
econstor www.econstor.eu

Der Open-Access-Publikationsserver der ZBW – Leibniz-Informationszentrum Wirtschaft
The Open Access Publication Server of the ZBW – Leibniz Information Centre for Economics

Nutzungsbedingungen:
Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche,
räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts
beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen
der unter
→ http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollständigen Nutzungsbedingungen zu
vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die
erste Nutzung einverstanden erklärt.

Terms of use:
The ZBW grants you, the user, the non-exclusive right to use
the selected work free of charge, territorially unrestricted and
within the time limit of the term of the property rights according
to the terms specified at
→ http://www.econstor.eu/dspace/Nutzungsbedingungen
By the first use of the selected work the user agrees and
declares to comply with these terms of use.

zbw Leibniz-Informationszentrum Wirtschaft
Leibniz Information Centre for Economics

Bazovkin, Pavel; Mosler, Karl

Working Paper

An exact algorithm for weighted-mean
trimmed regions in any dimension

Discussion papers in statistics and econometrics, No. 6/10

Provided in cooperation with:
Universität zu Köln

Suggested citation: Bazovkin, Pavel; Mosler, Karl (2010) : An exact algorithm for weighted-
mean trimmed regions in any dimension, Discussion papers in statistics and econometrics, No.
6/10, http://hdl.handle.net/10419/45356

DISCUSSION PAPERS IN STATISTICS

AND ECONOMETRICS

SEMINAR OF ECONOMIC AND SOCIAL STATISTICS
UNIVERSITY OF COLOGNE

No. 06/2010

An Exact Algorithm for Weighted-Mean

Trimmed Regions in Any Dimension

by

Pavel Bazovkin

Karl Mosler

1st version

October 15, 2010

DISKUSSIONSBEITRÄGE ZUR

STATISTIK UND ÖKONOMETRIE
SEMINAR FÜR WIRTSCHAFTS- UND SOZIALSTATISTIK

UNIVERSITÄT ZU KÖLN

Albertus-Magnus-Platz, D-50923 Köln, Deutschland

DISCUSSION PAPERS IN STATISTICS

AND ECONOMETRICS

SEMINAR OF ECONOMIC AND SOCIAL STATISTICS
UNIVERSITY OF COLOGNE

No. 06/2010

An Exact Algorithm for Weighted-Mean

Trimmed Regions in Any Dimension

by

Pavel Bazovkin1

Karl Mosler2

Abstract

Trimmed regions are a powerful tool of multivariate data analysis. They
describe a probability distribution in Euclidean d-space regarding location,
dispersion, and shape, and they order multivariate data with respect to
their centrality. Dyckerhoff and Mosler (201x) have introduced the class
of weighted-mean trimmed regions, which possess attractive properties re-
garding continuity, subadditivity, and monotonicity.

We present an exact algorithm to compute the weighted-mean trimmed
regions of a given data cloud in arbitrary dimension d. These trimmed re-
gions are convex polytopes in IRd. To calculate them, the algorithm builds
on methods from computational geometry. A characterization of a region’s
facets is used, and information about the adjacency of the facets is ex-
tracted from the data. A key problem consists in ordering the facets. It is
solved by the introduction of a tree-based order. The algorithm has been
programmed in C++ and is available as an R package.

Keywords: Central regions, data depth, multivariate data analysis, convex poly-
tope, computational geometry, algorithm, C++, R.

1Graduiertenkolleg Risikomanagement, Universität zu Köln, D-50923 Köln
2Seminar für Wirtschafts– und Sozialstatistik, Universität zu Köln, D-50923 Köln

An Exact Algorithm for Weighted-Mean Trimmed

Regions in Any Dimension

Pavel Bazovkin
Universität zu Köln

Karl Mosler
Universität zu Köln

October 15, 2010

Abstract

Trimmed regions are a powerful tool of multivariate data analysis. They describe a
probability distribution in Euclidean d-space regarding location, dispersion, and shape,
and they order multivariate data with respect to their centrality. Dyckerhoff and Mosler
(201x) have introduced the class of weighted-mean trimmed regions, which possess attrac-
tive properties regarding continuity, subadditivity, and monotonicity.

We present an exact algorithm to compute the weighted-mean trimmed regions of a
given data cloud in arbitrary dimension d. These trimmed regions are convex polytopes
in Rd. To calculate them, the algorithm builds on methods from computational geometry.
A characterization of a region’s facets is used, and information about the adjacency of
the facets is extracted from the data. A key problem consists in ordering the facets. It is
solved by the introduction of a tree-based order. The algorithm has been programmed in
C++ and is available as an R package.

Keywords: central regions, data depth, multivariate data analysis, convex polytope, compu-
tational geometry, algorithm, C++, R.

1. Introduction

Trimmed regions are a powerful tool of multivariate data analysis. They describe a probability
distribution in Euclidean d-space regarding location, dispersion, and shape, and they order
multivariate data with respect to their centrality. Given d-variate data x1, x2, . . . , xn, an α-
trimmed region Dα(x1, x2, . . . , xn) is a convex compact set in Rd that depends on the data
in an affine equivariant way, i.e., for every matrix A ∈ Rm×d and every b ∈ Rm it holds

Dα(Ax1 + b, . . . , Axn + b) = ADα(x1, . . . , xn) + b .

The parameter α varies in an interval such that the family (Dα(x1, x2, . . . , xn))α is nested
decreasing in α, i.e., α < β implies Dβ(x1, . . . , xn) ⊂ Dα(x1, . . . , xn). The smallest region is
regarded as a particular median of the data.

