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Abstract

This paper examines a multi-agent moral hazard model in which agents have expectation-based
reference-dependent preferences à la Kőszegi and Rabin (2006, 2007). The agents’ utilities depend not
only on their realized outcomes but also on the comparisons of their realized outcomes with their reference
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their expected losses by partially compensating for their failure may be beneficial for the principal. When
the agent is loss averse and the project is hard to achieve, the optimal contract is based on team incentives
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1 Introduction

Teams have been widespread in many firms. As teams have become popular, the role of team incentives has

been increasingly crucial in workplaces.1 Why team incentives have so prevailed is one of the main themes

in organizational economics, and a central issue is whether an incentive scheme should be based on indepen-

dent performance evaluation (IPE), relative performance evaluation (RPE) or joint performance evaluation

(JPE).2 While most existing literature has studied team incentives from the view of competition, cooperation

or mutual monitoring, we focus on a prominent behavioral aspect, loss aversion: people evaluate losses more

than same-sized gains. We show that when the agents feel a psychological gain-loss from comparing the

realized outcome with the reference outcomes, team incentives could serve as a device which alleviates their

feeling of losses.3 In contrast to the previous literature, team incentives in this paper become relevant only

when the agent fail to succeed his own project. The result can explain some empirical evidence that firms

pay a bonus not only to high-performance agents but also to low-performance ones. For example, Google

gave $1000 cash holiday bonus to all employees in 2010.4

We build a multi-agent moral hazard model with limited liability in which agents have expectation-based

reference-dependent preferences à la Kőszegi and Rabin (2006, 2007). We derive which of the above three

types of performance evaluation is optimal as a function of the degree of loss aversion and the probability of

success in the project. A principal wants to minimize the expected payments to the agents given that each of

them works hard in his own project.5 The agent’s utility depends not only on his realized outcome but also

on the comparisons between his realized outcome and his reference outcomes. That is, each agent’s utility

consists of an intrinsic “consumption utility” which is same as the standard one, and a “gain-loss utility”

which is defined over the differences between his realized consumption and his reference consumption. The

agent is loss-averse in both the wage dimension and the effort dimension, and his reference point is determined

1Lazear and Shaw (2007) introduce the evidence of popularity of teams and team incentives. For example, from 1987 to
1996, the share of large firms that have 20% or more employees in teams rose from 37% to 61% and that have more than 20%
of employees working with some kind of group-based incentives rose from 26% to 53%. Che and Yoo (2001) also provide much
evidence of successful adaptation of teams in workplaces.

2IPE, RPE or JPE means that a worker’s wage is irrelevant to, decreases in, or increases in the other workers’ performance,
respectively.

3We use the term “team incentives” to refer to incentives by a wage scheme based on either JPE or RPE.
4See Blodget (2010) which is an article in Business Insider. Also, Lufthansa paid 700-euro ($930) bonus to all employees in

January 2011 (Lavell 2010). As a unique (non-monetary bonus) example, IKEA gave a bicycle as a bonus to all U.S. employees
in 2010 (Angelico 2010).

5We use male pronouns to refer to the agent and female pronouns to refer to the principal.
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by his recent expectations regarding his wage and effort.6 Due to loss aversion, the agent dislikes wage

uncertainty in a way that is different from usual concave utilities. Consider an example that an agent

had expected to receive either $0 or $30 with equal probabilities when he would work hard with cost $10.

Suppose that he actually works hard. Regarding the wage dimension, his expected gain-loss utility consists

of a weighted average of the following four cases with equal weights on each case. In two cases, there is

no gain-loss: he expects $0 and actually gets $0, and he expects $30 and actually gets $30. However, if he

expects $30 but actually gets $0, he feels a loss of $30. Similarly, if he expects $0 but actually gets $30,

he feels a gain of $30. Since the agent is loss-averse, his feeling of $30 loss is greater than that of $30 gain.

Thus, his expected gain-loss utility for wage is negative and represents his averseness of risk in this example.

Regarding the effort dimension, he feels no gain or loss because he expected to work hard and actually works

hard.

To determine the agent’s reference points endogenously, we assume that each agent’s reference points

are updated to his chosen action before the outcome is realized. Since he knows that his belief will be

adapted to his chosen action, he takes it into account when he chooses the action. This notion is called

the choice-acclimating personal equilibrium (CPE) and advocated by Kőszegi and Rabin (2007).7 CPE is

plausible when the action is determined long before the outcome realizes, and his belief is acclimated before

he knows the actual outcome.

In adopting the concept of CPE, we consider a symmetric two-agent case with limited liability and derive

the optimal wage scheme. The crux is that the principal faces a trade-off between the standard incentives

effect in the intrinsic utility and the loss-sharing effect in the gain-loss utility. The loss-sharing effect means

that the agent can share his expected loss with his colleagues by being compensated for his failure. Regarding

the intrinsic utility, the agent is less willing to work under team incentives with compensation than under

IPE because his incentive to work hard decreases if the principal compensates for his failure.8 In contrast,

with respect to the gain-loss utility, he is more willing to work under team incentives than under IPE. This is

because team incentives with partial compensation for the agent’s failure reduce his wage uncertainty when

6As we will explain below, in our multi-agent setting, the agent’s wage depends on his colleagues’ actions and outcomes as
well as on his own actions and outcomes. Shalev (2000) investigates game theoretic models in which the players are loss averse.

7Kőszegi and Rabin (2006, 2007) develop another equilibrium concept, the preferred personal equilibrium (PPE). In Appendix
B, we explain the notion of PPE and fully characterize the optimal contracts in our two-agent model based on this concept.
When the degree of loss aversion is large, the properties of equilibrium wage schemes under PPE are similar to under CPE. We
also discuss these points in Appendix B.

8With respect to JPE, this negative effect is usually called as a free-riding effect. See, for example, Holmstrom (1982).
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he works, and increase it when he shirks. In other words, the loss-averse agent can share his fear of losses

from failure with his colleagues by partially compensating for his failure via team incentives. As a result,

the trade-off between the standard incentive effect and the loss-sharing effect determines the optimal wage

schemes.

We analyze how and when team incentives are used in the optimal contract. When the degree of loss

aversion is moderate and the possibility of success in the task is small even if the agent works hard, JPE

becomes optimal. As the possibility of success becomes small, the agent is less likely to work hard under IPE

because his wage uncertainty under working compared to under shirking becomes large. Then the principal’s

incentive to compensate for his failure increases, and JPE as a partial compensation for his failure becomes

the optimal wage scheme. When the degree of loss aversion is large, there are three cases in which team

incentives are optimal. If the agent is less likely to succeed when he shirks, not only JPE but also RPE

may be optimal. In particular, RPE is optimal when the agent is more likely to succeed if he works. The

standard incentives effect of discouraging to work under RPE is smaller than that under JPE, and this effect

determines the optimal wage scheme. In contrast, JPE is optimal when the agent is less likely to succeed

even if he works. However, when the agent is very unlikely to succeed even if he works, the principal has

strong incentives to compensate for his failure. Since the probability of compensating for the agents’ failure

is larger under RPE than under JPE in this situation, RPE instead of JPE may become optimal.

In addition, we extend our two-agent model to many agents case. As in the two-agent case, the trade-off

between the standard incentive effect and the loss-sharing effect drives the results. Hence, compensating for

the agent’s failure is beneficial for the principal when the latter effect overweighs the former one. However,

as the probability of the compensation goes to one, the standard incentive effect dominates the loss-sharing

effect. Thus, the principal compensates for the agent’s failure only partially. The optimal contract specifies

that the principal pays the bonus either when the agent succeeds in his task or when the total profit (derived

from other agents’ performance) is higher than a certain level. It is consistent with the above empirical

evidence that firms often pay a bonus to all employees when they earn a high profit. Also, this result is

sharply different from that of Herweg, Müller and Weinschenk (2010); in their model the principal wants to

compensate for the agent’s failure as much as possible.9

9In their model, the expected wage payment to the agent is decreasing in the probability that the principal compensates for
the agent’s failure if the degree of loss-aversion is more than two, because the amount of base wage goes to negative infinity as
the probability goes to one. We discuss it in detail in section 4.
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Notice that, if the principal can commit to stochastically compensate for the agent’s failure regardless

of other agents’ outcomes, our results do not need to be team incentives. However, JPE as team incentives

is more plausible than the individual stochastic compensation in practical situations. For example, if the

principal has the possibility of facing a budget constraint, then she cannot pay a bonus when all of the agents

fail under the individual stochastic compensation but she can pay it under JPE. Also, if the principal is risk

or loss averse, then she prefers JPE to the individual stochastic compensation because the distribution of

profits is less dispersed under JPE than under the individual stochastic compensation. In addition, it may be

hard to find verifiable stochastic signal other than the company’s profit or other agents’ outcomes, and this

difficulty may prevent using the individual stochastic compensation.10 These advantages of team incentives

over the individual stochastic compensation separate our results from the stochastic ignorance examined by

Herweg, Müller and Weinschenk (2010).

Last but not least, our model does not shed light on the aspects which constitute team production:

our model has no common noise, no externalities on production and no activities among agents such as

help, sabotage and mutual monitoring. In this sense, our model differs from the existing literature on team

incentives. However, we show even if we do not explicitly incorporate such aspects of team production,

making teams and introducing team incentives may be beneficial for managers. It helps to understand why

teams and team incentives are ubiquitous even when some workplaces do not seem to have above aspects of

team production. Moreover, our results of team incentives as compensating for the agent’s failure are easy

to test empirically, because we only need to check when low-performance agents get a bonus. This feature

of our results may contribute to investigate one empirical puzzle pointed by Chiappori and Salanié (2003):

firms seem to use JPE for executive compensations very often.

The remainder of this paper is organized as follows. We set up the model and explain the CPE condition

in the next section. In Section 3, we analyze the optimal wage schemes in the two-agent case. In Section

4, we extend our model to the case with many agents. We summarize the related literature in Section 5.

Section 6 concludes. Proofs and the analysis under PPE are provided in Appendix.

10In this argument, we assume that the agents’ total outcome is perfectly correlated with the firm’s profit. If the profit is a
noisy signal of the agents’ outcomes, the principal may prefer the individual stochastic compensation to team incentives.
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2 The Model

Consider the following moral hazard model in which a risk-neutral principal hires two identical agents. The

agents are subject to a limited liability and his utility consists of an intrinsic (standard material) utility and

a gain-loss utility. Agent i (i = 1, 2) makes a binary effort decision ai ∈ {0, 1} at the cost of d · ai where

d > 0. Actions ai = 0 and ai = 1 mean that agent i shirks and works, respectively. The outcome of agent

i is either high or low, denoted by Qi ∈ {H,L}. The probability for agent i of realizing Qi = H is q1 if

ai = 1 and q0 if ai = 0, where 0 ≤ q0 < q1 < 1. We define ∆q ≡ q1 − q0. The wage vector for agent i is

wi ≡ (wi
HH , wi

HL, wi
LH , wi

LL) where wi
QiQj

is the wage for agent i when the outcome of agent i is Qi and

that of agent j is Qj (i, j = 1, 2 and i ̸= j).11 Suppose that agents i and j choose actions ai ∈ {0, 1} and

aj ∈ {0, 1}, respectively. Agent i’s expected wage under wi is represented by

πi(ai, aj ,w
i) = qaiqaj w

i
HH + qai(1 − qaj )w

i
HL + (1 − qai)qaj w

i
LH + (1 − qai)(1 − qaj )w

i
LL,

The characteristic of a wage scheme is determined by how each agent’s wage is related to his colleague’s

performance. For agent i, a wage scheme wi exhibits joint performance evaluation (JPE) if (wi
HH , wi

LH) >

(wi
HL, wi

LL): given an agent’s performance, his wage increases in his colleague’s performance.12 A wage

scheme exhibits relative performance evaluation (RPE) if (wi
HH , wi

LH) < (wi
HL, wi

LL): given an agent’s

performance, his wage decreases in his colleague’s performance. Finally, if (wi
HH , wi

LH) = (wi
HL, wi

LL), a

wage scheme exhibits independent performance evaluation (IPE): an agent’s wage does not depend on his

colleague’s performance.

A key assumption of our model is that each agent’s overall utility consists of an intrinsic utility and a

psychological gain-loss utility. We assume that agents have expectation-based reference-dependent prefer-

ences à la Kőszegi and Rabin (2006, 2007). In our model, agent i’s both consumption bundle and reference

consumption bundle consist of his effort and his wage. For each consumption dimension, the agent feels

psychological gain-loss by comparing his realized outcome with his reference outcomes. We assume that all

agents have the same gain-loss function for each consumption dimension. For deterministic reference point

cases, suppose that agent i’s reference point for his effort and his wage are âi
i and ŵi, respectively. If he

11 Our multi-agent model can be interpreted as the following multi-task model: a principal has two identical tasks and chooses
either to hire one agent who is assigned both tasks or hire two agents each of whom is assigned one task. We refer to this point
later.

