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Abstract

Payments of life insurance products depend on the uncertain future evolution
of survival probabilities. This uncertainty is referred to as longevity risk. Existing
literature shows that the effect of longevity risk on single life annuities can be
substantial, and that there exists a (natural) hedge potential from combining single
life annuities with death benefits or from investing in survivor swaps. The effect of
financial risk on these hedge effects is typically ignored. The aim of this paper is to
quantify longevity risk in portfolios of mortality-linked assets and liabilities, taking
into account the effect of financial risk. We find that investment risk significantly
affects the impact of longevity risk in life insurance products. It also significantly
affects the hedge potential that arises from combining life insurance products, or
from investing in longevity-linked assets. For example, our results suggest that
ignoring the effect of financial risk can lead to severe overestimation of the natural
hedge potential from death benefits, and underestimation of the hedge effects of
survivor swaps.
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1 Introduction

Our goal in this paper is to quantify longevity risk in portfolios of life insurance products,
taking into account the potential effect of investment risk on the impact of longevity
risk. Specifically, our focus is on potential interactions between liability mix effects and
asset mix effects.

Existing literature suggests that uncertainty regarding the future development of
human life expectancy potentially imposes significant risk on pension funds and insurers
(see, for example, Olivieri and Pitacco, 2001; Brouhns, Denuit, and Vermunt, 2002;
Cossette, Delwarde, Denuit, Guillot, and Marceau, 2007; Dowd, Cairns, and Blake,
2006; Hári, De Waegenaere, Melenberg, and Nijman, 2008). Existing literature also
shows that the natural hedge potential that arises from combining life annuities and
death benefits may be substantial (see, for example, Cox and Lin, 2007; Wang, Huang,
Yang, and Tsai, 2010; Tsai, Wang, and Tzeng, 2010). These analyses quantify longevity
risk in annuity portfolios by determining its effect on the probability distribution of
the present value of all future payments, for a given, deterministic, and constant term
structure of interest rates. A drawback of this approach is that it does not allow to
take into account the possible interaction between longevity risk and financial risk, i.e.,
it is a “liability-only” approach. Hári et al. (2008) quantify longevity risk in portfolios
of single life annuities in the presence of financial risk by determining its effect on the
volatility of the funding ratio. The funding ratio is defined as the ratio of the value of
the assets over the value of the liabilities. They find that financial risk can significantly
affect the impact of longevity risk on funding ratio volatility. However, a drawback of
a funding ratio approach is that it requires specifying the probability distribution of
the value of the liabilities at a future date. Determining the value of longevity-linked
liabilities is still a contentious issue. Although in recent years there has been considerable
interest in developing pricing models for longevity-linked assets and liabilities (see, for
example, Blake and Burrows, 2001; Dahl, 2004; Lin and Cox, 2005; Denuit, Devolder,
Goderniaux, 2007; Bauer, Boerger, and Russ, 2010), the lack of liquidity for trade in
longevity-linked assets and/or liabilities makes it very difficult to calibrate these models.
As long as this remains the case, it is unclear to what extent a funding ratio approach
accurately reflects the effect of longevity risk.

Our goal in this paper is threefold. First, we quantify the impact of longevity
risk in portfolios of life insurance products, taking into account potential interactions
between financial risk and longevity risk. To avoid making any assumptions regarding
the value at which longevity-linked liabilities can be sold, we quantify risk by means
of the probability of ruin in a run-off approach. Specifically, for any given investment
strategy, we determine the minimal required buffer (i.e., the asset value in excess of
the best estimate value of the liabilities), such that the probability that the insurer
or pension fund will be able to pay all future liabilities is sufficiently high (see, for
example, Olivieri and Pitacco, 2003). The size of the buffer will be affected by longevity
risk, which arises due to uncertain deviations in the future liability payments from their
current best estimates, and by financial risk, which arises due to uncertainty in future
returns on assets. Part of the financial risk arises due to uncertain returns on the assets
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needed to cover unexpected deviations of the liabilities from their expected values, and,
therefore, cannot be fully hedged. We find that the effect of this unhedgeable financial
risk on the required solvency buffer depends significantly on the type of liability. This
suggests important interactions between financial risk and longevity risk.