Several special notions of trimmed regions have been introduced in the literature, among them
the Mahalanobis regions, the halfspace regions, and the zonoid regions; for recent surveys, see
Serfling (2006), Cascos (2009). Applications include multivariate data analysis (Liu, Parelius,
and Singh 1999), classification (Mosler and Hoberg 2006), tests for multivariate location and

2 An Exact Algorithm for WMT Regions

scale (Dyckerhoff 2002), risk measurement (Cascos and Molchanov 2007), and many others.
The various notions of trimmed regions differ in properties like continuity, robustness, and
sensitivity regarding the data. Depending on the type of application different properties are
relevant. E.g., Mahalanobis regions are ellipses around the mean of the data and based on their
covariance matrix; by this they can neither reflect a possible asymmetry of the distribution nor
characterize it in a unique way. Both halfspace regions and zonoid regions reflect asymmetries
and characterize the distribution. Halfspace regions are more robust against outliers than
zonoid regions; if robustness is an issue, the latter need some preprocessing of the data.

Dyckerhoff and Mosler (201x) have introduced the class of weighted-mean trimmed regions,
which possess additional attractive properties and include the zonoid regions as a special
case. Weighted-mean trimmed regions are continuous in the data as well as in the parameter,
which means that both the function (x1, . . . , xn) 7→ Dα(x1, . . . , xn) and the function α 7→
Dα(x1, . . . , xn) are continuous in terms of Hausdorff convergence of sets. Moreover, weighted-
mean trimmed regions are subadditive and monotone, which properties have a substantial
interpretation in terms of d-variate risk and allow the construction of set-valued risk measures
that are coherent (Cascos and Molchanov 2007).

To be useful in data applications, a notion of trimmed regions must be computable. Bivariate
trimmed regions of any type can be calculated by constructing a circular sequence, like in
Dyckerhoff (2000) and Cascos (2007), but only a few procedures are known in dimension
d > 2. Mahalanobis regions are easily determined in any dimension d, as they only employ
the mean and the dispersion matrix of the data. Mosler, Lange, and Bazovkin (2009) develop
an efficient geometric algorithm for zonoid regions in any dimension, and Hallin, Paindaveine,
and Šiman (2010) provide a parametric linear program for calculating halfspace regions.

In this paper we present an exact algorithm to compute the weighted-mean trimmed regions
of a given data cloud in arbitrary dimension d. These trimmed regions are convex polytopes
in Rd. To calculate them, the algorithm builds on methods from computational geometry.
A region’s facet is characterized by d − 1 pairs of data points. Based on them the normal
(support vector) of the facet is determined and by properly rotating the support vector an
adjacent facet is found. A key problem consists in ordering the facets. It is solved by the
introduction of a tree-based order.

Overview of the paper: Section 2 provides a brief introduction into the notion of weighted-
mean trimmed (WMT) regions. The main results of the paper are contained in Section 3,
which presents the basic geometrical ideas of the algorithm, in particular the construction of
a facet on the basis of d−1 data point differences and the transition to a neighboring facet by
rotating the support vector and exchanging the basis. Section 4 provides a formal description
of the algorithm. Section 5 delineates the R package and the program realization in C++,
while Section 6 concludes with a discussion of complexity issues.

2. Weighted-mean trimming

This section reviews the general notion of weighted-mean trimmed regions and two of its
special cases, the zonoid regions and a modified version of the expected convex hull (ECH)
regions - the ECH∗ regions.

Pavel Bazovkin, Karl Mosler 3

2.1. Definition and principal properties

Weighted-mean trimmed regions are convex bodies in Rd. Recall that a convex body K ⊂ Rd

is uniquely determined by its support function hK (see, e.g., Rockafellar (1970)),

hK(p) = max
{
p′x |x ∈ K

}
, p ∈ Sd−1,

where Sd−1 denotes the unit sphere in Rd.

To define the weighted-mean α-trimmed region of a given data cloud x1, x2, . . . , xn, we con-
struct its support function as follows: For p ∈ Sd−1, consider the subspace {λp|λ ∈ R}. By
projecting the data on this subspace a linear ordering is obtained,

p′xπp(1) ≤ p′xπp(2) ≤ · · · ≤ p′xπp(n) , (1)

and, by this, a permutation πp of the indices 1, 2, . . . , n. Note that, if no equalities arise in
(1), the permutation πp is unique, otherwise a class Πp of several permutations is generated.
The set of directions p at which πp is not unique will be denoted H(x1, . . . , xn),

H(x1, . . . , xn) =
{
p ∈ Sd−1 | there are i 6= j such that p′xi = p′xj

}
.

Consider weights wj,α for j ∈ {1, 2, . . . , n} and α ∈ [0, 1] that satisfy the following restrictions
(i) to (iii):

(i)
∑n

j=1wj,α = 1, wj,α ≥ 0 for all j and α ,

(ii) wj,α increases in j for all α ,

(iii) if α < β then
k∑
j=1

wj,α ≤
k∑
j=1

wj,β , k = 1, . . . , n . (2)

Then, as it has been shown in Dyckerhoff and Mosler (201x), the function hDα(x1,...,xn),

hDα(x1,...,xn)(p) =
n∑
j=1

wj,αp
′xπp(j) , p ∈ S

d−1 (3)

is the support function of a convex body Dα = Dα(x1, . . . , xn), and Dα ⊂ Dβ holds whenever
α > β.

Now we are ready to give the general definition of a family of weighted-mean trimmed regions.

Definition 1. (Dyckerhoff and Mosler) Given weights w1,α, . . . wn,α that satisfy the restric-
tions (i) to (iii), the convex body Dα = Dα(x1, . . . , xn) having support function (3) is named
the weighted-mean α-trimmed region of x1, . . . , xn , α ∈ [0, 1].

The next proposition explains the name by stating that a weighted-mean trimmed region
is the convex hull of weighted means of the data. Further it describes the region’s extreme
points.

