
R? 0.854 - R? 0.855 -

Each column is a separate regression. The outcome in all regressions is the log belief ratio. §, Su, and §1, are
the estimated effects of the prior belief and log likelihood ratio for positive and negative signals, respectively.
67, Bl,, and 7 are the differential responses attributable to being male (j = Male) or high ability (j = Able).
Robust standard errors clustered by individual reported in parentheses. Statistical significance is denoted as:
*p < 0.10, **p < 0.05, **p < 0.01

probability instead of 75%. Subjects might underweight signals because they are used to en-
countering weaker ones in everyday life. We present two pieces of evidence that suggest that
simple cognitive errors are not the driving factor.

First, we show that conservatism and asymmetry do not correlate with the cognitive ability
of participants. Specifically, we assess whether biases are present both among high performers
(those that score in the top half) and low performers on the IQ) quiz. Table 2alreports estimates
of Equation 19 differentiated by ability. Able participants do not have different estimates either
on the weight put on the prior, or on the way they incorporate positive and negative signals.
There is no evidence that more able (higher performing) participants update in any different
way than less able participants, which suggests that cognitive errors are not the main factor
that prevent subjects from being perfect Bayesians.

The second analysis that helps distinguish our model from a cognitive errors interpretation
is to examine the results of the follow-up experiment, in which a ra