Second, we quantify the effect of unhedgeable financial risk on the natural hedge
potential, i.e., the risk reduction, that arises from combining liabilities with different
sensitivities to longevity risk. Whereas financial risk is typically hedgeable for a deter-
ministic stream of liabilities, the unhedgeable financial risk arises from the uncertainty in
the stream of future payments. Life insurers and pension funds often hold several types
of longevity-linked liabilities, such as single life annuities, last survivor annuities, and
death benefit insurance.1 Because the payments of these different life insurance prod-
ucts typically have different sensitivities to changes in mortality rates, insurers with a
“diversified” portfolio of liabilities may be less sensitive to longevity risk.2 The existing
literature on such liability mix effects focuses on the natural hedge potential, i.e., risk
reduction, of death benefits in portfolios of life annuities, and uses a liability-only ap-
proach to quantify the risk reduction.3 We quantify the effect of investment risk on the
natural hedge potential from combining life insurance products with different sensitivi-
ties to longevity risk. We find, for example, that ignoring unhedgeable investment risk
may lead to significant overestimation of the hedge potential from death benefits in port-
folios of single life annuities. The extent to which the hedge potential is overestimated
depends nontrivially on the liability mix.

Third, we quantify the effect of potential interactions between liability mix effects
and asset mix effects on the risk reduction from investing in survivor swaps. Because
the payments of survivor swaps are based on actual survival of a reference population,
they may be used to partially hedge longevity risk. Existing literature shows that the
hedge potential can be affected by basis risk, i.e., residual risk due to differences in
characteristics of the insured population and the reference population (see, for example,
Dowd, Cairns, and Blake, 2006). In this paper we show that, in addition to basis risk,
the hedge potential of survivor swaps also depends nontrivially on both the asset mix
and the liability mix. Depending on the liability mix, the hedge potential of survivor
swaps may either increase or decrease when investment risk is higher.

The paper is organized as follows. In Section 2 we define the life insurance liabilities
that we consider, and discuss how they are affected by longevity risk. Section 3 gives a
formal definition of the risk measure. Section 4 shows how investment risk affects the

1Many defined benefit pension funds offer both old-age pension insurance and partner pension in-
surance. The latter consists of a survivor annuity that yields periodic payments if the partner of the
insured person is alive and the insured person has passed away. The Retirement Equity Act of 1984
(REA) amended the Employee Retirement Income Security Act of 1974 (ERISA) to introduce mandatory
spousal rights in pension plans.

2Cox and Lin (2007) show empirically that a life insurer who has 95% of its business in annuities
and 5% in death benefits prices its annuities on average 3% higher than an insurer who has 50% of its
business in annuities and 50% of its business in death benefits. This indicates that insurers with death
benefit liabilities have a competitive advantage.

3Wang et al. (2010) and Tsai et al. (2010) quantify the natural hedge potential of death benefits in
portfolios of life annuities, and determine the optimal liability mix.
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impact of longevity risk in single life annuities, survivor annuities, and death benefits,
respectively. In Section 5, we quantify the effect of the interaction between liability mix
effects and asset mix effects. Section 6 deals with the effect of liability and asset mix on
the hedge potential of survivor swaps. Section 7 concludes.

2 Life insurance liabilities and longevity risk

In this section we introduce the life insurance liabilities that we consider, and discuss
how they are affected by systematic and non-systematic longevity risk.

In addition to traditional old-age pensions, which take the form of a single life
annuity, pension funds and insurers typically also offer other types of life insurance
products, such as partner pensions and death benefits. A partner pension consists of
a survivor annuity. It provides the partner of a deceased participant with a life long
annuity payment. The death benefit consists of a single payment at the moment the
insured person dies. Formally, we consider the following three types of liabilities:

(i) A single life annuity, which yields a nominal yearly payment of 1, with a last
payment in the year the insured person dies;

(ii) A survivor annuity, which yields a nominal yearly payment of 1 in every year that
the spouse outlives the insured person;

(iii) A death benefit, which yields a nominal single payment of 1 in the year that the
participant dies.