4 An Exact Algorithm for WMT Regions

Proposition 1. It holds

Dα(x1, . . . , xn) = conv

n∑
j=1

wj,αxπ(j)

∣∣∣π permutation of {1, . . . , n}

 , (4)

and the set of extreme points of Dα is given by

Ext
(
Dα(x1, . . . , xn)

)
=

n∑
j=1

wj,αxπp(j)

∣∣∣ p ∈ Sd−1 \H(x1, . . . , xn)

 . (5)

Due to their attractive analytical properties, WMT regions are useful statistical tools. Besides
being continuous in the data and in α, they are subadditive, that is,

Dα(x1 + y1, . . . , xn + yn) ⊂ Dα(x1, . . . , xn)⊕Dα(y1, . . . , yn) ,

and monotone: If xi ≤ yi holds for all i (in the componentwise ordering of Rd), then

Dα(y1, . . . , yn) ⊂ Dα(x1, . . . , xn)⊕ Rd
+ , and

Dα(x1, . . . , xn) ⊂ Dα(y1, . . . , yn)⊕ Rd
− ,

where ⊕ signifies the Minkowski sum of sets. For proofs and more results, like projection
properties, the reader is again referred to Dyckerhoff and Mosler (201x).

2.2. Special notions of weighted-mean trimming

The general notion of WMT regions provides a flexible approach to the trimming of multivari-
ate data. Depending on the choice of the weights wj,α different families of trimmed regions
are obtained. They include the zonoid regions (Koshevoy and Mosler 1997), the ECH and
ECH∗ regions (Cascos 2007), the geometrically trimmed regions, and many others. For an
illustration in dimension d = 3 see Figure 1. Here the left panel shows zonoid regions for
different parameters α, while the right one consists of ECH* regions for the same data and
α. Note from Figure 1 that the surface of a zonoid region appears to have less facets than an
ECH∗ region.

Historically, the first family of WMT regions was that of zonoid trimmed regions ZDα(x1, . . . , xn)
for 0 < α ≤ 1 proposed by Koshevoy and Mosler (1997),

ZDα(x1, . . . , xn) =

{
n∑
i=1

λixi | 0 ≤ λi ≤
1
nα

,

n∑
i=1

λi = 1

}
.

The corresponding support function is

hZDα(p) =
n∑
j=1

wj,αp
′xπp(j) ,

with weights

wj,α =

0 if j < n− bnαc ,

nα−bnαc
nα if j = n− bnαc ,
1
nα if j > n− bnαc .

(6)

Pavel Bazovkin, Karl Mosler 5

Many properties of the zonoid regions are developed in Mosler (2002); particularly important
is that they contain full information about the data.

Another important notion of WMT regions is that of ECH* regions (Cascos 2007). Their
support function

hECH∗
α
(p) =

n∑
j=1

wj,α p
′xπp(j)

employs the weights

wj,α =
j1/α − (j − 1)1/α

n1/α
. (7)

For a detailed discussion of these and other special weighted-mean trimmed regions, like ECH
and geometrically trimmed regions, the reader is referred to Dyckerhoff and Mosler (201x).

3. Geometry of the algorithm

In this section we present the basic ideas of the algorithm. Specifically, it relies on notions
from convex geometry.

3.1. Trimmed region as a convex polytope

Consider a data cloud, which is a finite set of data points, {x1, x2, . . . , xn} ⊂ Rd, and assume
that the points are all different and in general position (i.e., no more than d − 1 of them lie
on the same hyperplane).

For given α, the α-trimmed region Dα = Dα(x1, x2, . . . , xn) is a convex polytope in Rd that
is bounded and closed. Such a polytope is the nonempty and bounded intersection of finitely
many closed halfspaces. Thus the polytope can be completely described by its bounding
hyperplanes. The intersection of a bounding hyperplane with the polytope is named a facet
if it has the affine dimension d−1. Similarly, it is named a ridge if it has the dimension d−2.
In dimension d = 3 a facet is a face, and a ridge is an edge.

In the sequel, we calculate the weighted-mean trimmed regions by their facets. Two compu-
tational tasks will have to be repeatedly performed:

1. Calculate a facet,

2. find an adjacent facet.

A ridge is the intersection of two facets. Therefore, investigating the ridges is a way to extract
information about the adjacency of facets. Each ridge of a given facet provides an indicator
whether another facet is adjacent or not. A bounding hyperplane is fully described by its
(outwards pointing) normal and one additional point, in particular one of its vertices. Hence,
for every facet we determine its normal and a vertex as well as the adjacency indicator of
each of its ridges. By doing this successively for all facets, a complete representation of the
trimmed region is obtained.

Mosler, Lange, and Bazovkin (2009) develop an exact algorithm for calculating zonoid trimmed
regions. They demonstrate that, in the case of zonoid regions, the normal of a facet is char-
acterized by d points of the data cloud.

6 An Exact Algorithm for WMT Regions

Figure 1: Examples of WMT regions in R3. Representation of the zonoid (left) and ECH*
(right) regions for the same data and depths.

Regarding a general WMT region, we will firstly characterize its facets. Let F be a given

Pavel Bazovkin, Karl Mosler 7

Figure 2: Characterizing the normal p of a facet (zonoid region, d = 3, n = 10, α = 0.25):
Data points and their projections; p-ordered indices; weights; active pairs of indices.

facet of Dα(x1, . . . , xn) and p denote its normal. Then F has at least d vertices, which all are
supported by p. Due to (3) and (4) each vertex v has the form

v =
n∑
j=1

wj,αxπp(j) with some πp ∈ Πp . (8)

Consequently, not all p′xi can be different: It holds p ∈ H(x1, . . . , xn), and Πp has at least d
elements. Now let us consider the p-ordered series of indices

πp(1), πp(2), . . . , πp(n) .

In the sequel we will mention those pairs of indices (πp(j), πp(k)) as active that satisfy the
equation p′xπp(k) = p′xπp(j) plus a restriction on their weights wj and wk, which will be
specified below. The equation means that the difference xπp(k) − xπp(j) is orthogonal to p,

xπp(k) − xπp(j)⊥ p . (9)

At a given p, all indices that belong to an active pair will be mentioned as active indices, all
others as passive indices.
From now on, we will distinguish data points and data vectors. By a data vector we mean
the difference of two data points. To determine p, d − 1 data vectors are needed. Each of
them is based on an active pair of indices and thus satisfies the orthogonality relation (9).
As, by assumption, the data are in general position, any such d− 1 data vectors are linearly
independent. They will be mentioned as a basis of F and denoted by VF . Note that the basis
of a facet is not unique: To form a basis, out of all active pairs of indices any d− 1 pairs that
yield linearly independent data vectors may be chosen. To summarize:

8 An Exact Algorithm for WMT Regions

Theorem 1. (Basis of a facet) The normal of a facet F is orthogonal to exactly d − 1
linearly independent data vectors, which form a basis of F . The facet is characterized by a
basis and one of its vertices.