12The inequality means weak inequality for each component and strict inequality for at least one component.
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actually exerts his effort ai and gets wage w, then his utility is

w − aid + µ(w − ŵi) + µ(−aid + âi
id),

where µ(·) is a universal gain-loss function that satisfies the assumptions introduced by Bowman et al. (1999)

which corresponds to Kahneman and Tversky’s (1979) value function. In what follows, we assume µ(·) to

be piecewise linear to focus on the effect of loss aversion. Then, we can simply define the gain-loss function

when the consumption is x and reference point is r as

µ(x − r) =

{
η(x − r) if x − r ≥ 0,
ηλ(x − r) if x − r < 0.

where η ≥ 0 represents the weight on the gain-loss payoff, and λ ≥ 1 is the degree of the loss aversion.

As in Kőszegi and Rabin (2006, 2007), we assume that the reference point is rational beliefs about

outcomes and that the reference point itself is stochastic if the outcome is stochastic. The agent feels gain-

loss by comparing each possible outcome with every reference point. For example, suppose that agent i with

η > 0 and λ > 1 had been expecting to receive $100, $150 or $200 with equal probabilities. If he actually

receives $150, then he feels a psychological gain of $50 relative to $100, no gain-loss relative to $150 and a

psychological loss of $50 relative to $200. Since the loss of $50 looms larger than the gain of $50 for him,

his gain-loss utility is negative in this case.13 Since we consider a multiple-agent model, an agent’s reference

outcomes and realized outcomes may depend on his colleague’s action. We represent both consumption and

reference bundles of agent i as including his colleague’s action as well as his action and wage. Formally,

agent i’s expected intrinsic utility is

πi(ai, aj ,w
i) − aid.

Let (âi
i, â

i
j) be agent i’s reference point for his own effort decision (âi

i) and his colleague’s one (âi
j). That is,

(âi
i, â

i
j) represents agent i’s belief that he will choose ai and agent j will choose aj . Similarly, denote ŵi as

agent i’s reference wage based on (âi
i, â

i
j). Then, agent i’s expected gain-loss utility is

πi(ai, aj , w
i|âi

i, â
i
j , ŵ

i) + µ(−aid + âi
id)

where πi(ai, aj ,w
i|âi

i, â
i
j , ŵ

i) represents the gain-loss utility in the wage dimension and µ(−aid+ âi
id) repre-

sents that in the effort-cost dimension.14 Let q̂i
ai

(resp. q̂i
aj

) denote agent i’s reference point of the probability
13By using (1), below we explain the pointwise comparison in detail. See Kőszegi and Rabin (2006) for a general definition.
14We write down the detailed representation of πi(ai, aj , wi|âi

i, â
i
j , ŵi) at the beginning of Appendix A.
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for realizing Qi = H (resp. Qj = H) when his reference effort decision is âi
i (resp. âi

j). Suppose, for instance,

that agent i expects that both agents succeed with probability q̂i
ai

q̂i
aj

and his reference wage is ŵi
HH . When

agent i succeeds with probability qai and his colleague succeeds (resp. fails) with probability qaj (resp.

1 − qaj ), he compares his reference wage ŵi
HH to his actual wage wi

HH (resp. wi
HL) with probability qaiqaj

(resp. qai(1− qaj )). Conversely, when agent i fails with probability 1− qai and his colleague succeeds (resp.

fails) with probability qaj (resp. 1 − qaj ), he compares his reference wage ŵi
HH to his actual wage wi

LH

(resp. wi
LL) with probability (1− qai)qaj (resp. (1− qai)(1− qaj )). Then, the gain-loss utility in the money

dimension of this situation is represented by

q̂i
ai

q̂i
aj

[
qaiqaj µ(wi

HH − ŵi
HH) + qai(1 − qaj )µ(wi

HL − ŵi
HH)

+ (1 − qai)qaj µ(wi
LH − ŵi

HH) + (1 − qai)(1 − qaj )µ(wi
LL − ŵi

HH)
]
. (1)

We derive the optimal wage schemes according to the equilibrium concept defined by Kőszegi and Rabin

(2007); the choice-acclimating personal equilibrium (CPE).15 Under CPE, the agent’s reference point is

acclimated to his taken action. This is plausible when the action is determined long before the outcome and

the payment occur; hence, he modifies his belief to his taken action before the outcome realizes. Because the

agent knows that his belief will change based on his own action before the outcome and the payment occur,

he takes the change into account when he decides what action to take. Denote agent i’s expected overall

utility be U i(ai, aj , w
i|âi

i, â
i
j , ŵ

i) ≡ πi(ai, aj , w
i)− aid + πi(ai, aj , w

i|âi
i, â

i
j , ŵ

i) + µ(−aid + âi
id). Since each

agent’s action determines his reference point in CPE, the condition to choose working in CPE is represented

by

U i(1, 1, wi|1, 1, ŵi) ≥ U i(0, 1, wi|0, 1, ŵi). (CPE)

for all i.16 The condition (CPE) means that, given that agent i expects agent j to choose effort 1, agent i’s

utility when his reference of his own action is 1 and he chooses 1 is higher than that when his reference is 0

and he chooses 0. We confine our analysis to pure strategies and focus on symmetric equilibria.17

15In Appendix B, we analyze the preferred personal equilibrium (PPE): another equilibrium concept introduced by Kőszegi
and Rabin (2006, 2007).

16In Appendix A, we rewrite this condition in detail.
17In what follows, we abbreviate agent notations in superscript because the agents are identical.
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3 The Optimal Wage Scheme

3.1 The Optimal Contract without Loss Aversion

Before analyzing the optimal wage scheme in our model, we study a benchmark case in which each agent is

not loss-averse.

Note that, if the high effort is not beneficial for the principal and she does not prefer to encourage the

agents to work, then setting wQiQj = 0 for all Qi, Qj ∈ {H,L} is obviously the optimal wage scheme. Thus,

throughout this paper, we assume the tasks are so valuable that the principal wants to make the agents

work.

The principal’s problem can be rewritten as:

min
wHH ,wHL,wLH ,wLL

q2
1wHH + q1(1 − q1)wHL + q1(1 − q1)wLH + (1 − q1)2wLL

subject to

q1wHH + (1 − q1)wHL − q1wLH − (1 − q1)wLL ≥ d

∆q
, (IC)

wQiQj ≥ 0 for all Qi, Qj ∈ {H,L}. (LL)

where (IC) is the incentive compatibility constraint to induce the agents to exert high efforts, and (LL) is

the limited liability constraints. Note that the left hand side of (IC) is decreasing in wLH and wLL. Hence

the optimal contract scheme satisfies wLH = wLL = 0. Also, the ratio between the coefficient of wHH and

the coefficient of wHL in the objective function is same as that in (IC). Thus, any pairs of wHH (≥ 0) and

wHL (≥ 0) that satisfy (IC) with equality and wLH = wLL = 0 are the optimal wage schemes.

To confirm the robustness of the result, we investigate another case in which the agents are risk averse.

Suppose that the agents have a utility function m(·) such that m(0) = 0, m(·) is twice differentiable, m′(·) > 0

and m′′(·) < 0. Then, (IC) is replaced by

q1m(wHH) + (1 − q1)m(wHL) − q1m(wLH) − (1 − q1)m(wLL) ≥ d

∆q
. (IC’)

Note that the left hand side of (IC’) is still decreasing in wLH and wLL. Because m(·) is strictly concave,

wHH = wHL holds at the optimum. As a result, wHH = wHL = m−1( d
∆q

) and wLH = wLL = 0 is the

optimal wage scheme. Note that this scheme exhibits IPE.
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3.2 The Optimal Contract with Loss Aversion

Now, we return to the case in which he agents are loss-averse and examine the optimal wage schemes. As

mentioned by Kőszegi and Rabin (2007) and Herweg, Müller and Weinschenk (2010), it is suitable to apply

CPE when the outcomes are resolved long after the agents’ actions are taken. In the following analysis, we

assume away the “negative bonus” wage schemes to make the property of team incentives clear and simplify

the analysis.18

Assumption 1. wHH ≥ wLH and wHL ≥ wLL.

By this assumption, the possible smallest wage is either wLH or wLL. Notice that if the smallest wage is

strictly positive, then the principal can reduce the payment without changing CPE constraint by decreasing

the same amount from each wage.19 Also, since agents dislike wage uncertainty, if wHH ̸= wHL then the

principal can encourage the agent to work by reducing the wage variation when he succeeds. Thus, we have

the following characteristics of the optimal wage scheme.20

Lemma 1. The optimal wage schemes under CPE satisfy (i) min{wLH , wLL} = 0 and (ii) wHH = wHL.

Lemma 1 implies that team incentives in our model would have different forms from those in the existing

literature, like Che and Yoo (2001) and Kvaløy and Olsen (2006), which show the optimality of team

incentives. These studies find that, when the agent fails, his wage is zero regardless of his colleague’s

outcome while it may depend on their outcomes when he succeeds.21 In contrast, our results mean that

team incentives become relevant only when the agent fails the project. Whether the principal compensates

the agent’s failure or not depends on another agent’s outcome. As a result, the wage schemes may have

forms of team incentives. In what follows, we denote wHH = wHL ≡ w.

Notice that Lemma 1 represents an empirically testable prediction in our model: if the agents’ loss

aversion matters, the optimal team incentives exhibit the forms of compensation but do not exhibit the

concentration of the payments like wHH > 0 and wHL = wLH = wLL = 0, which is often predicted in the

18We also characterize the optimal wage scheme under CPE in which we allow such negative bonuses. The optimal contract
in this case is the same as long as η(λ − 1) ≤ 1. If it does not hold, then the negative bonuses are used if the probability of
success when the agent shirks is small, and the probability of success when the agent works is either very large or very small.
The detailed analysis is available upon request.

19See (CPE’) in Appendix A.
20The proof is provided in Appendix A.1.
21For example, Che and Yoo (2001) and Kvaløy and Olsen (2006) predict no compensation for the agents’ failure (wLH =

wLL = 0) in their models.
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previous literature.

By Lemma 1, we have two possible types of wage schemes: (i) w ≥ wLH ≥ wLL = 0 and (ii) w ≥ wLL ≥

wLH = 0. We find the optimal wage scheme in each case. Then, we compare these schemes and characterize

the optimal wage scheme as CPE.

First, we examine case (i) w ≥ wLH ≥ wLL = 0. The principal’s problem becomes as follows:

min
w,wLH

q1w + q1(1 − q1)wLH

subject to

{1 − (1 − q1 − q0)η(λ − 1)}w + [−1 + {1 − q1 − q0 + (1 − q1)(2 − q1 − q0)}η(λ − 1)]q1wLH ≥ d

∆q
, (CPEJ)

w ≥ 0, and wLH ∈ [0, w]. (LLJ)

where (CPEJ) is the condition of CPE and (LLJ) is the limited liability condition in this case, respectively.

Now we focus on the left hand side of (CPEJ):

{1 − (1 − q1 − q0)η(λ − 1)}w

+{−q1︸︷︷︸
(SI)

+ q1(1 − q1 − q0)η(λ − 1)︸ ︷︷ ︸
(LS1)

+ q1(1 − q1)(2 − q1 − q0)η(λ − 1)︸ ︷︷ ︸
(LS2)

}wLH .

There are three effects for increasing wLH . We call the first effect (SI) as the standard incentive effect, and a

sum of the latter two effects (LS1) and (LS2) as the loss-sharing effect. (SI) is came from the intrinsic utility

and implies that increasing wLH reduces the incentive to work hard. (LS1) is came from the gain-loss utility

comparing wLH with w. It means increasing wLH encourages the agent to work hard because it reduces

wage uncertainty when working, provided q1 + q0 < 1. (LS2) is came from the gain-loss utility comparing

wLH with wLL. It implies increasing wLH encourages the agent to work hard it adds wage uncertainty when

shirking. Notice that (SI) does not depend on η, λ, while the effects on (LS1) and (LS2) increases as η or λ

increases. The cut-off point at which loss-sharing effect becomes crucial than the standard incentive effect is

given by ΩJ ≡ {1− q1 − q0 + q1(1− q1)(2− q1 − q0)}η(λ− 1). That is, the principal prefers wLH > 0 rather

than wLH = 0 if and only if ΩJ ≥ 1.

The analysis and the trade-off between the standard incentive effect and loss-sharing effect are similar

in the case of (ii) w ≥ wLL ≥ wLH = 0. The principal prefers wLL > 0 rather than wLL = 0 if and only if

ΩR ≡ {1 − q1 − q0 + q2
1(2 − q1 − q0)}η(λ − 1) ≥ 1.
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Finally, we compare above two cases to derive the optimal wage schemes. If both ΩJ < 1 and ΩR < 1

hold, then IPE is optimal. Otherwise, team incentives are optimal and whether JPE or RPE to be optimal

is determined by the relationship among ΩJ , ΩR, and the cut-off point ΩJR ≡ {(1−q1−q0)−q1(1−q1)2(2−

q1 − q0)}η(λ − 1) derived by comparing between the expected payment under JPE and that under RPE.