We let P = {sl, surv, db} denote the set of life insurance products, and we denote a
product by p ∈ P, where p = sl refers to a singe life annuity, p = surv refers to
a survivor annuity, and p = db refers to a death benefit. These liabilities consist of
(a stream of) payments in future periods. Because in any future period, the level of
the payment depends on whether the insured person is alive, and, in case of survivor
annuities, whether the partner is alive, the net cash outflow of these life insurance
products is affected by two types of longevity risk:

• non-systematic longevity risk: conditional on given survival probabilities, whether
an individual survives an additional year is a random variables;

• systematic longevity risk: the survival probabilities for future dates are uncertain.

While non-systematic longevity risk is diversifiable (i.e., the risk becomes negligible
when portfolio size is large, see, for example, Olivieri and Pitacco, 2001), this is not
the case for systematic longevity risk. Therefore, throughout the paper we assume that
portfolios are large enough for non-systematic longevity risk to be negligible, and focus
on the impact of systematic longevity risk. Because survival rates depend significantly
on age and gender, we characterize an insured/participant by a vector (x, g), where

x = x, g = g, if p ∈ {sl, db},
x = (x, y), g = (g, g′), if p = surv,
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where x denotes the age of the insured, g ∈ {m, f} denotes the gender of the insured,
and, in case of survivor annuities, y denotes the age of the partner, and g′ ∈ {m, f}
denotes her/his gender. Then, for any given year t, the liability payments in a future
year t+τ , τ ≥ 0 for a single life annuity, a survivor annuity, and a death benefit insurance
for an individual characterized by (x, g) in year t, are given by (see, for example, Gerber
1997):4

L̃p,τ,t(x, g) = τp
(g)
x,t , for p = sl (singe life annuity),

=
(
1− τp

(g)
x,t

)
· τp(g

′)
y,t , for p = surv (survivor annuity),

= τ−1p
(g)
x,t − τp

(g)
x,t , for p = db (death benefit),

(1)

where, following Cairns, Blake and Dowd (2006), we let:

• p
(g)
x+s,t+s for s ≥ 0 denote the future one-year survival probabilities of the cohort

aged x in year t, given by p
(g)
x+s,t+s = P (Tx,t > s+ 1|Tx,t > s,F∞), where Tx,t

denotes the random remaining lifetime of an individual aged x at time t, and
F∞ denotes the set that contains all information regarding mortality rates at all
(future) dates;

• τp
(g)
x,t = p

(g)
x,t · p

(g)
x+1,t+1 · · · · · p

(g)
x+τ−1,t+τ−1 denotes the future τ -years survival proba-

bility of the cohort aged x in year t.

We consider a given and fixed date t, and quantify the risk in the liabilities in a run-off
approach in which there are no new entrants in the portfolio, and no premiums are paid
after date t. Without loss of generality, we let t = 0 and suppress the dependence on t
unless it is required for clarity. Because our focus is on the interaction between liability
mix and asset mix effects, we will consider portfolios consisting of several products,
with varying weights, and with insureds with varying characteristics. Specifically, let I
denote the set of insureds. The total payment in year τ is of the form

L̃τ =
∑

i∈I

∑

p∈P

δi,p · L̃p,τ (xi, gi), (2)

where δi,p denotes the insured right of insured i for pension product p. Throughout the
paper, we denote BEL for the current (i.e., date-0) best estimate value of the liabilities,
which is defined as the market value of the expected liabilities, i.e.,

BEL =

∞∑

τ=1

E

[
L̃τ

]
· P (τ), (3)

where P (τ) denotes the current market value of a zero-coupon bond with maturity τ . In
Subsection 3.2 we discus the calculation of he expectation in (3)

4Existing literature shows that there exists dependence between the remaining lifetimes of a partic-
ipant and his (her) partner at micro-level, e.g., due to the fact that partners have similar lifestyles, or
that the passing away of a partner affects the surviving relative’s quality of life. Because our focus in
this paper is on systematic longevity risk, we ignore this dependence and assume that the remaining
lifetimes of the spouses, conditional on the survival probabilities, are independent.
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3 Quantifying risk

In this section we discuss how we quantify risk in portfolios that are sensitive to both
longevity risk and financial risk. In Subsection 3.1 we formally define the risk measure.
In Subsection 3.2, we provide a brief discussion of the models according to which the
risk in the death rates, interest rates, and asset returns are generated. A complete
description of these models can be found in Appendices A and B.