Next we develop the two essential steps of calculating a facet and finding an adjacent facet
in detail.

Task 1: Calculating a facet

In our algorithm we have to construct a basis for each facet of the polytope. Let p be the
normal of a given facet F , choose some πp ∈ Πp, and consider the series of p-ordered indices
πp(1), πp(2), . . . , πp(n) . This series contains d − 1 active pairs of indices, πp(j), πp(k), that
define a basis VF .

The special case of zonoid regions (having weights (6)) appears to be particularly simple: A
facet is identified by exactly d data points (carrying serially p-ordered indices), which yield
d− 1 linearly independent difference vectors that are orthogonal to p (Mosler et al. 2009). As
an example, Figure 2 exhibits ten points in R3 and their projections to the line generated by
p. The lower panel contains the p-ordered series of indices and the weights (6) for α = 0.25.
Here, three indices (9, 8, and 4) are active, as well as three index pairs ((9, 8), (9, 4), and
(8, 4)). A basis of the facet is given, e.g., by the data vectors x8 − x9 and x4 − x8. Note that
for these weights (at α = 0.25) and any direction p the indices πp(7), πp(8), and πp(9) become
the active ones.

Other types of weighted-mean trimmed regions employ less simple weights. With them the
number of active indices involved in the identification of a facet F may be larger than d. E.g.,
Figure 3 illustrates the characterization of a facet of an ECH∗ region, with weights (7) and
α = 0.25. It shows another example of ten points in R3 and their projections, given some p.
In this example, four indices (7, 6, 4, and 2), and two index pairs ((7, 6) and (4, 2)) are active,
and a basis consists of x6 − x9 and x2 − x4, being unique up to sign.

In general, we consider the following disjoint blocks Al of indices, l = 1, . . . , L,

Al = {πp(i) | i ∈ {al, al + 1, . . . , al + nl − 1}, p′xπp(i−1) = p′xπp(i) for i > al} ,

where al−1 < al holds (a0 = 0), and define: A pair of indices is called active if a block Al
exists that contains both of them. In particular, each block contains at least two elements,
nl ≥ 2, and it holds wal,α < wal+nl−1,α, which is the restriction on weights announced above.
Moreover, Al ∩ Am = ∅ if l 6= m, and

VF =
L⋃
l=1

{xπp(i) − xπp(i+1) |πp(i), πp(i+ 1) ∈ Al} .

Note that in the case of zonoid regions only one block of active indices arises; it holds L = 1.

The remaining indices, which are not in
⋃L
`=1Al, are the passive ones. Among them we

distinguish disjoint blocks that have equal weights,

Bk = {πp(i) | i ∈ {bk, bk + 1, . . . , bk +mk − 1}, wi−1,α = wi,α for i > bk} ,

k = 1, 2, . . . ,K, while mk ≥ 1, bk−1 < bk with b0 = 0, and wbk−1,α < wbk,α.

Pavel Bazovkin, Karl Mosler 9

Figure 3: Characterizing the normal p of a facet (ECH∗ region, d = 3, n = 10, α = 0.25):
Data points and their projections; p-ordered indices; weights; active pairs of indices.

Thus πp(1), πp(2), . . . , πp(n) divides into a series SF of blocks

Figure 4: Series of blocks of active and passive indices; weights as indicated.

10 An Exact Algorithm for WMT Regions

Task 2: Finding an adjacent facet

To identify adjacent facets we start from a given facet F , which has support vector p and which
from now on will be called the current facet. Each ridge of F offers a way of ”jumping” to a
neighboring facet. Therefore we investigate the ridges of the current facet F and, consequently,
its adjacent facets. Each element of the basis VF may be regarded as a reduction of one degree
of freedom of the support vector p. To determine p as the normal of the current facet F , we
have to reduce d−1 degrees of freedom and calculate the uniquely determined support vector
p that is orthogonal to d − 1 linearly independent data vectors (differences of vectors from
the original data cloud). A ridge of the current facet is supported by vectors that result from
adding one degree of freedom to the given support vector p. The degree of freedom is added
by leaving out one of the d−1 data vectors from the basis VF , or, more generally, by replacing
some k data vectors in VF with some k − 1 ones, while keeping linear independence within
the basis.

Removing one element from the basis VF corresponds to splitting one of the active blocks in
SF , say Al, into A1

l and A2
l . By this, a modified series of blocks, SF∗, is obtained. Observe

that, if A1
l (or A2

l) is a singleton, its element becomes a passive index in SF∗.
Now, the removed element of the basis has to be substituted by another data vector. For
this, any pair (i∗, j∗) of indices that belong to two neighboring blocks of SF∗ can be chosen
and the corresponding data vector xi∗ − xj∗ be added to the basis. (However, no pair from
A1
l ×A2

l must be selected.) Then the new basis defines a facet that is adjacent to the current
facet F .

This step may be visualized as follows (see Figure 5 for d = 3): Starting at p, the support
vector is rotated in a plane (of dimension two in Rd) until another data vector enters the basis
VF , i.e., until another data vector becomes orthogonal to p. Let Ep denote the set of vertices
of the polytope corresponding to the support vector p. We turn p until it stops at the position
p̃ where p̃′xi∗ = p̃′xj∗ for some i∗ and j∗, i.e., (xi∗−xj∗)⊥p̃. Then, if Ep̃ ⊃ Ep, this means that
p̃ is a normal to some facet F̃ which is a neighbor to the current facet. Otherwise, p is turned
further until the condition is met. Obviously, to meet the condition, the indices i∗ and j∗

must be in different blocks of SF∗. On the other hand, indices can continuously interchange
places only with their neighbors, that is, xi∗ and xj∗ must be in blocks that neighbor each
other.