On the one hand, when ΩJ ≥ ΩR, JPE is optimal if ΩJR ≤ 1, otherwise RPE is optimal. On the other

hand, when ΩJ < ΩR, JPE is optimal if ΩJR ≥ 1, otherwise RPE is optimal. As a result, we have a full

characterization of optimal wage schemes as in the following proposition.22

Proposition 1. The optimal wage scheme under CPE is:

1. wI = (wI , wI , 0, 0) where wI = d
∆q [1−(1−q1−q0)η(λ−1)] if both ΩJ < 1 and ΩR < 1 hold.

2. wJ = (wJ , wJ , wJ , 0) where wJ ≡ d
∆q(1−q1)[1−{1−q1−q0−q1(2−q1−q0)}η(λ−1)] if one of the following con-

ditions holds; (i) q1 ≤ 1
2 and ΩR < 1 ≤ ΩJ , (ii) q1 ≤ 1

2 and ΩJR ≤ 1 ≤ ΩR ≤ ΩJ , and (iii) q1 > 1
2 and

1 ≤ ΩJR < ΩJ < ΩR.

3. wR = (wR, wR, 0, wR) where wR = d
∆qq1[1−{1−q1−q0−(1−q1)(2−q1−q0)}η(λ−1)] if one of the following

conditions holds; (i) q1 ≤ 1
2 and 1 < ΩJR < ΩR ≤ ΩJ , (ii) q1 > 1

2 and ΩJ < 1 ≤ ΩR, and (iii) q1 > 1
2

and ΩJR < 1 ≤ ΩJ < ΩR.

As we described above, the optimal wage schemes depend on the trade-off between the standard incentive

effect and the loss-sharing effect. Regarding the intrinsic utility, the agent is less willing to work under team

incentives than under IPE because he gets a wage with positive probability even when he fails. However,

regarding the gain-loss utility, he is more willing to work under team incentives than under IPE because it

reduces his wage uncertainty.

Proposition 1 provides the following insights about team incentives. First, team incentives become

optimal only when q0 < 0.648. When q0 is large, the agent is very likely to succeed his project even if

he shirks. In other words, his expected loss becomes small even if he shirks. Then, compensating for his

failure is not optimal for the principal because the standard incentive effect becomes more salient than the

loss-sharing effect in this case. Consequently, team incentives are not optimal when q0 is large. Second, when

22The proof is provided in Appendix A.2.
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the degree of loss aversion is moderate, i.e. η(λ−1) ≤ 1, only JPE appears as the optimal team incentives.23

Third, when the degree of loss aversion becomes larger than the above value, by and large JPE becomes

optimal when q1 ≤ 1
2 and RPE becomes optimal when q1 > 1

2 .

We explain the above results in detail by providing two figures with numerical examples of η and λ.

Figure 1 represents the optimal contracts when the degree of loss aversion is moderate such that η = 1 and

λ = 2. As q1 decreases, the agents’ wage uncertainty under working compared to under shirking becomes

large, and the agents are less likely to work hard under IPE. Then the principal’s incentive to compensate

the agents’ failure increases. As a result, JPE becomes optimal if q1 is small.

0.2 0.4 0.6 0.8 1.0
q1

0.2

0.4

0.6

0.8

1.0

q0

Figure 1: CPE when η = 1, λ = 2. The region of each contract scheme which is optimal in CPE is shown
by: IPE=White, JPE=Gray.

When η(λ − 1) becomes large, not only JPE but also RPE may be optimal. Figure 2 represents the

optimal contracts when the degree of loss aversion is large such that η = 1 and λ = 3. Considering the case

(ii) w ≥ wLL ≥ wLH = 0, we can represent the CPE condition by

{1 − (1 − q1 − q0)η(λ − 1)}w

+{−(1 − q1)︸ ︷︷ ︸
(SI’)

+ (1 − q1)(1 − q1 − q0)η(λ − 1)︸ ︷︷ ︸
(LS1’)

+ q1(1 − q1)(2 − q1 − q0)η(λ − 1)︸ ︷︷ ︸
(LS2)

}wLL ≥ d

∆q
. (CPER)

23Some theoretical literature which analyzes reference-dependent preferences imposes η(λ − 1) ≤ 1 as an assumption. See,
for example, Herweg, Müller and Weinschenk (2010), Eisenhuth (2010) or Herweg and Mierendorff (2011).
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First, suppose that q1 is not too small. Notice that the absolute value of (SI’) is smaller than (SI) if and

only if q1 > 1
2 . In words, the effect of discouraging to work hard under RPE is smaller than under JPE if the

agent is more likely to succeed when he works. In addition, the coefficient (LS1) or (LS1’) becomes smaller

or even negative when q1 is large. Hence the comparison of the standard incentive effects between (SI) under

JPE and (SI’) under RPE becomes crucial when we determine whether JPE or RPE is the optimal wage

scheme in that case. As a result, in Figure 2 we get the optimality of RPE when q1 > 1
2 and that of JPE

when q1 ≤ 1
2 , provided q1 is not too small and q0 is not too large.

However, as q1 decreases, the principal needs to compensate much more in order to make the agents work

hard. Notice that the probability of paying wLH is lower than that of paying wLL if and only if q1 ≤ 1
2 .24

When q1 is very small, the probability of paying wLH becomes low, and (CPEJ) is hard to satisfy because

both (LS1) and (LS2) become small. In that case RPE is more attractive than JPE because (LS1’) becomes

large as q1 decreases. Thus, the principal chooses RPE instead of JPE as the optimal contract when q1 is

quite small in order to alleviate the agents’ loss aversion. In Figure 2, this corresponds to the region where

RPE is optimal in the region of q1 ≤ 1
2 .

0.2 0.4 0.6 0.8 1.0
q1

0.2

0.4

0.6

0.8

1.0

q0

Figure 2: CPE when η = 1, λ = 3. The region of each contract scheme which is optimal in CPE is shown
by: IPE=White, JPE=Gray, RPE=Light Gray.

It is worth clarifying that if the principal can commit an individual stochastic compensation regardless of

24The probability of paying wLH is q1(1 − q1) and that of wLL is (1 − q1)2.
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other agents’ outcomes when the agent fails, our results do not need to be team incentives. As described in

Herweg, Müller and Weinschenk (2010), if the principal can use the lottery which is observable and verifiable

for the compensation, commit to ignore the bad outcome and pay the bonus unconditionally with a positive

probability, the contract with such individual stochastic compensation is optimal. However, there are some

conceptual and practical advantages of team incentives. First, it is difficult for the principal to commit

the individual stochastic compensation. If the lottery by which the principal implements the individual

stochastic compensation is not observable or not verifiable, then the commitment is not credible. Thus, not

only is such compensation unobserved in practice, but also it is not clear how the principal can commit and

convince each agent of it.25 In contrast, we focus on the multi-agent model. Since each agent’s performance

is observable and verifiable, the principal can credibly compensate for the agent’s failure according to other

agents’ performance by adopting team incentives. Next, if we take managerial aspects into account, JPE

as team incentives becomes strictly better than the individual stochastic compensation. For example, if

the principal has a possibility to face a budget constraint, she cannot pay a bonus when all of the agents

fail under the individual stochastic compensation. In contrast, if the principal adopts JPE, she can pay

a bonus only if some agents succeed their projects. Thus, provided the tasks are highly valuable, she can

implement the wage scheme with a stochastic compensation for the agents’ failure by using JPE even when it

is impossible to do so by using the individual stochastic compensation. Moreover, if the principal is risk/loss

averse then she prefers JPE to the individual stochastic compensation. This is because the distribution

of profits is less dispersed under JPE than under the individual stochastic compensation. These aspects

differentiate team incentives in our model from the individual stochastic compensation in Herweg, Müller

and Weinschenk (2010).26 Our results may provide an explanation of the effectiveness of adopting teams

and recent popularity of teams in many firms.

Interestingly, in addition to the above advantage to use JPE rather than individual stochastic compensa-

tion, JPE may become the optimal wage scheme even if η(λ− 1) ≤ 1.27 This result implies that, even when

the agent does not have large loss-aversion sensitivities and hence the principal can induce their efforts under

25Herweg, Müller and Weinschenk (2010) also refer to the plausibility of the individual stochastic compensation that
“[r]estricting the principal to offer nonstochastic wage payments is standard in the principal-agent literature and also in accor-
dance with observed practice.”

26For other important differences between our results and Herweg, Müller and Weinschenk (2010), see Section 4.
27The condition η(λ − 1) ≤ 1 corresponds with “no dominance of gain-loss utility” assumption in Herweg, Müller and

Weinschenk (2010). In their Proposition 7, they show that if the assumption is satisfied, then the stochastic compensation is
not optimal. We discuss the details of the difference in Section 4.
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IPE, JPE may be still better than IPE. This is because we address the impact of CPE constraint on the

optimal wage schemes, and the agents prefer JPE to IPE due to its role of partially compensating for their

failure. Thus, in the optimal contract they get a same bonus even when one agent achieves high performance

and the other one achieves low performance. This result is consistent with firms’ bonus payment schemes

mentioned in Section 1, and empirical literature which reports the validness of JPE reviewed in Section 5.

To analyze it more clearly, in the next section we investigate the many-agent case.

4 The Optimal Wage Scheme with Many Agents

In this section, we characterize the optimal wage schemes when the principal hires many agents. Let N + 1

be the number of agents. Consider the case in which each agent’s wage depends not only on his outcome

but also on the number of other agents whose outcomes are high. Let n (≤ N) denote this number. The

agent’s wage can be written as w(Qi, n) ≥ 0, where Qi ∈ {H,L} and n ∈ {0, 1, · · · , N}. Here, we make the

following assumptions.

Assumption 2. (i) ∀n w(H,n) ≥ w(L, n).

(ii) ∀Qi ∀n ∀n′ ≥ n w(Qi, n
′) ≥ w(Qi, n).

(iii) (1 − q1)N ≤ 1
2 .

As in Section 3, we assume away the “negative bonus” wage schemes in the first assumption. The second

assumption implies that the agent’s wage weakly increases as the total outcome of his colleagues increases.

That is, we focus on the cases in which the principal can choose either IPE or JPE.28 The third assumption

is a sufficient condition that the high effort is implementable. It obviously holds for any q1 when N is

sufficiently large.

The following lemma means that the principal can induce each agent to exert high effort, the agent gets

a bonus whenever he succeeds his task, and the principal offers a binary payment scheme in generic as the

optimal contract.29

Lemma 2. (i) High effort (Qi = H) is implementable.

28As shown in the previous section, JPE seems to be kept as the optimal wage schemes even if the degree of loss aversion
is small. In addition, recent surveys on empirical research of team incentives like Chiappori and Salanié (2003) and Lazear
and Oyer (forthcoming) mention that firms often use JPE for executive compensations. Thus, we here focus on JPE as team
incentives and compare it with IPE.

29The proof is provided in Appendix A.3.
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(ii) ∀n, n′ ∈ {0, 1, · · · , N} w(H,n) = w(H,n′) ≡ w > 0.

(iii) In generic, ∀n ∈ {0, 1, · · · , N} w(L, n) ∈ {w, 0} where w > 0, and the optimal payment scheme is

unique.

As in Lemma 1, the agent dislikes the wage uncertainty. Hence the principal can encourage him to work

by paying a fixed bonus for sure when his outcome is high (Lemma 2 (ii)). Also, as described in Herweg,

Müller and Weinschenk (2010), the principal’s payment minimization problem becomes a linear programming

problem because we assume linear consumption utilities and piece-wise linear gain-loss utilities. Hence in

generic it has a unique solution at an extreme point of the constraint set (Lemma 2 (iii)).

By Lemma 2, the agent with low outcome can get a bonus if and only if the number of other agents

whose outcomes are high is equal or more than some critical number n∗.30 Let α be the probability that n

is equal or greater than this critical number: α ≡ Prob(n ≥ n∗). Then, we can interpret that the principal

compensates the agent’s failure with this probability.

Now, the principal’s problem can be reduced to choose the bonus wage w and the compensation probabil-

ity α so as to minimize her expected payment. In what follows, we ignore the integer problem: the principal

hires sufficiently many agents so that she can (approximately) choose any level of the compensation proba-

bility α ∈ [0, 1]. In this setting, α = 0 means IPE: the agent’s wage depends only on his outcome. On the

other hand, α = 1 means full compensation: the agent gets the bonus for sure even if he fails. In two-agent

case with wHH = wHL = wLH > 0 and wLL = 0, α is equal to q1.