3.1 Risk measure

We quantify risk in portfolios of life insurance products by determining, for any given
investment strategy, the minimal initial asset value such that the probability that the
terminal asset value is positive is sufficiently large. The terminal asset value is defined
as the remaining asset value after the last payment has been made. Without loss of
generality, we express the initial asset value A0 as the best estimate value of the liabilities,
BEL, plus a buffer that is a percentage of the best estimate value, i.e.,

A0 = (1 + c) ·BEL. (4)

Then, for a given ε > 0, we determine the minimum value of the buffer percentage c
such that:

P (AT < 0 | A0 = (1 + c) · BEL) 6 ε, (5)

where T denotes the last period in which a payment needs to be made, and AT denotes
the corresponding terminal asset value.

The minimal required buffer percentage c depends on the probability distribution
of the terminal asset value, AT , which in turn depends on the initial asset value A0, the
liability payments, L̃τ (as defined in (2)), and the investment strategy. Specifically, the
asset dynamics is given by:

Aτ = (1 + rτ ) · Aτ−1 − L̃τ , τ = 1, · · · , T,

where Aτ denotes the net asset value at the end of period τ , rτ denotes the return
on assets during period τ , and L̃τ denotes the liabilities paid at the end of period τ .
Because we want to be able to distinguish between hedgeable and unhedgeable financial
risk, we allow for the case where the insurer uses a different investment strategy for
the best estimate value (BEL) and for the buffer (c ·BEL). Specifically, we define the
following strategies.

Definition 1 An investment strategy consists of:

• for every duration τ = 1, · · · , T : an asset mix for the best estimate value corre-

sponding to duration τ (i.e., the amount E
[
L̃τ

]
· P (τ)); the corresponding return

in periods s = 0, · · · , τ is denoted r
be,(τ)
s ;
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• an asset mix for the buffer portfolio; the corresponding return in periods τ =
0, · · · , T is denoted rbuτ .

In every period τ , the accumulated value of the best estimate portfolio corresponding to
duration τ is used to pay the liabilities in period τ ; any shortage or excess is taken from,
or reinvested in, the buffer portfolio.

Whereas the value of the buffer portfolio is affected by both longevity risk and investment
risk, the value of the best estimate portfolio is only affected by investment risk. For
example, when the buffer portfolio is invested in equity and the best estimate portfolio
in zero-coupon bonds, a lower return on the assets, or a higher than expected realization
of the liabilities, leads to a smaller proportion of assets invested in equity.

With the above defined investment strategy, we obtain the following result.

Proposition 2 The minimum required buffer percentage to satisfy (5) is given by:

c =
Q1−ǫ (L)

BEL
− 1, (6)

where

L = BEL+

T∑

τ=1



L̃τ − E

[
L̃τ

]
· P (τ) ·∏τ

s=1

(
1 + r

be,(τ)
s

)

∏τ
s=1 (1 + rbus )


 , (7)

and Q1−ε(L) denotes the (1− ε)−quantile of L.

Proof. The date-τ value of the best estimate portfolio corresponding to duration τ

is given by E

[
L̃τ

]
· P (τ) ·

τ∏
s=0

(
1 + r

be,(τ)
s

)
. Combined with (3), this implies that the

terminal asset value is given by:

AT = c ·BEL
T∏

τ=1

(
1 + rbuτ

)
+

T∑

τ=1

(
E

[
L̃τ

]
P (τ)

τ∏

s=1

(
1 + rbe,(τ)s

)
− L̃τ

)
T∏

s=τ

(
1 + rbus

)

= [(1 + c) · BEL− L] ·
T∏

τ=1

(
1 + rbuτ

)
, (8)

with L as defined in (7). Therefore, the terminal asset value AT is nonnegative if

(1 + c) ·BEL > L, (9)

The result now follows immediately from (5).