So far we have exchanged a single basis vector against another one. However, the elements
within each active block at p can be arbitrarily rearranged, and each active index used in the
exchange step just represents a class of equivalent active indices. Therefore more than one,
say k, active pairs living on A1

l ×A2
l may be exchanged simultaneously.

As a result of the basis exchange we have found a single adjacent facet. Our next task is
to identify all facets that are adjacent to the current facet. For this, it is not necessary
to enumerate all pairs of indices from neighboring blocks of SF∗. Note that the elements
of each active block Al are equivalent in the p-order, i.e., p′xi∗ = p′xj∗ for all i∗, j∗ ∈ Al.
Hence, we may permute indices within the active blocks in an arbitrary way, which means
employing some other permutation from Πp in place of the given permutation πp. Therefore,
in generating all possible basis exchanges, we need not consider all active indices for pairing,
but may restrict to a representative index of each active block, say rl ∈ Al, l = 1, . . . , L.
However, in the passive blocks, all indices have to be taken into account.

A pair (i∗, j∗) from two neighboring blocks in SF∗ is called a critical pair if it consists of

Pavel Bazovkin, Karl Mosler 11

Figure 5: Rotating p in a plane of dimension two in Rd.

indices that are either passive or representative active indices. More formally, we may write
the series SF∗ of active and passive blocks as

SF∗ = (C1, C2, . . . , CL+K)

and define

C̃m =
{
{rl} if Cm = Al for some l,
Bk if Cm = Bk for some k.

Then the set of critical pairs (that have to be checked for finding all adjacent facets) is given
by

L+M−1⋃
m=1

C̃m × C̃m+1 . (10)

The two computational tasks, calculating a facet and finding a neighboring facet, are per-
formed until all facets of the polytope have been visited and computed. As a result of the
algorithm, the WMT region is completely described by its facets. Alternatively and in addi-
tion, we may be interested in calculating vertices of the polytope. These are easily determined
by the following procedure.

Proposition 2. (Calculating vertices) Consider a facet F having normal p. Each vertex of
F exactly corresponds to a permutation of (πp(1), . . . πp(n)) that is restricted to permutations
within the Al.

Corollary 1. The minimum possible number of vertices of a facet is d (e.g., for zonoid
regions). The maximum possible number of vertices of a facet is d! .

E.g., in the case of ECH∗-regions, the number of vertices of a facet varies from d to d! .

12 An Exact Algorithm for WMT Regions

Figure 6: The series SF∗ of blocks; with possible critical pairs.

3.2. Spanning tree order

Based on the adjacency information obtained by the above procedure we are able to calculate
the facets in a sequential order. For this sequence, we use the spanning tree order (STO)
discussed in Mosler et al. (2009). The STO provides a complete ordering of all facets according
to which they are generated in the algorithm. The general idea is:

1. Represent all facets adjacency information by a tree,

2. organize an efficient search procedure to traverse the tree.

In the algorithm we organize a breadth-first search as, e.g., described in Knuth (1997). Using
the STO we generate each facet only once, which is an efficient procedure.

Moreover, as the STO is based on the neighboring relation among facets, we can restrict the
calculation of facets to some connected part of the trimmed region’s surface, e.g. the part
having support vector p ≥ 0. This proves to be useful in certain applications like multivariate
risk measurement.

Note that we calculate the trimmed region by sequentially generating its facets, but not its
vertices. In dimension d = 2 it is also possible to determine the region by enumerating its
vertices; this is done by means of a so called circular sequence (Edelsbrunner 1987).

It is easy to see that the proposed procedure applies to any choice of a weighting function
satisfying the above WMT restrictions (i) to (iii). Thus the algorithm is able to calculate any
weighted-mean trimmed region.

4. The algorithm

Input

Pavel Bazovkin, Karl Mosler 13

Figure 7: The sample scheme of the procedure.

d (dimension of the data space, d ≥ 2);

n (number of data points, n > d);

cloud (data x1, . . . , xn ∈ Rd);

α (depth parameter);

wα (weight vector; alternatively: name of special type of WMT regions).

Output

• trimmed region (all facets of the trimmed region, with coordinates of their vertices);

• Visualization.

Steps of the Algorithm

A. Initialization:

a. Read the input.

b. Calculate x = 1
n

∑n
i=1 xi .

c. Substitute xi − x for xi , i = 1, . . . , n .

B. Determine a first facet:

14 An Exact Algorithm for WMT Regions

a. From cloud, form a set vec defining set of d− 1 linearly independent data vectors
(= basis).

b. Calculate, to the hyperplane through vec defining set, a normal vector r.

c. Substitute r for p and choose a permutation πp ∈ Πp. Determine the series of
active blocks {Al}l=1...L in this permutation.

d. {Al}l=1...L defines vec defining set and, hence, the first facet ffacet.

e. Place ffacet ↪→ the head of queue.

C. Determine all facets:

a. Take curr facet ←↩ front of the queue.

b. Create neighboring facets of curr facet.