Then, the principal’s problem becomes:

min
w>0,α∈[0,1]

{q1 + α(1 − q1)}w

s.t. (1 − α)︸ ︷︷ ︸
(SIM)

w + (1 − α){1 − (1 − α)(2 − q0 − q1)}η(λ − 1)︸ ︷︷ ︸
(LSM)

w ≥ d

∆q
. (CPEM)

Notice that if α < 3−2q1−2q0
4−2q1−2q0

, then (LSM) is increasing in α. In this region, (CPEM) exhibits a clear trade-off

between the standard incentive effect (SIM) and the loss-sharing effect (LSM) in the many-agent case. Also,

α = 1 (full compensation) is never optimal because it does not satisfy (CPEM). As a result, we characterize

the optimal compensation probability as follows:31

30We denote n∗ = N + 1 if w(L, N) = 0.
31The proof is provided in Appendix A.4.
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Proposition 2. The optimal compensation rate α∗ that comprises the optimal wage scheme is as follows:

α∗ =

0 if 1
η(λ−1) ≥ (2 − q0 − q1)(1 + q1) − 1,

1
1−q1

(√
1 − {1 + 1

η(λ−1)} ·
1−q1

2−q0−q1
− q1

)
if 1

η(λ−1) < (2 − q0 − q1)(1 + q1) − 1.

Proposition 2 means that the principal pays a fixed bonus either when the agent succeeds his task or when

most of other agents succeed.32 It is consistent with the empirical evidence mentioned in Section 1 that

firms sometime pay a bonus not only to high-outcome employees but also low-outcome ones when the firms

earn a high profit. The optimal compensation probability is increasing in η(λ − 1). That is, the principal is

more likely to adopt team incentives with partial compensation as the agents’ loss aversion becomes more

significant. Also, similar to Proposition 1, team incentives (α∗ > 0) are optimal only when q0 < 0.708. This

is because the standard incentive effect becomes larger than the loss-sharing effect in that region.

Proposition 2 exhibits a sharp difference from Herweg, Müller and Weinschenk (2010)’s “turning a blind

eye”: when η(λ − 1) > 1 the principal wants to compensate for the agent’s failure as much as possible

under the optimal contract. This is because they impose the individual rationality constraint (IR) and the

effect of reducing the agent’s expected loss by increasing the compensation probability as holding IR with

equality totally dominates the our main trade-off in (CPEM). Though the logic itself is clear, they have

two unattractive results. First, the optimal compensation probability in their model is not well-defined.

Second, and more importantly, a base wage goes to negative infinity and a bonus wage goes to infinity as the

compensation rate goes to one in their result. In contrast to Herweg, Müller and Weinschenk (2010), we pay

attention to CPE constraint (or equivalently the incentive compatibility constraint) by imposing the limited

liability constraints. Then, we shed light on the trade-off between the standard incentive effect and the

loss-sharing effect.33 By this trade-off, the principal may use team incentives with partially compensating

for the agents’ failure even if IR does not bind. This is because the partial compensation for their failure

provides the loss-averse agents with the incentives to work, while such compensation makes the agents more

likely to shirk if they are loss-neutral. Consequently, the features of our results are driven via the trade-off

between the standard incentive effect and the loss-sharing effect.

32Precisely, a low-outcome agent can get the bonus if the ratio of high-outcome agents is more than or equal to 1 − α∗.
33Herweg, Müller and Weinschenk (2010) mention that if the agent is subjected to limited liability, the optimal compensation

rate is well defined.
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5 Related Literature

We summarize the literature on the multi-agent moral hazard and on the expectation-based reference-

dependent preferences, which are most related to this paper. We also refer to the literature on team incentives

which incorporates the agents’ social preferences.

First of all, much literature has studied moral hazard problems with multi-agent in this three decades.

It is straightforward to show that incentives based on IPE are optimal in the simple moral hazard model

with risk-averse multi-agent and no common shock.34 Holmstrom (1982), one of the seminal papers in this

field, shows that RPE can be optimal if the performance measure includes a common noise factor because

RPE reduces agents’ risk exposure. Lazear and Rosen (1981) and Green and Stokey (1983) also study a

tournament scheme, which is an extreme incentive scheme based on RPE, and demonstrate its potential

efficiency. Although these studies illustrate the positive aspects, RPE has certain disadvantages. In addition

to collusion problems, it discourages cooperation among agents and gives incentives to sabotage. JPE can

alleviate these negative effects of teams. These points are supported by empirical studies that team incentives

based on JPE are frequently associated with increased productivity.35 Holmstrom and Milgrom (1990) and

Itoh (1993) show that if agents coordinate their efforts and share risk in a Pareto-efficient way, then JPE

may be an optimal wage scheme. Itoh (1991) shows that if an agent can help other agents and the help is

desirable for a principal, the optimal contract should be based on JPE. Lazear (1989) demonstrates that

JPE can be effective when the issue of sabotage is relevant. Whereas these models are static, Che and Yoo

(2001) and Kvaløy and Olsen (2006) analyze the repeated interactions among agents, and show that JPE

may be preferable to RPE even if it does not hold in the static settings.36

Next, a notion of reference-dependence is originally investigated by Kahneman and Tversky (1979).

Models of the expectation-based reference-dependent preferences are developed by Kőszegi and Rabin (2006,

2007), and they are applied to understand many economic phenomena. Heidhues and Kőszegi (2008) analyze

price competition among firms with loss-averse consumers, and show that firms offer a sticky (deterministic)

34We briefly study the optimal contracts where the agents are risk-neutral or risk-averse but not loss-averse as the benchmark
case in section 4.1.

35See, for example, Jones and Kato (1995), Ichniowski, Shaw and Prennushi (1997), Hamilton, Nickerson and Owan (2003),
and Boning, Ichniowski and Shaw (2007).

36As we briefly mentioned in footnote 11, this paper also relates to the multi-task literature like Holmstrom and Milgrom
(1991). In fact, we could see our multi-agent model as a multi-task model in particular situation: a principal has two identical
tasks and chooses either to hire one agent and assign two task to him or hire two agents and assign one task to each of them.
Our results imply that when the agents loss aversion matter, the principal may want to hire one agent and assign two task to
alleviate his expected loss even though it is not optimal in the classical case.
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price in equilibrium even if their cost functions are stochastic and asymmetric. Lange and Ratan (2010)

and Eisenhuth (2010) investigate auctions with loss-averse players. Herweg and Mierendorff (2011) analyzes

a nonlinear pricing when consumers are loss-averse and uncertain about their own demand, and shows

the optimality of flat-rate tariff. Hahn, Kim, Kim, and Lee (2010) investigates a screening problem when

consumers are loss-averse and uncertain about their own valuation.37

As literature related to moral hazard problem where the agent has the expectation-based reference-

dependent preferences, Daido and Itoh (2010) build a simple model with limited liability and study the

Pygmalion and the Galatea effects as self-fulfilling prophecies. Gill and Stone (2010) analyze a rank-order

tournament with the agents’ loss aversion.38 Macera (2010) extends Kőszegi and Rabin (2009)’s dynamic loss

aversion model to a repeated moral hazard situation and studies the intertemporal allocation of incentives.

Herweg, Müller and Weinschenk (2010), which is most closely related to our study, analyze a single-agent

moral hazard model when the agent is loss averse. They find that the optimal contract is a binary bonus

scheme even for a rich performance measure. Also, they show that even if implementation problems arise in

usual payment schemes as originally described by Daido and Itoh (2010), the principal can induce the agent

to exert the desired action by using the stochastic ignorance. Though their logic of the stochastic ignorance

is similar to our logic of compensating for the agents’ failure, there are some sharp differences. First of all,

Herweg, Müller and Weinschenk (2010) focus on a single agent case and do not mention how the principal

can commit the stochastic ignorance. Second, if we care not only on the agents’ loss aversion but also on the

managerial aspects such as the principal’s budget constraint or risk/loss aversion, team incentives may be

strictly better than the stochastic ignorance for the principal as we mentioned in Section 1. Third, our focus

is on the CPE constraint (or equivalently the incentive compatibility constraint) and to analyze the trade-off

between the standard incentive effect and the loss-sharing effect, whereas the trade-off on the CPE constraint

is not investigated in Herweg, Müller and Weinschenk (2010) because an individual rationality constraint

has a deterministic role in their model. It clearly contrasts our result with their stochastic ignorance result

in Section 4.39

37For contract literature which incorporates reference-dependent preferences but the reference point is not determined by the
expectation, see Carmichael and MacLeod (2003, 2006), de Meza and Webb (2007), Hart (2007), Hart and Moore (2008) and
Fehr, Hart and Zehnder (2009, 2011).

38Although Gill and Stone (2010) call their equilibrium concept a desert equilibrium, it is basically same as CPE.
39As another difference, we characterize the optimal contracts under PPE as well as under CPE and show the robustness of

team-based incentives, while Herweg, Müller and Weinschenk (2010) characterize only under CPE.
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Empirical and experimental research has recently confirmed the importance of expectation-based reference-

dependent preferences. Crawford and Meng (forthcoming) estimate cab drivers’ labor supply decisions based

on the model of Kőszegi and Rabin (2006), and reconcile the findings between Camerer, Babcock, Loewenstein

and Thaler (1997) and Farber (2005, 2008). Abeler, Falk, Goette and Huffman (2011) design a real-effort

experiment in which the subjects choose how long they work on a simple repetitive task. They confirm the

validity of expectation-based reference-dependent preferences models; the higher the subjects’ expectations

are, the longer they work and the more they earn. Gill and Prowse (forthcoming) conduct a real-effort

sequential-move tournament experiment, and their result is consistent with the theoretical prediction of

expectation-based reference-dependent preferences with the concept of CPE.40

Finally, as another behavioral approach to study team incentives, some multi-agent moral hazard models

with social preferences have been developed. Englmaier and Wambach (2010), Bartling and Siemens (2010)

and Bartling (forthcoming) study multi-agent moral hazard models when the agents have social preferences.

They show that, even though IPE would be optimal for purely self-interested agents, team incentives can

be optimal. Their optimal team incentives exhibit either a wage scheme that the agent may get the bonus

even if he fails, or a wage scheme that the agent may not get the bonus even if he succeeds. On the other

hand, we predict that the optimal team incentives exhibit the forms of compensation when the agent fails

his task. The prediction is easy to test empirically.

6 Concluding Remarks

We have built a multi-agent moral hazard model in which the agents have expectation-based reference-

dependent preferences. We have used this model to study optimal wage schemes and characterized it using

both CPE and PPE as in Kőszegi and Rabin (2006, 2007). As a result, we show that when agents’ loss

aversion is not so small, the optimal wage scheme should be based on a kind of performance evaluation

that depends not only on the agent’s own outcome but also on that of his colleagues. Thus, the optimal

wage schemes exhibit team incentives. More specifically, if the probability of success is less than a half but

not too small, the principal offers a positive wage unless both agents fail, which exhibits joint performance

evaluation; otherwise the principal offers a positive wage unless one agent fails and the other agent succeeds,

40As non real-effort lab experiments, Ericson and Fuster (2010) conduct two stochastic endowment experiments and show
that how subjects’ expectation on keeping (or getting) the endowment affects their actual behavior. Sprenger (2010) conducts
risky choice experiments and argue that how expectation-based reference-dependent preferences can explain his results.
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which exhibits relative performance evaluation.

We predict that the optimal team incentives exhibit the forms of compensation when the agent fails his

task, while the existence literature shows how the agent’s wage should depend on his colleagues’ outcomes

when he succeeds. This prediction makes our results empirically testable. Our result provides a new insight

that team incentives serve as a loss-sharing device among agents, and it may bridge the gap between the

current multi-agent theoretical literature and empirical observation in the workplace.
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Appendix

A Proofs

Before providing the proofs of lemmas and propositions, we represent agent i’s expected gain-loss utility and

CPE condition in detail.

First, agent i’s expected gain-loss utility on wage is represented as follows:

E[πi(ai, aj ,w
i|âi

i, â
i
j , ŵ

i)] = q̂i
ai

q̂i
aj

[
qai

{qaj
µ(wi

HH − ŵi
HH) + (1 − qaj

)µ(wi
HL − ŵi

HH)}

+ (1 − qai){qaj µ(wi
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HH) + (1 − qaj )µ(wi
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HH)}
]

+ q̂i
ai
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aj

)
[
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HL)}
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]
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[
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HL − ŵi
LH)}

+ (1 − qai){qaj µ(wi
LH − ŵi
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LH)}
]

+ (1 − q̂i
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)(1 − q̂i
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[
qai{qaj µ(wi
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HL − ŵi
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+ (1 − qai){qaj µ(wi
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]
.

Next, using q2
1−q2

0 = (q1−q0)(q1+q0), q1(1−q1)−q0(1−q0) = (q1−q0)(1−q1−q0) and (1−q1)2−(1−q0)2 =

−(q1 − q0)(2 − q1 − q0), (CPE) can be replaced as

q1wHH + (1 − q1)wHL − q1wLH − (1 − q1)wLL

+(q1 + q0)(1 − q1)q1

[
µ(wHL − wHH) + µ(wHH − wHL)

]
+(1 − q1 − q0)q2

1

[
µ(wLH − wHH) + µ(wHH − wLH)

]
+(1 − q1 − q0)(1 − q1)q1

[
µ(wLL − wHH) + µ(wHH − wLL)

]
+(1 − q1 − q0)(1 − q1)q1

[
µ(wLH − wHL) + µ(wHL − wLH)

]
+(1 − q1 − q0)(1 − q1)2

[
µ(wLL − wHL) + µ(wHL − wLL)

]
−(2 − q1 − q0)(1 − q1)q1

[
µ(wLL − wLH) + µ(wLH − wLL)

]
≥ d

∆q
.
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Notice that for any x, y ∈ R,

µm(x − y) + µm(y − x) = −η(λ − 1)|x − y|.