The above proposition shows that the required buffer percentage follows from deter-
mining the 1 − ε quantile of the random variable L. The random variable L can be

7



interpreted as follows. Conditional on any given future asset returns (rbus and r
be,(τ)
s ),

and cash flows (L̃τ as defined in (2)), L represents the value of the assets needed at
date 0 to pay all future liability payments. For the sake of intuition, consider for ex-
ample the case where all assets yield a deterministic and constant annual return, i.e.,

rbus = r
be,(τ)
s = r for some r > 0, and P (τ) = 1/(1 + r)τ . Then it follows immediately

from (3) and (7) that L simplifies to:

L =

T∑

τ=1

L̃τ

(1 + r)τ
, (10)

i.e., L equals the discounted present value of all future liability payments. Thus, the
standard approach in which longevity risk is quantified by determining its effect on
the probability distribution of the present value of liabilities can be seen as a special
case of our model. The more general case in (7), however, allows to take into account
interactions between financial risk and longevity risk.

3.2 Modeling mortality rates and asset returns

To determine the minimum required buffer from (6), we simulate 15,000 scenarios for
death rates and asset returns, and on the basis of these scenarios we calculate the 1− ε
quantile of L. In this subsection we briefly describe the models we use to generate these
scenarios.

To model asset returns, we use a Vasicek model for the term structure of interest
rates, combined with a Geometric Brownian motion with time-varying drift for stock
prices. We include both process risk (i.e., risk given estimated parameter values) and
parameter risk (i.e., risk due to estimation inaccuracy). To estimate the parameters,
we use the daily instantaneous short rate, the daily interest rate on a 10 years Dutch
government bond, and the daily return on the Dutch stock index “AEX”, obtained from
Datastream. For a more detailed description of the models and the estimation technique,
and for parameter estimates, we refer to Appendix A. We use these models to generate
15000 scenarios for asset returns.

For the probability distribution of the future survival probabilities we include pro-
cess risk, parameter risk, and model risk. To incorporate model risk, we estimate three
classes of survival probability models, namely the Lee-Carter (1992) class of models, the
Cairns-Blake-Dowd (2006) class of models, and the P-Splines model (Currie, Durbin,
and Eilers; 2004). We generate 5,000 scenarios for future survival rates from each class of
models: 5,000 scenarios from Lee-Carter (1992)-type models with three different specifi-
cations, namely the Lee-Carter (1992) model (1,666 scenarios), the Brouhns, Denuit, and
Vermunt (2002) model (1667 scenarios), and the Cossete et al. (2007) model (1,667 sce-
narios); 5,000 scenarios from Cairns-Blake-Dowd (2006) models with four different spec-
ifications, allowing for a quadratic term in the age effect, and/or constant/diminishing
age effects in the cohort effects (each specification 1,250 scenarios); and, 5,000 scenarios
from the P-Splines model with one specification. To estimate the parameters in each
model, we use age-, gender-, and time-specific number of deaths and exposures to death
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for the Netherlands, obtained from the Human Mortality Database. For a detailed de-
scription of the models and the estimation techniques, and for parameter estimates, we
refer to Appendix B.

4 Hedgeable and unhedgeable investment risk

In this section we investigate how investment risk affects the impact of longevity risk in
single life annuities, survivor annuities, and death benefits, respectively. To do so, we
decompose L from (7) into three components, i.e.,

L = BEL+ Llong + Linvest,

where

(i) BEL =
∑∞

τ=1 E

[
L̃τ

]
· P (τ) is the deterministic component. BEL is the market

value of the expected liabilities. It represents the asset value that is needed on date
0 to pay all future expected liabilities, given that the expected liabilities are cash
flow matched. Expected liabilities are cash flow matched iff for every duration

τ , the amount E

[
L̃τ

]
· P (τ) is invested in (default-free) zero-coupon bonds with

maturity τ .

(ii) Linvest is the pure investment risk component :

Linvest =
T∑

τ=1

E

[
L̃τ

]
− E

[
L̃τ

]
· P (τ) ·

τ∏
s=1

(
1 + r

be,(τ)
s

)

τ∏
s=1

(1 + rbus )

.

This component represents the asset value that, conditional on given asset returns,
is needed on date 0 in addition to BEL to pay all future expected liabilities when
expected liabilities are not cash flow matched. This component is affected by risk
that arises due to uncertain deviations of the τ -years return on the best estimate

portfolio (
τ∏

s=1

(
1 + r

be,(τ)
s

)
) from the cash-flow matching return ( 1

P (τ) ).