I. Create all ridges by adding a degree of freedom to p (reducing cardinality of
the basis vec defining set by one).

i. Take the next Al and create all possible splittings of it into two subsets:〈
A1
l ,A2

l

〉
. Replace {Al} by A1

l and A2
l . If either A1

l or A2
l is a singleton,

remove it from the active blocks. A set partial facets(l) is obtained.
ii. Drop off all elements of partial facets(l) that are no active blocks. A set

ridges(l) is obtained.
iii. Add partial facets(l) to the set ridges. If an unprocessed Al is left, go

to C.(b.)I.i.
II. For the next ridge in ridges do the following:

i. Build the maximum number of linearly independent data vectors that are
based on active pairs. Put the vectors as rows into a matrix A. There will
be d− 2 rows.

ii. Given a normal vector r to curr facet, put it as an additional row into A.
Put any non-zero vector that is linearly independent of the d−1 previously
chosen rows as a last row into A. Let b be a vector that consists of d− 1
zeros and a last non-zero entry.

iii. Solve the linear equation Az = b. Its solution z and r span a plane B2

that is orthogonal to the ridge.
iv. If curr facet is not marked, calculate a hash code of the ridge and place it

↪→ hash table. Then go to C.(b.)II.
v. Check in hash table, whether the ridge is blocked. If not, go to C.(b.)II.
vi. Calculate critical pairs according to (10).
vii. Rotate p in the plane B2. In doing so, start at p = r and move p in a

way that the new ordering of points in the permutation corresponds to the
previous splitting of an active block.

viii. Stop if p becomes orthogonal to some vector built on a critical pair of
indices. Take this vector as new vector.

ix. Add new vector to vec defining set. new facet is obtained. The current
position of p is a normal r to new facet.
If new vector is built on indices from an active block Aj and a neighboring
passive block, then augment Aj with the passive index.

Pavel Bazovkin, Karl Mosler 15

If new vector is built on indices from two active blocks, Aj and Aj+1, then
merge these two blocks.
If new vector is built on two passive indices, then a new block A′j is created
having them as its two elements.

x. Place new facet ↪→ the head of queue.
III. If curr facet is not marked, mark it and place ↪→ queue. Then, go to C.a.
IV. For curr facet, calculate the vertices and its absolute distance from the origin

by (8).
V. Shift curr facet by x and transfer it to trimmed region.

c. If queue is not empty, go to C.a. Otherwise, stop: Then, trimmed region contains
all facets of the trimmed region.

4.1. Some details of the algorithm

1. Using a double hash: The ridges are hashed using a ”double-hash” table. That is, a
ridge is blocked if it has been marked twice.

2. Calculating the hash code: The hash code is calculated by creating a bit row from
integer numbers describing {Al}l=1...L and one number describing the absolute position of a
ridge (to distinguish parallel ridges).

3. Determining all adjacent facets: Given a basis VF of a facet F , let A be a nonsingular
d× d matrix that contains the basis vectors as its first d− 1 rows and an arbitrary last row
that is linearly independent from the other rows. Consider the linear equation

Ar = ed :=

0
...
0
1

 . (11)

The unique solution r to this equation is a scalar multiple of the normal vector pF of F .

In search for a neighboring facet, the support vector has to be rotated in a plane of dimension
two in Rd (Step C.(b.)II.iii.). To reduce the algorithmic complexity of this step we compute
the rotation plane in the following efficient way. By this, the complexity of the algorithm is
improved at its bottleneck.

The transition from F to a neighboring facet, say via a ridge m, is done by a basis exchange.
This means replacing some k rows of the matrix A (having indices i ∈ I) by k− 1 other data
vectors and, as its last row, some vector that is linear independent from all previous rows and
non-orthogonal to p, for example p itself. Let Sm denote the d × d matrix obtained from A
by this exchange, and Vm the d × k matrix built from the k new vectors as columns. Thus,
the solution z = zm of the linear equation

Smz = ed , (12)

spans, together with pF , a plane in which the support vector p may be rotated.

Note that (12) can be solved directly by calculating S−1
m , which is the straightforward com-

putation and has complexity O(d3). Instead, in our algorithm we decompose Sm in order to

16 An Exact Algorithm for WMT Regions

reduce the complexity of this step. It is easy to see that

Sm = Km ·A ,

where Km is an identity matrix with substituted rows of indices i ∈ I. Let these rows form
a matrix Cm whose i-th row corresponds to the ji-th row of Km. Then it holds A′Cm = Vm
and, consequently,

Cm =
(
A−1

)′
Vm .

Note that A−1 has to be computed only once at each facet. Given A−1, calculating Cm has
complexity O(d2).

Henceforth we denote the elements of A and C by aij and cij respectively. Consider rewriting
(12) as

KmAz = ed ,

where Km =

1 0 0

0 1
. . . 0

· · ·
cji1 cji2 cjii cjid

· · · . . .
0 0 1

and K−1

m ed =

0
...

− cjid
cjii
...
0
1

. Then it holds

zm = A−1K−1
m ed = A−1

0
...

− cjid
cjii
...
0
1

.

For a single facet we have to compute (in O(d3))

A−1 =
(
α1 | . . . | αi | . . . | αd

)
.

Thus, besides computing Cm, only the following computation is done in finding a basis for
the m-th ”jump”:

zm = αd −
∑
i∈I

cjid
cjii

αi, O(d). (13)

Recall that a basis for an m-th jump is given by {z̄m, p̄ = r̄}. Let us denote the number of
ridges for a facet F by R(F). The complexity of finding bases for all jumps from the facet is

O(d3 + (d2 + d) ·R(F)) ∼= O(d2 ·R(F)).

It can be easily checked that, if we do not exploit the common information on A−1, the
complexity amounts to O(d3 ·R(F)).

Pavel Bazovkin, Karl Mosler 17

5. The R package WMTRegions

The algorithm has been programmed as an R package and named WMTRegions. It is available
for downloading from Comprehensive R Archive Network at http://CRAN.R-project.org/
package=WMTregions.

5.1. Realization in C++

The algorithm has been realized in a C++ program. It is compiled as a library and is attached
to the R package, which uses its functionality through an external function ComputeWMTR(char*
Filename, char* Location).

The paper is also supplied with an autonomous C++ program that can be compiled under
Windows operating system. This program provides a 3d-visualization as it is shown, for in-
stance, in Figure 8. The interface is the same as for the R package (see Subsection 5.3). The
visualization is designed by means of a cross-platform graphical specification OpenGL. As a
future work, we plan to integrate this visualization into the R environment using a cross-
platform realization of the extension OpenGL - GtkGLExt (http://library.gnome.org/
devel/gtkglext/) to a graphical toolkit GTK+ (http://www.gtk.org). Note that WMTre-
gions also uses GTK+ through its R proxy package RGtk2 (Lawrence and Lang 2010).