Then, (CPE) is rewritten again as

q1wHH + (1 − q1)wHL − q1wLH − (1 − q1)wLL

−q1(1 − q1)(q1 + q0)η(λ − 1)|wHH − wHL| − q2
1(1 − q1 − q0)η(λ − 1)|wHH − wLH |

−q1(1 − q1)(1 − q1 − q0)xη(λ − 1)|wHH − wLL| − q1(1 − q1)(1 − q1 − q0)η(λ − 1)|wHL − wLH |

−(1 − q1)2(1 − q1 − q0)η(λ − 1)|wHL − wLL| + q1(1 − q1)(2 − q1 − q0)η(λ − 1)|wLH − wLL|

≥ d

∆q
. (CPE’)

A.1 Proof of Lemma 1

Proof. (i) We prove this by contradiction. Suppose that w = (wHH , wHL, wLH , wLL) which satisfies

min{wLH , wLL} > 0 is the optimal wage scheme. By Assumption 1, we can reduce the same amount from

each possible wage without violating limited liability constraints. Also, reducing the same amount from all

payments does not affect (CPE’). Thus, the principal can decrease the expected payment. A contradiction.

(ii) We prove this by contradiction. Suppose w = (wHH , wHL, wLH , wLL) is the optimal wage scheme.

Consider a case in which wHH > wHL. Then, we can take ∆w > 0 such that a new contract w =

(wHH − (1 − q1)∆w, wHL + q1∆w, wLH , wLL) satisfies the limited liability constraints and has the same

ordinal position as the original contract.

First, suppose that wHH > wLH . If wHL ≥ wLH , the difference between the new contract and the

original one for the left hand side of (CPE’) is

C(w) − C(w) = q1(1 − q1)(q1 + q0)η(λ − 1)∆w > 0.

where we denote the L.H.S of (CPE’) as C(w′) when a wage scheme is w′. If wHH > wLH > wHL, the

difference between the new contract and the original one for the left hand side of (CPE’) is
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C(w) − C(w) =q1(1 − q1)(q1 + q0)η(λ − 1)∆w + 2q2
1(1 − q1)(1 − q1 − q0)η(λ − 1)∆w

=q1(1 − q1){(1 − q1)(q1 + q0) + q1(2 − q1 − q0)}η(λ − 1)∆w

>0.

Thus, the principal can relax (CPE’) without violating the limited liability constraints. Because an expected

payment under the new contract is the same as under the original contract, the principal can decrease the

expected payment. A contradiction.

Second, suppose that wHL < wLH = wHH . By (i) of this Lemma, wLL = 0 holds. The left hand side of

(CPE’) is

C(w) =(1 − q1)[1 − {(1 − q1 − q0) − q1(2 − q1 − q0)}η(λ − 1)]wHL.

Since we suppose that w satisfies (CPE’), 1−{(1− q1 − q0)− q1(2− q1 − q0)}η(λ− 1) > 0 must hold. Then

we can take ∆w > 0 such that a new contract w̃ = (wHH − (1− q1)∆w, wHL + ∆w, wLH − (1− q1)∆w, wLL)

satisfies the limited liability constraints and has the same ordinal position as the original contract. The

difference between the new contract and the original one for the left hand side of (CPE’) is

C(w̃) − C(w) =(1 − q1)[1 − {(1 − q1 − q0) − q1(2 − q1 − q0)}η(λ − 1)]∆w > 0.

Thus, the principal can relax (CPE’) without violating the limited liability constraints. Because an expected

payment under the new contract is the same as under the original contract, the principal can decrease the

expected payment. A contradiction.

We can prove this in the case where wHH < wHL in the same way except for taking w = (wHH + (1 −

q1)∆w, wHL − q1∆w, wLH , wLL) or w̃ = (wHH + (1 − q1)∆w, wHL − q2
1∆w, wLH , wLL − q2

1∆w) as a new

contract.

A.2 Proof of Proposition 1

First, consider the case of (i) w ≥ wLH ≥ wLL = 0. Suppose that 1 − (1 − q1 − q0)η(λ − 1) > 0. By

substituting w which holds (CPEJ) with equality into the objective function, this problem is reduced to

min
wLH

[
1 − q1(1 − q1)(2 − q1 − q0)η(λ − 1)

1 − (1 − q1 − q0)η(λ − 1)

]
wLH
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subject to

wLH ∈ [0, w].

If the coefficient of wLH is positive, wLH should be zero. On the other hand, wLH should be equal to w

if the coefficient of wLH is not positive. As a result, the optimal wLH is presented by

wLH =

{
0 if ΩJ < 1,

w if ΩJ ≥ 1,

where ΩJ ≡ {1 − q1 − q0 + q1(1 − q1)(2 − q1 − q0)}η(λ − 1).

Next, suppose that 1− (1− q1 − q0)η(λ− 1) ≤ 0 < 1− {1− q1 − q0 − q1(2− q1 − q0)}η(λ− 1). Since the

coefficient of wLH is positive but that of w is negative. Thus, the solution exists and wLH = w holds at the

optimum.

Finally, suppose that 1−{1− q1 − q0 − q1(2− q1 − q0)}η(λ− 1) ≤ 0. Then the solution does not exist in

this case.

As a result, if ΩJ < 1, the optimal wage scheme is wI = (wI , wI , 0, 0) where

wI =
d

∆q[1 − (1 − q1 − q0)η(λ − 1)]
,

and the expected wage is

W I = q1
d

∆q[1 − (1 − q1 − q0)η(λ − 1)]
. (IPE)

If ΩJ > 1 and 1−{1−q1−q0−q1(2−q1−q0)}η(λ−1) > 0, the solution in this case is wJ = (wJ , wJ , wJ , 0)

where

wJ ≡ d

∆q(1 − q1)[1 − {1 − q1 − q0 − q1(2 − q1 − q0)}η(λ − 1)]
,

and the expected wage is

W J = q1(2 − q1)
d

∆q(1 − q1)[1 − {1 − q1 − q0 − q1(2 − q1 − q0)}η(λ − 1)]
. (JPE)

If 1−{1− q1 − q0 − q1(2− q1 − q0)}η(λ− 1) ≤ 0, the solution does not exist in this case. This result can

be summarized as follows.

Lemma 3. Suppose that w ≥ wLH ≥ wLL = 0. The solution exists iff 1−{1−q1−q0−q1(2−q1−q0)}η(λ−1) >

0. If it does exist, the optimal wage scheme is wI = (wI , wI , 0, 0) if ΩJ < 1, and wJ = (wJ , wJ , wJ , 0) if

ΩJ ≥ 1.
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Second, we examine the case of (ii) w ≥ wLL ≥ wLH = 0 . The principal’s problem is as follows.

min
w,wLL

q1w + (1 − q1)2wLL

subject to

{1 − (1 − q1 − q0)η(λ − 1)}w

+{−(1 − q1) + (1 − q1)(1 − q1 − q0)η(λ − 1) + q1(1 − q1)(2 − q1 − q0)η(λ − 1)}wLL ≥ d

∆q
. (CPE2)

w ≥ 0, and wLL ∈ [0, w]. (LLR)

where (CPE2) is the condition of CPE and (LLR) is the limited liability conditions in this case, respectively.

(CPE2) is replaced by

Suppose that 1 − (1 − q1 − q0)η(λ − 1) > 0. By substituting w which holds (CPE2) with equality into

the objective function, this problem is reduced to

min
wLL

[
1 − q2

1(2 − q1 − q0)η(λ − 1)
1 − (1 − q1 − q0)η(λ − 1)

]
wLL

subject to

wLL ∈ [0, w].

If the coefficient of wLL is positive, wLL should be zero. On the other hand, wLL should be equal w if

the coefficient of wLL is not positive. The optimal wLH is presented by

wLL =

{
0 if ΩR < 1,

w if ΩR ≥ 1,

where ΩR ≡ {1 − q1 − q0 + q2
1(2 − q1 − q0)}η(λ − 1).

Next, suppose that 1− (1− q1 − q0)η(λ− 1) ≤ 0. Since the coefficient of wLL is positive but that of w is

not positive, the solution exists and wLL = w holds at the optimum.

As a result, if ΩR < 1, the optimal contract in this case is wI and the expected wage is WI . On the

other hand, if ΩR ≥ 1, the optimal contract is wR = (wR, wR, 0, wR) where

wR =
d

∆qq1[1 − {1 − q1 − q0 − (1 − q1)(2 − q1 − q0)}η(λ − 1)]
,
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and the expected wage is

WR = (q2
1 − q1 + 1)

d

∆qq1[1 − {1 − q1 − q0 − (1 − q1)(2 − q1 − q0)}η(λ − 1)]
. (RPE)

Since 1 − q1 − q0 − (1 − q1)(2 − q1 − q0) < 0, the solution always exists.

Hence, we have the following lemma.

Lemma 4. Suppose that w ≥ wLL ≥ wLH = 0. The solution always exists. The optimal wage scheme is

wI = (wI , wI , 0, 0) if ΩR < 1, and wR = (wR, wR, 0, wR) if ΩR ≥ 1,

where wR = d
∆qq1[1−{1−q1−q0−(1−q1)(2−q1−q0)}η(λ−1)] .

Now, we derive the optimal wage scheme from Lemma 3 and Lemma 4. We have the following relationship:

ΩJ R ΩR ⇔ 1
2

R q1.

When q1 ≤ 1
2 , we have the following possible cases: (I-1) ΩR ≤ ΩJ < 1, (I-2) ΩR < 1 ≤ ΩJ and (I-3)

1 ≤ ΩR ≤ ΩJ .

First, in case (I-1), the optimal wage scheme is wI which exhibits IPE. Second, in case (I-2), the optimal

wage scheme is wJ which exhibits JPE. These results are easily derived from Lemma 3 and Lemma 4. Finally,

in case (I-3), we should compare between WJ and WR in order to determine the optimal wage scheme.

WJ < WR ⇔ (1 − 2q1)[1 − {1 − q1 − q0 − q1(1 − q1)2(2 − q1 − q0)}η(λ − 1)] > 0. (2)

Since q1 ≤ 1
2 , we have

WJ ≤ WR ⇔ ΩJR ≡ {1 − q1 − q0 − q1(1 − q1)2(2 − q1 − q0)}η(λ − 1) ≤ 1. (3)

Thus, when (I-3), the optimal wage scheme is wJ if (3) is satisfied; otherwise wR is the optimal.

Next, when q1 > 1
2 , we have the following possible cases: (II-1) ΩJ < ΩR < 1, (II-2) ΩJ < 1 ≤ ΩR and

(II-3) 1 ≤ ΩJ < ΩR.

First, by Lemma 3 and 4, the optimal wage scheme is wI in case (II-1) while it is wR in case (II-2). Next,

in case (II-3), we should compare between WJ and WR in order to determine the optimal wage scheme. By

(2) and q1 > 1
2 , we have

WR < WJ ⇔ ΩJR < 1. (4)

Thus, when (II-3), the optimal wage scheme is wR if (4) is satisfied; otherwise it is wJ .
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A.3 Proof of Lemma 2

Proof. Denote pn ≡ NCnqn
1 (1− q1)N−n be the probability such that n other agents attain the high outcome

when all agents work. For the notational convenience, denote qH
a = qa and qL

a = (1 − qa) where a ∈ {0, 1}.

The principal’s problem is

min
{w(Qi,n)}

N∑
n=0

pn[q1w(H,n) + (1 − q1)w(L, n)]

s.t.
N∑

n=0

pn[q1w(H,n) + (1 − q1)w(L, n)]

− 1
2

∑
Qi∈{H,L}

∑
Q̂i∈{H,L}

N∑
n=0

N∑
m=0

qQi

1 qQ̂i

1 pnpmη(λ − 1) · |w(Qi, n) − w(Q̂i,m)| − d

≥
N∑

n=0

pn[q0w(H,n) + (1 − q0)w(L, n)]

− 1
2

∑
Qi∈{H,L}

∑
Q̂i∈{H,L}

N∑
n=0

N∑
m=0

qQi

0 qQ̂i

0 pnpmη(λ − 1) · |w(Qi, n) − w(Q̂i,m)|, (5)

w(Qi, n) ≥ 0, ∀n w(H,n) ≥ w(L, n), ∀Qi ∈ {H,L} ∀n ∀n′ ≥ n w(Qi, n
′) ≥ w(Qi, n).