(iii) Llong is the longevity risk component :

Llong =
T∑

τ=1

L̃τ − E

[
L̃τ

]

∏τ
s=1 (1 + rbus )

.

This component represents the asset value that, conditional on given asset returns,
is needed at date 0 in addition to BEL and Linvest to pay all future unexpected
liability payments (i.e., payments in excess of the expected value). This component
is affected by two sources of longevity risk: pure longevity risk that arises due to

deviations of the liabilities from their expected values (L̃τ −E

[
L̃τ

]
), and longevity

induced investment risk that arises due to uncertain returns on these deviations.
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Thus, the present value variable L can be decomposed in a deterministic term that re-
flects the required asset value in absence of both longevity risk and financial risk (BEL),
a term that reflects the required additional asset value in absence of longevity risk, but
with financial risk (Linvest), and a term that reflects the required additional asset value
due to longevity risk (Llong). Both Linvest and Llong are affected by investment risk,
but only Llong is affected by longevity risk. Moreover, whereas Linvest reflects hedgeable
risk (Linvest reduces to zero when the expected liabilities are cash flow matched), Llong

reflects unhedgeable risk that arises due to uncertainty in the returns on assets required
to cover unexpected liabilities.

Throughout the paper, we will use the following terminology:

• hedgeable investment risk as the risk due to uncertainty in the pure investment
risk component Linvest;

• unhedgeable investment risk as the risk due to uncertainty in the longevity risk
component Llong that arises from uncertainty in the buffer returns rbuτ ;

• longevity risk as the the risk due to uncertainty in the longevity risk component
Llong that arises from the uncertainty in the liability payments L̃τ ;

• natural hedge potential as the risk reduction in the longevity risk component Llong

from combining different life insurance products.

We emphasize that our goal in this paper is not to determine the optimal investment
portfolio, but rather to investigate to what extent the effect of longevity risk depends
the investment strategy.

In the remainder of this section we illustrate the effect of financial risk on the impact
of longevity risk by comparing the benchmark case, when L is defined as in (10), to the
case where investment returns are uncertain. To quantify the effect of both hedgeable
and unhedgeable interest rate risk, we compare two investment strategies. The first
investment strategy is a “risky” one in which all assets are (re)invested in a risky port-
folio. The second investment strategy is one in which the best estimate value is invested
in bonds, and the buffer portfolio is invested in risky assets. Specifically, we consider
the following two investment strategies:

• A risky investment strategy in which both the best estimate value BEL, and the
buffer c ·BEL are (re)invested in a portfolio that yields returns rbus , i.e.,

rbe,(τ)s = rbus , for all s = 0, · · · , T , and τ = 1, · · · , T.

It then follows from Proposition 2 that the minimal required buffer percentage c
is given by (6) with:

L =

T∑

τ=1

L̃τ∏τ
s=1 (1 + rbus )

, (11)
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• A best estimate hedge strategy in which the best estimate value BEL is cash flow
matched, i.e.,

τ∏
s=1

(
1 + r

be,(τ)
s

)
= 1

P (τ) , for all s = 0, · · · , T , and τ = 1, · · · , T, (12)

and the buffer c · BEL is (re)invested in a portfolio that yields random returns
rbus in periods s = 0, · · · , T . It then follows from Proposition 2 that the minimal
required buffer percentage c is given by (6) with:

L = BEL+

T∑

τ=1

L̃τ − E

[
L̃τ

]

∏τ
s=1 (1 + rbus )

. (13)

This strategy eliminates hedgeable investment risk, i.e., Linvest = 0. Investment

risk arises only due to uncertain deviations of L̃τ from its expectation E

[
L̃τ

]
.

These (uncertain) deviations affect the value of the buffer portfolio, generating
unhedgeable investment risk.

To investigate whether the impact of financial risk depends strongly on the type of
liability, we consider two types of insured individuals, i.e., male insureds and female
insureds aged x = 65, and three types of liabilities, i.e., single life annuities (i.e., L̃τ =
L̃sl,τ (x, g)), survivor annuities (i.e., L̃τ = L̃surv,τ (x, g)), and death benefits (i.e., L̃τ =

L̃db,τ (x, g)). In case of survivor annuities, the partner of a male insured is a female aged
y = 62; the partner of a female insured is a male aged y = 68. Regarding asset returns,
we consider the case where the buffer (and thus also the best estimate value in case of
the risky strategy) is invested in one-year bonds.