5.2. R functions

The package contains functions for calculating and representing WMT regions:

• Function WMTR(fname) calculates the trimmed region.

It is the main function, which reads input data from an input file (the name is specified
by fname) and writes the result into an output file (by default, ”Cloud.dat”). The format
of the files is described in Subsection 5.3.

• Function showWMTR() offers a 3d-demonstration of the results in the R environment (in
case d = 3).

It visualizes a calculated WMT region (in dimension d = 3) as a convex polytope by
representing its vertices in the rggobi (Lang, Swayne, Wickham, and Lawrence 2010)
interactive graphics framework.

• Function loadWMTR(dim).

This function loads the calculated WMT region of d = dim into a matrix object in order
to work with it in the R environment.

• Function pointinTR(dpoint, tregion) checks whether a point is in a specified trimmed
region.

• Function generTRsample(fname, dim, num, alpha, trtype)

This function is an auxiliary function. It generates a random uniformly distributed
data cloud of any size num and any dimension dim with a format, which is suitable for
applying WMTR(fname). trtype defines a type of a WMT region, e.g., ”zonoid”.

More information about the functions is found in the documentation of the R package.

http://CRAN.R-project.org/package=WMTregions
http://CRAN.R-project.org/package=WMTregions
http://library.gnome.org/devel/gtkglext/
http://library.gnome.org/devel/gtkglext/
http://www.gtk.org

18 An Exact Algorithm for WMT Regions

5.3. Input and output

A data cloud is read from a text file of the following format:

• Type of the trimmed region (zonoid, ECH, ECH*, geometrically trimmed; given weight
vector)

• Depth parameter

• Dimension

• Number of points of the data cloud

• Coordinates of each point

A full description of the format is given in the package documentation for the function WMTR.
You can get it in a standard way:

R> library(WMTregions)

R> help(WMTR)

An output file ”TRegion.dat”consists of lines, each representing a facet of the trimmed region.
This representation is given by d+1 numbers, the first d of which are coordinates of a normal
to the facet while the last one defines an absolute distance of a hyperplane containing the
facet to the origin.

5.4. Illustrative example

As an illustration of the program work we present a comparative example of four different
types of weighted-mean trimmed regions for the same data and depth parameter (α = 0.221).
The calculation of a, e.g., zonoid region can be conducted as follows:

R> library("WMTregions")

Loading required package: rggobi
Loading required package: RGtk2

R> generTRsample("Cloud.dat", 3, 10, 0.221, "zonoid")

R> WMTR("Cloud.dat")

[1] "The trimmed region was successfully calculated!"

R> showWMTR()

R> tregion <- loadWMTR(3)

R> tregion

Pavel Bazovkin, Karl Mosler 19

Figure 8: 3d-visualization of various types of WMT regions.

By changing the trtype parameter in the file ”Cloud.dat”manually, one can calculate different
types of WMT regions for the same data. Their visualization is exhibited in Figure 8.

6. Complexity of the algorithm

An exact algorithm has been constructed to compute the WMT regions of an empirical
distribution in d-space for an arbitrarily given weight vector. It calculates all facets, edges,
and vertices of a region at any given depth α ∈]0, 1[. (Recall that α = 0 and α = 1 are trivial
cases.)

A hash table plays a significant role, as it stores information about traversed ridges in a
special structure, thus guaranteeing (due to the ”double-hash”) that each facet is generated
only once. Hence the algorithm has as many loops as the WMT region has facets. Obviously,
this is the minimum number of facet generating loops in this sort of algorithm.

At each facet F we have to calculate the normal of the facet and its distance from the origin.
Further we have to determine all neighboring facets. This is done by only solving linear
equations and calculating inner products. We have shown above that the complexity of this
algorithmic loop amounts to O(d2 · R(F)), where R(F) is the number of ridges of the facet.
R(F) can vary between d and 2d−1, depending on the type of the WMT region and on α.

To obtain a rough conservative estimate of R(F), we may proceed as follows: First, note that
R(F) is bounded by R̄ =

∏L
l=1 2nl−1. Then suppose that the active blocks Al have about

equal size and that their number L, as a first-order approximation, is proportional to the
dimension d, say L ≈ d/c. Under these assumptions R̄ ≈ L ·2d/L−1 ≈ d/c ·2c−1, that is, R(F)
is approximately bounded by the dimension d multiplied with a constant K = 2c−1/c that

20 An Exact Algorithm for WMT Regions

does not depend on the dimension.

Searching for all neighbors of a facet, we have to calculate n inner products, which gives
complexity O(nd). Hence, the complexity of one facet generating loop is described by O((d2 +
nd) · R̄) ∼= O(d2n ·K), since n > d. If the average number of facets is denoted by N(n, d), the
average computational complexity of the algorithm amounts to O((d2 + nd) · R̄ ·N(n, d)) ∼=
O(d2n ·K ·N(n, d)).

Regarding the hash table of created facets, each facet occupies O(d · log2 n) storage size,
while the hash table, in almost any case, has a constant size C, not depending on n and d.
Therefore, the use of general memory is of the order O(N(n, d) · d · log2 n+ C). Facets, once
they have been created, are put into a secondary store, thus considerably lowering the storage
cost.

Table 1 exhibits the results of a first small simulation study. It gives an idea how the time for
computing a single facet depends on d and n and how it varies with several types of WMT
regions: zonoid, ECH*, ECH, and geometrically trimmed regions (for the latter two, see
Dyckerhoff and Mosler (201x)). The data is distributed uniformly on a d-dimensional cube.
We focus on the time per facet (TpF) because it characterizes the efficiency of the algorithm
in a most obvious way. The total computational time amounts to the latter multiplied by
the number of facets, which is a parameter depending only on the data. We observe that the
TpF shows the following growth behavior: Approximately linear on n and slightly convex on
d, which may be seen as some low order polynomial dependency on dimension.