Note that (5) can be written as

(q1 − q0)
N∑

n=0

pn[w(H,n) − w(L, n)]

−1
2

∑
Qi∈{H,L}

∑
Q̂i∈{H,L}

N∑
n=0

N∑
m=0

(qQi

1 qQ̂i

1 − qQi

0 qQ̂i

0 )pnpmη(λ − 1) · |w(Qi, n) − w(Q̂i,m)| ≥ d. (6)

(i) Suppose the following wage scheme such that the agent gets a fixed bonus unless all agents fail their

tasks:

w(Qi, n) =

{
0 if Qi = L and n = 0,

w otherwise.

When w ≥ 0, the wage scheme obviously satisfies limited liability constraints. Each agent can get w with

probability 1 − (1 − q1)N+1. Hence CPE constraint becomes

(q1 − q0)p0w + [{1 − (1 − q0)p0}(1 − q0)p0 − {1 − (1 − q1)p0}(1 − q1)p0]η(λ − 1)w ≥ d

⇔ [1 + {1 − (2 − q0 − q1)p0}η(λ − 1)](q1 − q0)p0w ≥ d.

Since p0 = (1−q1)N ≤ 1
2 by Assumption 2 (iii), the coefficient of w is strictly positive for any parameters.

Therefore, the principal can induce each agent to exert high effort by setting sufficiently large w > 0.
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(ii) We prove this by contradiction. Suppose that there exists s and t (> s) such that w(H, t) ̸= w(H, s)

in the optimal wage scheme w. By Assumption 2 (ii), w(H, t) > w(H, s) holds and we can set t = s + 1

without loss of generality. Also, we can set w(H, s + 1) = w(H,N), otherwise we can take another pair of

wages which contains the highest wage.

Note that for any n ≤ s, w(H, s) ≥ w(L, n) holds because w(H, s) ≥ w(H,n) and w(H,n) ≥ w(L, n). It

implies that if w(L, n) satisfying w(H, s + 1) > w(L, n) > w(H, s) exists, then n > s must hold. Denote l

(≥ s+1) and h ( ≥ l) be the lowest number and the highest number of n that satisfies w(H, s+1) > w(L, n) >

w(H, s), respectively. Define
∑h

n=l pn = 0 if there does not exist n such that w(H, s+1) > w(L, n) > w(H, s).

First, consider a new contract w′ with ∆w > 0 which changes w(H, s) and w(H, s+1) in w to w(H, s)′ =

w(H, s)+ps+1∆w and w(H, s+1)′ = w(H, s+1)−ps∆w, respectively. All elements of w′ satisfy the limited

liability constraints and has the same ordinal position as the original contract.

Then, the difference between the new contract and the original one for the left hand side of (6) is

(q2
1 − q2

0)(ps + ps+1)psps+1η(λ − 1)∆w + 2{q1(1 − q1) − q0(1 − q0)}(
h∑

n=l

pn)psps+1η(λ − 1)∆w

={(q1 + q0)(ps + ps+1) + 2(1 − q1 − q0)(
h∑

n=l

pn)}(q1 − q0)psps+1η(λ − 1)∆w. (7)

Notice that (7) is strictly positive if either ps + ps+1 ≥
∑h

n=l pn or 1 − q1 − q0 ≥ 0 holds. In these cases,

the principal can relax (6) without violating the limited liability constraints. Because an expected payment

under the new contract is the same as under the original contract, the principal can decrease the expected

payment. A contradiction.

Second, suppose that both ps + ps+1 <
∑h

n=l pn and (1 − q1 − q0) < 0 hold. Then, we can take

∆w > 0 such that a new contract which changes the wages from the original contract to w′(H, s + 1) =

w(H, s + 1) − (1 − q1)ph∆w and w′(L, h) = w(L, h) + q1ps+1∆w, satisfying the limited liability constraints

and has the same ordinal position as the original contract.
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Then, the difference between the new contract and the original one for the left hand side of (6) is

[
(q2

1 − q2
0)(1 − q1)ps+1(1 − ps+1)ph + {q1(1 − q1) − q0(1 − q0)}(1 − q1)ps+1ph(1 − ph)

− {q1(1 − q1) − q0(1 − q0)}q1ps+1(1 − ps+1)ph − {(1 − q1)2 − (1 − q0)2}q1ps+1ph(1 − ph)

+ {q1(1 − q1) − q0(1 − q0)}ps+1ph{q1ps+1 + (1 − q1)ph}
]
η(λ − 1)∆w

=
[
{(q1 + q0)(1 − ps+1) + (1 − q0 − q1)ph}(1 − q1) + {(1 − q0 − q1)(1 − q1) + (2 − q0 − q1)q1}(1 − ph)

+ q1(1 − q0 − q1){ps+1 − (1 − ps+1)}
]
(q1 − q0)ps+1phη(λ − 1)∆w

=
[
{(q1 + q0)(1 − ps+1) + (1 − q0 − q1)ph}(1 − q1) + (1 − q0)(1 − ph)

− q1(1 − q0 − q1)(1 − 2ps+1)
]
(q1 − q0)ps+1phη(λ − 1)∆w. (8)

Notice that 1 − q1 − q0 < 0 implies (q1 + q0)(1 − ps+1) + (1 − q0 − q1)ph > (1 − ps+1) − ph > 0, and

ps +ps+1 <
∑h

n=l pn implies ps+1 < 1
2 . Hence (8) is strictly positive, and the principal can relax (6) without

violating the limited liability constraints. Because an expected payment under the new contract is the same

as under the original contract, the principal can decrease the expected payment. A contradiction.

Denote w(H,n) = w where n ∈ {0, 1, · · · , N}. If w = 0, then all wages must be zero because w(H,n) ≥

w(L, n). The contract does not satisfy (6). Therefore, w > 0 in the optimal contract.

(iii) Denote w(H,n) = w > 0 where n ∈ {0, 1, · · · , N}. Also, let bL
0 = w(L, 0) and bL

n = w(L, n) −

w(L, n − 1) for n ∈ {1, · · · , N}. Note that
∑N

n=0 pnw(L, n) =
∑N

n=0 p̃nbL
n where p̃n =

∑N−n
k=0 pN−k. Finally,

set bL
N = w −

∑N
n=0 bL

n .

The principal’s problem can be written as

min
{bL

n}
q1(bL

N +
N∑

n=0

bL
n) + (1 − q1)

N∑
n=0

p̃nbL
n

s.t. bL
N +

N∑
n=0

bL
n −

N∑
n=0

p̃nbL
n

[
− (1 − q1 − q0)

N∑
n=0

pn(bL
N +

N∑
k=n+1

bL
n) + (2 − q1 − q0)

∑
n>m

pnpm(
m∑

k=n

bL
k )

]
η(λ − 1) =

d

∆q
, (9)

∀n ∈ {0, · · · , N} bL
n ≥ 0.

This is a linear programming problem. Notice that (9) is closed. Also, by Assumption 2 (iii), the problem

is implementable. Since each coefficient of bL
n in the principal’s objective function is positive and each bL

n is
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bounded from below, there exists K ∈ R++ such that for any n, bL
n > K is never optimal. Thus, without

loss of generality we can restrict the constraint set to bL
n ≤ K, which attains boundedness of the constraint

set. Thus, the problem has a solution.

As Herweg, Müller and Weinschenk (2010), the solution of a linear programming problem has an extreme

point of the constraint, and generically unique. The unique solution satisfies that bL
n > 0 holds exactly one

of n ∈ {0, · · · , N}, and bL
m = 0 holds for any m ̸= n. By the construction of bL

n , we have proven that the

optimal wage scheme is binary and uniquely determined in generic.

A.4 Proof of Proposition 2

Notice that at the optimal wage scheme, (CPEM) must hold with equality because otherwise the principal

can decrease w without violating any constraints. Thus, the optimal amount of bonus w∗ is determined by

(CPEM):

w∗ =
d

∆q(1 − α)[1 + {1 − (1 − α)(2 − q1 − q0)}η(λ − 1)]
,

subject to 1 + {1− (1−α)(2− q1 − q0)}η(λ− 1) > 0 ⇐⇒ α > 1− 1
2−q1−q0

(1 + 1
η(λ−1) ). Note that (CPEM)

is never satisfied when α ≤ 1 − 1
2−q1−q0

(1 + 1
η(λ−1) ).

Substituting w∗ into the expected payment function, the principal’s problem becomes:

min
α∈[0,1]

Wα ≡ {q1 + α(1 − q1)}d
∆q(1 − α)[1 + {1 − (1 − α)(2 − q1 − q0)}η(λ − 1)]

, (10)

subject to α > 1 − 1
2−q1−q0

(1 + 1
η(λ−1) ).

Since (10) is continuously differentiable for all α ∈ (1− 1
2−q1−q0

(1 + 1
η(λ−1) ), 1), the solution satisfies the

first-order condition:

dWα

dα
=

d

∆q

1 + {1 − (2 − q1 − q0)(1 + q1) + 2αq1(2 − q1 − q0) + α2(1 − q1)(2 − q1 − q0)}η(λ − 1)
(1 − α)2[1 + {1 − (1 − α)(2 − q1 − q0)}η(λ − 1)]2

≥ 0, (11)

and holds in equality if α∗ > 0.

By solving (11), we get the candidate of the optimal compensation rate α∗ as in the statement. Since

the numerator of (11) is increasing in α, (11) is also a sufficient condition.
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B The Optimal Wage Scheme under PPE

We characterize the optimal wage scheme under PPE. The notion of PPE is the most favorable consistent

action when the agent’s reference point does not change. The consistency of action is defined by UPE. Under

UPE, the agent maximizes his total payoff given that his belief is fixed, and the action must coincide with his

belief. Because there exist multiple UPEs in general, under PPE, we suppose that the agent forms the most

favorable belief from the set of UPEs. The notion of PPE is plausible when the outcome and the payment

occur shortly after the action.

B.1 The Condition of PPE

The condition where (ai, aj , w|âi
i, â

i
j , ŵ) = (1, 1, w|1, 1, ŵ) is UPE is

U(1, 1,w|1, 1, ŵ) ≥ U(0, 1, w|1, 1, ŵ). (UPE)

This condition is replaced by

q1wHH + (1 − q1)wHL − q1wLH − (1 − q1)wLL

+ q2
1

[
(1 − q1)µ(wHL − ŵHH) − q1µ(wLH − ŵHH) − (1 − q1)µ(wLL − ŵHH)

]
+ q1(1 − q1)

[
q1µ(wHH − ŵHL) − q1µ(wLH − ŵHL) − (1 − q1)µ(wLL − ŵHL)

]
+ (1 − q1)q1

[
q1µ(wHH − ŵLH) + (1 − q1)µ(wHL − ŵLH) − (1 − q1)µ(wLL − ŵLH)

]
+ (1 − q1)(1 − q1)

[
q1µ(wHH − ŵLL) + (1 − q1)µ(wHL − ŵLL) − q1µ(wLH − ŵLL)

]
≥ (1 + η)d

∆q

This can be replaced again as

q1wHH + (1 − q1)wHL − q1wLH − (1 − q1)wLL + q2
1(1 − q1)

[
µ(wHL − wHH) + µ(wHH − wHL)

]
+q2

1

[
(1 − q1)µ(wHH − wLH) − q1µ(wLH − wHH)

]
+ q1(1 − q1)

[
(1 − q1)µ(wHH − wLL) − q1µ(wLL − wHH)

]
+q1(1 − q1)

[
(1 − q1)µ(wHL − wLH) − q1µ(wLH − wHL)

]
+ (1 − q1)2

[
(1 − q1)µ(wHL − wLL) − q1µ(wLL − wHL)

]
−q1(1 − q1)2x

[
µ(wLL − wLH) + µ(wLH − wLL)

]
≥ (1 + η)d

∆q
(UPE’)

By the similar arguments of the characterization in CPE, we first have the following lemma.
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Lemma 5. The optimal wage scheme in UPE satisfies (i) min{wLH , wLL} = 0 and (ii) wHH = wHL.

Proof. Notice that, for any w ≥ w′,

(1 − q1)µ(w − w′) − q1µ(w − w′) = {η + q1η(λ − 1)}(w − w′) ≥ 0.

On the other hand, for, w < w′,

(1 − q1)µ(w − w′) − q1µ(w − w′) = {q1η + (1 − q1)ηλ}(w − w′) < 0.

(i) We prove this by contradiction. Suppose that w = (wHH , wHL, wLH , wLL) which satisfies min{wLH , wLL} >

0 is the optimal wage scheme. By Assumption 1, we can reduce the same amount from each possible wage

without violating limited liability constraints. Also, reducing the same amount from all payments does not

affect (UPE’). Thus, the principal can decrease the expected payment. A contradiction.

(ii) We prove it by contradiction. Consider a case of wHH > wHL.

First, suppose that wLH < wHH . Then we can take ∆w > 0 such that a new contract w = (wHH − (1−

q1)∆w, wHL + q1∆w, wLH , wLL) satisfies limited liability constraints and the same ordinal position with the

original one.

If wHL ≥ wLH , then the differences of the left hand side of (UPE’) between the new contract and the

original one is

D(w) − D(w) = q2
1(1 − q1)η(λ − 1)∆w > 0.

where we denote the left hand side of (UPE’) as D(w′) when a wage scheme is w′.

If wHL < wLH , then the differences of the left hand side of (UPE’) between the new contract and the

original one is

D(w) − D(w) =q2
1(1 − q1)η(λ − 1)∆w − q2

1(1 − q1){η + q1η(λ − 1)}∆w + q2
1(1 − q1){q1η + (1 − q1)ηλ}∆w

=2q2
1(1 − q1)2η(λ − 1)∆w > 0.

Thus, the principal can relax (UPE’) without violating limited liability constraints. Since an expected

payment under the new contract is just same as the original contract, the principal can decrease the expected

payment. Contradiction.
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Second, suppose that wHL < wLH = wHH . Then we can take ∆w > 0 such that a new contract

w̃ = (wHH − (1− q1)∆w, wHL + ∆w, wLH − (1− q1)∆w, 0) satisfies the limited liability constraints and has

the same ordinal position as the original contract. The difference between the new contract and the original

one for the left hand side of (UPE’) is

D(w̃) − D(w) =(1 − q1)[1 + η + q1(2 − q1)η(λ − 1)]∆w > 0.

Thus, the principal can relax (UPE’) without violating the limited liability constraints. Because an expected

payment under the new contract is the same as under the original contract, the principal can decrease the

expected payment. A contradiction.

A proof in a case of wHH < wHL is just same as above, except for taking w = (wHH +(1−q1)∆w, wHL−

q1∆w, wLH , wLL) or w̃ = (wHH + (1 − q1)∆w, wHL − q2
1∆w, wLH , wLL − q2

1∆w) as a new contract.

To explain the intuition, notice that the agent dislikes the wage uncertainty. The principal can encourage

him to work by reducing the wage variation when he succeeds. Also, she can discourage him to shirk by

increasing the wage variation when he fails. Therefore, she sets wHH = wHL and min{wLH , wLL} = 0 in

the optimal wage scheme.

Now we can rewrite (UPE’) as

w − q1wLH − (1 − q1)wLL

+q1

[
(1 − q1)µ(w − wLH) − q1µ(wLH − w)

]
+ (1 − q1)

[
(1 − q1)µ(w − wLL) − q1µ(wLL − w)

]
−q1(1 − q1)2

[
µ(wLL − wLH) + µ(wLH − wLL)

]
≥ (1 + η)d

∆q
(UPE”)

Given a wage profile, the pair of actions is PPE if it satisfies (UPE”) and either (or both) of the following:

U(1, 1,w|0, 1, ŵ) > U(0, 1, w|0, 1, ŵ). (PPE1)

U(1, 1,w|1, 1, ŵ) ≥ U(0, 1, w|0, 1, ŵ), (PPE2)

(PPE1) implies that the agent does not choose to shirk (ai = 0) even when he expected to do so. That is,

(0, 1, w|0, 1, ŵ) is not UPE. If this condition is satisfied, the UPE of (1, 1, w|1, 1, ŵ) is PPE because it is a

unique UPE. Intuitively, (PPE1) makes “not working” non-credible: only “working” is a credible plan. Even

if (PPE1) is not satisfied and (0, 1,w|0, 1, ŵ) is UPE, (1, 1, w|1, 1, ŵ) is PPE as long as (PPE2) holds. Note
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that (PPE2) is equivalent to (CPE). Thus, if the CPE solution satisfies (UPE”), then it is also a solution

to PPE2.

In the following, we replace the strict inequality of (PPE1) with a weak inequality to analyze the optimal

wage scheme. It is justified by the following limit argument. If we discretize the amount of wage, then the

optimal wage scheme that satisfies (PPE1) exists. Suppose we take the limit of the interval which goes to

zero. Then the sequence of the optimal wage scheme converges to the optimal one with continuous wage

space, and it satisfies (PPE1) with replacing the strong inequality with the weak inequality.

By the same derivation of Lemma 4 in UPE, it is straightforward to show that the optimal wage scheme

under (PPE1) also satisfies min{wLH , wLL} = 0 and wHH = wHL. Because we can take the same alternative

contracts in the following Lemma 5 as in Lemma 4, the properties of the optimal wage scheme hold even

when both constraints (UPE) and (PPE1) are binding. The same logic also holds when we focus on both

(UPE) and (PPE2).

Thus, we have the following lemma.

Lemma 6. The optimal wage scheme in PPE satisfies (i) wHH = wHL and (ii) min{wLH , wLL} = 0.

B.2 The Optimal Wage Scheme as PPE

As the optimal wage scheme under CPE, we have the following two possible types of wage schemes due to

Lemma 6: [A] w ≥ wLH ≥ wLL = 0 and [B] w ≥ wLL ≥ wLH = 0.

We can apply the similar way to find the optimal wage scheme under PPE as under CPE. We characterize

the optimal wage scheme by studying it in above each case and comparing among them. However, in each

case, we have to find the wage scheme which satisfies (UPE”) and at least either (PPE1) or (PPE2). Then,

the relationships among (UPE”), (PPE1), and (PPE2) is crucial.

First, we examine case [A] where w ≥ wLH ≥ wLL = 0. If 1− (1− q1− q0)η(λ−1) > 0, (UPE”), (PPE1),

and (PPE2) are represented as follows:

w ≥ q1

[
1 − (1 − q1)2η(λ − 1)

1 + η + q1η(λ − 1)

]
wLH +

d

∆q
· 1 + η

1 + η + q1η(λ − 1)
, (UPEA)

w ≥ q1

[
1 − (1 − q1)(1 − q0)η(λ − 1)

1 + η + q0η(λ − 1)

]
wLH +

d

∆q
· 1 + ηλ

1 + η + q0η(λ − 1)
, (PPE1A)

w ≥ q1

[
1 − (1 − q1)(2 − q1 − q0)η(λ − 1)

1 − (1 − q1 − q0)η(λ − 1)

]
wLH +

d

∆q
· 1
1 − (1 − q1 − q0)η(λ − 1)

. (PPE2A)
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If 1 − (1 − q1 − q0)η(λ − 1) < 0, the inequality of (PPE2A) is reversed. If 1 − (1 − q1 − q0)η(λ − 1) = 0,

the slope of (PPE2A) is zero. We will show that if 1 − (1 − q1 − q0)η(λ − 1) ≤ 0, (PPE2A) never binds in

equilibrium.

We can describe the figure where w is the vertical axis and wLH is the horizontal axis. Also, we can

put the lines of (UPEA), (PPE1A), and (PPE2A) on that figure. It is straightforward to find the following

relationships among three lines. First, the slope of (UPEA) is greater than that of (PPE1A). Second, the

slope of (PPE1A) is greater than that of (PPE2A). Third, the y-intersection of (PPE1A) is greater than

that of (UPEA).

We further divide case [A] into some conditions. In what follows, we consider two cases which is classified

by whether the y-intersection of (PPE1A) is less than that of (PPE2A) or not.

[A-1] The case where the y-intersection of (PPE1A) is less than that of (PPE2A):

This condition is represented by

ΩPPE1 ≡ q1 − ηλ(1 − q1 − q0) < 0. (12)

Notice that 1 − q1 − q0 > 0 is a necessary condition to satisfy the inequality. The condition holds if

1 − (1 − q1 − q0)η(λ − 1) ≤ 0.

In this case, the optimal wage scheme is always determined at (PPE1A) binding. However, two kinds of

solutions exist; one exhibits IPE and another does JPE. Then the minimization problem becomes

min
w,wLH

q1w + q1(1 − q1)wLH

subject to

(PPE1A), w ≥ 0, and wLH ∈ [0, w].

By substituting (PPE1A) with equality into the objective function, we find the optimal point in this case as

wLH =

{
0 if ΩJ

A1 < 1
w if ΩJ

A1 > 1,
(13)

where ΩJ
A1 ≡ −η + {q1(1 − q1)(1 − q0) − q0}η(λ − 1).

Thus, if ΩJ
A1 < 1, the optimal contract in this case is wI

A1 = (wI
A1, w

I
A1, 0, 0) where

wI
A1 =

(1 + ηλ)d
∆q[1 + η + q0η(λ − 1)]

.
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The expected wage is

W I
A1 = q1

(1 + ηλ)d
∆q[1 + η + q0η(λ − 1)]

. (IPE-PPE1A)

Figure A-1-a describes this situation. The optimal wage scheme is determined at the y-intersection of

(PPE1A).

If ΩJ
A1 > 1, the optimal wage scheme is wJ

A1 = (wJ
A1, w

J
A1, w

J
A1, 0) where

wJ
A1 =

(1 + ηλ)d
∆q(1 − q1)[1 + η + (q1 + q0 − q1q0)η(λ − 1)]

.

The expected wage is

W J
A1 = q1(2 − q1)

(1 + ηλ)d
∆q(1 − q1)[1 + η + (q1 + q0 − q1q0)η(λ − 1)]

. (JPE-PPE1A)

Figure A-1-b describes this situation. The optimal wage scheme is determined at the intersection between

(PPE1A) and the line of w = wLH . Note that if this intersection is located below (UPEA), then the

intersection between (PPE1A) and (UPEA) may be a candidate of the optimal wage scheme. However, it

does not happen in our model.

Notice that if η ≤ 1 and λ ≤ 4, then ΩA1
J < 1 and thus W I

A1 is the optimal.

0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-1-a: the optimal wage scheme wI
A1

w = −(1 − q1)wLH + W
q1
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0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-1-b: the optimal wage scheme wJ
A1

w = −(1 − q1)wLH + W
q1

[A-2] The case where the y-intersection of (PPE1A) is equal to or greater than that of (PPE2A) (ΩPPE1 ≥ 0):

We should divide this case into two more cases: [A-2-a] the y-intersection of (PPE2A) is equal to or less than

that of (UPEA) and [A-2-b] the y-intersection of (PPE2A) is greater than that of (UPEA).The condition

for [A-2-a] is represented by

ΩI
A2 ≡ q1 + (1 − q1 − q0)(1 + η) ≤ 0. (14)

First, in [A-2-a], the optimal wage scheme is determined at the y-intersection of (UPEA) as described by

Figure A-2-a. The optimal wage scheme is wI
A2 = (wI

A2, w
I
A2, 0, 0) where

wI
A2 =

(1 + η)d
∆q[1 + η + q1η(λ − 1)]

.

The expected wage is

W I
A2 = q1

(1 + η)d
∆q[1 + η + q1η(λ − 1)]

. (IPE-PPE2A)
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0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-2-a: the optimal wage scheme wI
A2

w = −(1 − q1)wLH + W
q1

Next, in (A-2-b) where ΩI
A2 > 0, three kinds of solutions exist. The first one is determined at the y-

intersection of (PPE2A) (see Figure A-2-b-i), the second one is is determined at the intersection between

(PPE2A) and the line of w = wLH (see Figure A-2-b-ii), and the last one is is determined at the intersection

between (PPE2A) and (UPEA) (see Figure A-2-b-iii).

The condition which divides the first one from others is relevant to the relationship between the slope of

(PPE2A) and that of the line of the principal’s expected payment w = −(1 − q1)wLH + W
q1

where W is the

amount of that payment. If the former is equal to or greater than the latter, the optimal wage scheme is

determined at the y-intersection of (PPE2A). This condition is represented by

q1

[
1 − (1 − q1)(2 − q1 − q0)η(λ − 1)

1 − (1 − q1 − q0)η(λ − 1)
]
≥ −(1 − q1) ⇔ ΩJ ≥ 1.

Note that ΩJ ≡ {q1(1 − q1)(2 − q1 − q0) + (1 − q1 − q0)}η(λ − 1), which is defined in the derivation of the

optimal wage scheme as CPE. As a result, the optimal wage scheme in this case is wI which is the same as

the case of CPE. On the other hand, when ΩJ > 1, the optimal wage scheme must have wLH > 0.

If the intersection between (PPE2A) and the line of w = wLH satisfies (UPEA), then w = wLH . This
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condition is represented by

ΩJ
A2 ≡ (1 − q1)(1 − q0) + {1 − 3q1 + q2

1 − (1 − q1)q0}η ≥ 0. (15)

The optimal wage scheme is wJ which we found at the study of CPE. On the other hand, when ΩA2
J < 0, the

optimal wage scheme is determined by the intersection between(PPE2A) and (UPEA). The optimal wage

scheme is wJ
LH = (wJ

A2, w
J
A2, w

J
LH , 0) where

wJ
A2 =

[(2 − q1){(2 − q0 − q1)η + 1 − q0} − η]d
(1 − q1){(1 − q1)η + (1 − q0)(1 + ηλ)}∆q

,

wJ
LH =

{1 − q0 + (1 − q0 − q1)η}d
q1(1 − q1){(1 − q1)η + (1 − q0)(1 + ηλ)}∆q

.

Notice that w ≥ wLH if and only if ΩJ
A2 ≤ 0.