Acknowledgments

We are thankful to Rainer Dyckerhoff for fruitful discussions and valuable advices.

References

Cascos I (2007). “The Expected Convex Hull Trimmed Regions of a Sample.” Computational
Statistics, 22, 557–569.

Cascos I (2009). “Data Depth: Multivariate Statistics and Geometry.” In W Kendall,
I Molchanov (eds.), New Perspectives in Stochastic Geometry. Clarendon Press, Oxford
University Press, Oxford.

Cascos I, Molchanov I (2007). “Multivariate Risks and Depth-Trimmed Regions.” Finance
and Stochastics, 11, 373–397.

Dyckerhoff R (2000). “Computing Zonoid Trimmed Regions of Bivariate Data Sets.” In
J Bethlehem, P van der Heijden (eds.), COMPSTAT 2000. Proceedings in Computational
Statistics, pp. 295–300. Physica-Verlag, Heidelberg.

Dyckerhoff R (2002). “Inference Based on Data Depth.” Chapter 5, in K Mosler, Multivariate
Dispersion, Central Regions and Depth: The Lift Zonoid Approach, Springer, New York.

Dyckerhoff R, Mosler K (201x). “Weighted-Mean Trimming of Multivariate Data.” To appear.

Edelsbrunner H (1987). Algorithms in Combinatorial Geometry. Springer, Heidelberg.

Pavel Bazovkin, Karl Mosler 21

WMTD type d n Time per facet Total time [sec]
Zonoid 3 10 0.009700 0.445
Zonoid 3 15 0.013840 1.531
Zonoid 4 10 0.012474 1.609
Zonoid 4 15 0.015862 14.140
Zonoid 5 10 0.017370 2.398
Zonoid 5 15 0.022335 40.953
ECH 3 10 0.009111 0.843
ECH 3 15 0.012212 2.375
ECH 4 10 0.015255 21.891
ECH 4 15 0.019632 97.765
ECH 5 10 0.023519 117.625
ECH 5 15 0.029733 1032.75
ECH* 3 10 0.009610 0.750
ECH* 3 15 0.012218 1.617
ECH* 4 10 0.015286 22.922
ECH* 4 15 0.020011 94.070
ECH* 5 10 0.022970 139.070
ECH* 5 15 0.029660 890.68
Geometrical 3 10 0.009355 0.930
Geometrical 3 15 0.013056 1.101
Geometrical 4 10 0.015356 23.805
Geometrical 4 15 0.020157 93.406
Geometrical 5 10 0.023036 137.312
Geometrical 5 15 0.029794 1028.51

Table 1: Sample computational results.

Hallin M, Paindaveine D, Šiman M (2010). “Multivariate Quantiles and Multiple-Output
Regression Quantiles: From L1 Optimization to Halfspace Depth.” Annals of Statistics, 2,
635–669, with discussion.

Knuth D (1997). The Art Of Computer Programming, volume 1. 3rd edition. Addison-Wesley,
Boston.

Koshevoy G, Mosler K (1997). “Zonoid Trimming for Multivariate Distributions.” Annals of
Statistics, 25(5), 1998–2017.

Lang DT, Swayne D, Wickham H, Lawrence M (2010). rggobi: Interface between R and
GGobi. R package version 2.1.16, URL http://CRAN.R-project.org/package=rggobi.

Lawrence M, Lang DT (2010). RGtk2: R bindings for Gtk 2.8.0 and above. R package version
2.12.18, URL http://CRAN.R-project.org/package=RGtk2.

Liu RY, Parelius JM, Singh K (1999). “Multivariate Analysis by Data Depth: Descriptive
Statistics, Graphics and Inference.” Annals of Statistics, 27(3), 783–858. With discussion.

Mosler K (2002). Multivariate Dispersion, Central Regions and Depth: The Lift Zonoid
Approach. Springer, New York.

http://CRAN.R-project.org/package=rggobi
http://CRAN.R-project.org/package=RGtk2

22 An Exact Algorithm for WMT Regions

Mosler K, Hoberg R (2006). “Data Analysis and Classification with the Zonoid Depth.” In
RY Liu, R Serfling, D Souvaine (eds.), Data Depth: Robust Multivariate Analysis, Compu-
tational Geometry and Applications, pp. 49–59. American Mathematical Society.

Mosler K, Lange T, Bazovkin P (2009). “Computing Zonoid Trimmed Regions in Dimension
d > 2.” Computational Statistics and Data Analysis, 53, 2500–2510.

Rockafellar RT (1970). Convex Analysis. John Wiley & Sons, New York.

Serfling R (2006). “Depth Functions in Nonparametric Multivariate Inference.” In R Liu,
R Serfling, D Souvaine (eds.), Data Depth: Robust Multivariate Analysis, Computational
Geometry and Applications, pp. 1–16. American Mathematical Society.

Affiliation:

Pavel Bazovkin
Graduate School of Risk Management
University of Cologne
Meister-Ekkehart-Str. 11
50923 Cologne, Germany
Telephone: +49/221/470-7705
E-mail: bazovkin@wiso.uni-koeln.de

Univ.-Prof. Dr. Karl Mosler
Department of Economic and Social Statistics
University of Cologne
Albertus-Magnus-Platz
50923 Cologne, Germany
Telephone: +49/221/470-4266
E-mail: mosler@statistik.uni-koeln.de

mailto:bazovkin@wiso.uni-koeln.de
mailto:mosler@statistik.uni-koeln.de

	Discussion-header_EAWMTR.pdf
	EAWMTR-discussion_paper
	Introduction
	Weighted-mean trimming
	Definition and principal properties
	Special notions of weighted-mean trimming

	Geometry of the algorithm
	Trimmed region as a convex polytope
	Spanning tree order

	The algorithm
	Some details of the algorithm

	The R package WMTRegions
	Realization in C++
	R functions
	Input and output
	Illustrative example

	Complexity of the algorithm