The expected wage is

WLH
A2 =

{(1 + q1 + q0(−1 − q1 + q2
1))(1 + η) − q2

1(3 − q1)η − q2
1}d

(1 − q1){(1 − q1)η + (1 − q0)(1 + ηλ)}∆q
. (LH-A2)

0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-2-b-i: the optimal wage scheme wI

w = −(1 − q1)wLH + W
q1
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0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-2-b-ii: the optimal wage scheme wJ

w = −(1 − q1)wLH + W
q1

0

w

wLH

(UPEA)

(PPE1A)

(PPE2A)

w = wLH

Figure A-2-b-iii: the optimal wage scheme wJ
LH

w = −(1 − q1)wLH + W
q1
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Now we have the following results in case [A].

Lemma 7. The optimal wage schemes wA in case [A] where w ≥ wLH ≥ wLL = 0 are as follows:

When ΩPPE1 < 0;

{
ΩJ

A1 < 1 ⇒ wI
A1

ΩJ
A1 > 1 ⇒ wJ

A1.
(16)

When ΩPPE1 > 0;


ΩI

A2 ≤ 0 ⇒ wI
A2

ΩI
A2 > 0 and


ΩJ ≤ 1 ⇒ wI

ΩJ > 1 and

{
ΩJ

A2 ≥ 0 ⇒ wJ

ΩJ
A2 < 0 ⇒ wJ

LH

.

(17)

The optimal wage scheme is derived by the following sequential comparison. First, ΩPPE1 determines

whether the equilibrium payment is based on PPE1 or PPE2. If ΩPPE1 < 0, then the optimal wage scheme

makes the agents “not working” non-credible. The payment scheme is either JPE or IPE based on (PPE1A)

determined by ΩJ
A1.

However, if ΩPPE1 > 0, then multiple UPEs exist in the optimal wage scheme. If ΩI
A2 < 0, then the

solution for (UPEA) satisfies (PPE2A). Thus, we need only consider (UPEA), and the optimal wage scheme

is IPE based on (UPEA).

Otherwise, we must verify whether the solution for CPE satisfies (UPEA). If ΩJ ≤ 1, the solution for

CPE is IPE based on (PPE2A), and it always satisfies (UPEA) provided ΩI
A2 > 0.

If ΩJ > 1, the solution of CPE is JPE based on (PPE2A), and it may not satisfy (UPEA). If ΩJ
A2 ≥ 0,

then it satisfies (UPEA) and JPE based on (PPE2A) is the optimal wage scheme. If ΩJ
A2 < 0, then both

(PPE2A) and (UPEA) bind at the optimum. Hence the optimal wage payment scheme is wJ
LH .

Second, we see case [B] where w ≥ wLL ≥ wLH = 0. By the similar arguments with case [A], we have

the following results:

Lemma 8. The optimal wage schemes wB in case [B] where w ≥ wLL ≥ wLH = 0 are as follows:
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When ΩPPE1 < 0;

{
ΩR

B1 < 1 ⇒ wI
A1

ΩR
B1 > 1 ⇒ wR

B1.
(18)

When ΩPPE1 > 0;


ΩI

A2 ≤ 0 ⇒ wI
A2

ΩI
A2 > 0 and


ΩR ≤ 1 ⇒ wI

ΩR > 1 and

{
ΩR

B2 ≥ 0 ⇒ wR

ΩR
B2 < 0 ⇒ wR

LL

.

(19)

Proof. We examine case [B] where w ≥ wLL ≥ wLH = 0. If 1 − (1 − q1 − q0)η(λ − 1) > 0, (UPE”), (PPE1),

and (PPE2) are represented as follows:

w ≥ (1 − q1)
[
1 − q1(1 − q1)η(λ − 1)

1 + η + q1η(λ − 1)

]
wLL +

d

∆q
· 1 + η

1 + η + q1η(λ − 1)
, (UPEB)

w ≥ (1 − q1)
[
1 − q1(1 − q0)η(λ − 1)

1 + η + q0η(λ − 1)

]
wLL +

d

∆q
· 1 + ηλ

1 + η + q0η(λ − 1)
, (PPE1B)

w ≥ (1 − q1)
[
1 − q1(2 − q1 − q0)η(λ − 1)

1 − (1 − q1 − q0)η(λ − 1)

]
wLL +

d

∆q
· 1
1 − (1 − q1 − q0)η(λ − 1)

. (PPE2B)

If 1 − (1 − q1 − q0)η(λ − 1) < 0, the inequality of (PPE2B) is reversed. If 1 − (1 − q1 − q0)η(λ − 1) = 0,

the slope of (PPE2B) is zero. We will show that if 1 − (1 − q1 − q0)η(λ − 1) ≤ 0, (PPE2B) never binds in

equilibrium. In what follows, we omit graphs where w is the vertical axis and wLL is the horizontal axis

because there are essentially same with case [A].

As in case [A], it is straightforward to find the following relationships among three lines. First, the slope

of (UPEB) is greater than that of (PPE1B). Second, the slope of (PPE1B) is greater than that of (PPE2B).

Third, the y-intersection of (PPE1B) is greater than that of (UPEB). The process to find the optimal wage

scheme in this case is the same as in case [A].

[B-1] The y-intersection of (PPE1B) is less than that of (PPE2B): This condition is the same as case

[A-1] and represented by ΩPPE1 = q1 − ηλ(1 − q1 − q0) < 0. Notice that 1 − q1 − q0 > 0 is a necessary

condition to satisfy the inequality. The condition holds if 1 − (1 − q1 − q0)η(λ − 1) ≤ 0. In this case, the

optimal wage scheme is always determined at (PPE1B) binding and two kinds of solutions exist; one exhibits
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(IPE) and another does (JPE). Then the minimization problem becomes

min
w,wLL

q1w + (1 − q1)2wLL

subject to

(PPE1B), w ≥ 0, and wLL ∈ [0, w].

By substituting (PPE1B) into the objective function, the optimal wLL in this case is

wLL =

{
0 if ΩR

B1 < 1
w if ΩR

B1 > 1,

where ΩR
B1 ≡ −η + {q2

1(1 − q0) − q0}η(λ − 1).

On the one hand, if ΩR
B1 < 1, the optimal wage scheme is wI

A1 which is obtained in case [A]. The expected

wage is also same as that in case [A]:

W I
A1 = q1

(1 + ηλ)d
∆q[1 + η + q0η(λ − 1)]

.

On the other hand, if ΩR
B1 > 1, the solution in this case is wR

B1 = (wR
B1, w

R
B1, 0, wR

B1) where

wR
B1 =

(1 + ηλ)d
∆qq1[1 + η + (1 − q1 + q1q0)η(λ − 1)]

.

The expected wage is

WR
B1 = (q2

1 − q1 + 1)
(1 + ηλ)d

∆qq1[1 + η + (1 − q1 + q1q0)η(λ − 1)]
. (RPE-B1)

Notice that if η ≤ 1 and λ ≤ 3, then ΩR
B1 < 1 and thus wI

A1 is the optimal.

[B-2] The y-intersection of (PPE1B) is equal to or greater than that of (PPE2B) (ΩPPE1 ≥ 0): We

should divide this case into two more cases; [B-2-a] the y-intersection of (PPE2B) is equal to or less than

that of (UPEB) and [B-2-b] the y-intersection of (PPE2B) is greater than that of (UPEB).As the same in

case [A], the condition for [B-2-a] is represented by ΩI
A2 ≡ q1 + (1 − q1 − q0)(1 + η) ≤ 0.

First, in [B-2-a], the optimal wage scheme is determined at the y-intersection of (UPEB). The optimal

wage scheme is wI
A2 = (wI

A2, w
I
A2, 0, 0) where wI

A2 = (1+η)d
∆q [1+η+q1η(λ−1)] . The expected wage is

W I
A2 = q1

(1 + η)d
∆q[1 + η + q1η(λ − 1)]

. (IPE-PPE-1)
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Next, in (B-2-b) where ΩI
A2 > 0, three kinds of solutions exist. The first one is determined at the y-

intersection of (PPE2B), the second one is determined at the intersection between (PPE2B) and the line of

w = wLL, and the last one is determined at the intersection between (PPE2B) and (UPEB).

The condition which divides the first one and others is relevant to the relationship between the slope

of (PPE2B) and that of the line of the principal’s expected payment, w = − (1−q1)
2

q1
wLL + W

q1
, where W is

the amount of that payment. If the former is equal to or greater than the latter, the optimal wage scheme

is determined at the y-intersection of (PPE2B). This condition is represented by ΩR ≤ 1, and the optimal

wage scheme in this case is wI which is the same as the case of CPE. On the other hand, if ΩR > 1, the

optimal wage scheme must have wLL > 0.

If the intersection between (PPE2B) and the line of w = wLL satisfies (UPEB), then w = wLL. This

condition is represented by

ΩR
B2 ≡ q1(1 − q0) − (1 − 2q1 + q2

1 + q1q0)η ≥ 0.

The optimal wage scheme is wR which we found at the study of CPE. On the other hand, if ΩR
B2 < 0, the

optimal wage scheme is determined by the intersection between (PPE2B) and (UPEB). The optimal wage

scheme is wR
LL = (wR

B2, w
R
B2, 0, wR

LL) where

wR
B2 =

{(1 + q1)(1 − q0)(1 + η) − q2
1η}d

q1{(1 − q0)(1 + ηλ) + (1 − q1)η}∆q
,

wR
LL =

{1 − q0 + (1 − q0 − q1)η}d
(1 − q1)q1{(1 − q1)η + (1 − q0)(1 + ηλ)}∆q

Notice that ΩR
B2 ≤ 0 if and only if w ≥ wLL. The expected wage is

WLL
B2 =

{(1 + η)(1 + 2q2
1 − (1 + q2

1)q0) − q1(1 + q2
1)η + q2

1}d
q1{(1 − q1)η + (1 − q0)(1 + ηλ)}∆q

. (LL-B2)

Denote W x be an expected payment under wx where x ∈ {A, B}. By comparing the optimal wages

under Lemma 7 and Lemma 8, we derive the optimal wage scheme under PPE.

Proposition 3. The optimal wage scheme under PPE is wx which satisfies W x = min{WA,WB}.

We provide some graphical illustrations in the following way.
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Figure 3: PPE when η = 1, λ = 3. The region of each contract scheme which is optimal in PPE is shown
by: IPE=White, RPE=Light Gray.

Figure 3 indicates the optimal wage schemes under PPE when η = 1 and λ = 3. The middle part of the

white region is IPE based on (PPE2A). When q1 is high and q0 is low, then the optimal wage scheme is

RPE based on (PPE2A). The results regarding the optimal wage schemes under PPE are the same as under

CPE. However, we have two main differences of the optimal wage schemes between under PPE and under

CPE.

First, if both q1 and q0 are sufficiently high, then the optimal wage scheme is IPE based on (UPEA). In

that region, the payment under IPE based on (PPE2A) is not enough to induce the agent’s effort. Because

q0 is also high, he has a high probability of receiving a bonus even if he shirks. To ensure that he will work,

the principal has to pay more than under IPE based on (PPE2A). If q1 is small, then a payment that makes

the agent “not working” non-credible is better for the principal than one that satisfies (PPE2A). Since the

probability of success is small in such a case, if UPE is not unique then the principal has to pay a lot to

make the agent work. When q1 is small, by making the agent’s “not working” non-credible the expected

payment becomes smaller than the multiple UPE cases. Since JPE based on (PPE2A) becomes an optimal

wage scheme under CPE only if q1 is small, it disappears in this case. However, it becomes optimal in the

region in which q1 is small but not too small, if the degree of loss aversion is greater than the case of Figure
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3. We see the case in the next figure.
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Figure 4: PPE when η = 1, λ = 3.5. The region of each contract scheme which is optimal in PPE is shown
by: IPE=White, JPE=Gray, RPE=Light Gray, LL-B2=Mesh.

Figure 4 is the optimal wage schemes as PPE when η = 1 and λ = 3.5. Now, we have two significant

differences from Figure 3. First, when both q1 and q0 take some middle value, then both (PPE2A) and

(UPEA) bind in the optimal wage scheme. In this case, the principal pays some partial bonus to the agents

if both of them fail. This could be regarded as a kind of promotion tournament.

Second, and more importantly, in the region in which q1 is small but not too small, the optimal wage

scheme is JPE based on (PPE2A). This is because if the degree of loss aversion λ is large, the principal has

to pay a high wage to eliminate the “not working” UPE. Because the agents are loss averse with regard to

both wages and effort, as λ increases they are less likely to work hard when they expect to shirk. Hence

if λ is large and q1 is not too small, using JPE based on (PPE2A) is better for the principal than making

the agent “not working” non-credible. Therefore, if the agents exhibit substantial loss aversion, the optimal

wage schemes are similar to those under CPE except in the regions in which q1 is sufficiently small or both

q1 and q0 are large.
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Kőszegi, Botond and Matthew Rabin (2007): “Reference-Dependent Risk Attitudes,” American Economic

Review, 97(4), 1047–1073.
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