We use the models described in the Appendix to simulate future investment returns
and survival probabilities. We then use these simulated distributions to determine the
minimum required buffer percentage c to reduce the probability of ruin to 2.5%, using
(6) and (7) with ε = 0.025. Table 1 displays the minimal required buffer percentage
c for the risky investment strategy (crisky; second column), for the best estimate hedge
strategy as defined in (12) (cBEh; third column), and for the benchmark liability-only
case with a deterministic return of r = 4% (cLO; last column). Because it is intuitively
clear that the effect of longevity risk as well as of financial risk on the required buffer
may depend substantially on the duration of the liabilities, the first column displays the
duration of the expected liabilities, which is given by:

Duration =

∑T
τ=1 τ · P (τ) · E

[
L̃τ

]

∑T
τ=1 P

(τ) · E
[
L̃τ

] .

Table 1 shows that the effect of investment risk on the minimal required buffer per-
centage depends heavily on the type of liability. First, compared to the liability-only

11



Table 1: Minimal required buffer percentages

Product Duration crisky cBEh cLO

Male single life annuity 8.2 26.5% 5.9% 4.9%
Female single life annuity 8.9 30.6% 7.4% 6.1%
Male survivor annuity 16.3 79.3% 23.5% 15.5%
Female survivor annuity 13.6 55.4% 38.2% 29.6%
Male death benefit 14.4 66.9% 10.6% 7.3%
Female death benefit 16.7 87.1% 16.5% 10.1%

approach (cLO), the required buffer percentage under the risky investment strategy
(crisky) increases by a factor ranging from 2.5 (for female survivor annuities) to more
than 9 (for female death benefits). These huge differences are partly due to the fact that
under the naive investment strategy, there is a mismatch between the duration of the
investments (one year) and the duration of the liabilities; this mismatch induces signifi-
cant reinvestment risk. Second, compared to the risky strategy, the best estimate hedge
strategy (cBEh) leads to significant reductions in the required buffer percentages. How-
ever, even with this conservative investment strategy in which all hedgeable investment
risk is eliminated, the required buffer percentages are still significantly larger than under
the liability-only approach. The extent to which the required buffer percentage is under-
estimated with the liability-only approach depends nontrivially on the type of liability.
It varies from 20% for male single life annuities to 63% for female death benefits.

5 Effect of unhedgeable investment risk

The results of the previous section suggest that there are nontrivial interactions between
longevity risk and investment risk; the effect of investment risk on the required buffer
depends strongly on the type of liability. In this section we quantify the effect of these
interactions on the impact of longevity risk in portfolios of life insurance products. To
focus on longevity risk, we consider a best estimate hedge strategy as defined in (12).
This ensures that all hedgeable investment risk is eliminated (i.e., Linvest is determin-
istic), and investment risk arises only due to uncertain returns on the buffer portfolio,
which cannot be fully hedged because of the longevity uncertainty in the stream of the

payments L̃τ − E

[
L̃τ

]
.

Compared to the benchmark liability-only approach, taking into account investment
risk implies that (comparing (13) to (10)):

(i) the expected liabilities are valued at market value, i.e., using a term structure of in-

terest rates instead of a flat discount rate (i.e., BEL instead of
∑T

τ=1 E

[
L̃τ

]
/ (1 + r)τ )),

(ii) deviations from the expected value (L̃τ − E

[
L̃τ

]
) are subject to uncertain returns

(i.e., rbus instead of r).
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The first effect is deterministic, but the second is stochastic and can therefore nontrivially
affect required buffer percentages. Specifically, uncertain buffer returns imply that L
is affected by simultaneous deviations of the liabilities from their expected value (i.e.,

L̃τ − E

[
L̃τ

]
6= 0), and of the returns from the flat rate (i.e., rbus 6= r). The effect of

uncertain deviations of the liabilities from their expected values is aggravated (weakened)
when these deviations are accompanied by lower (higher) than expected returns on the
buffer portfolio. Therefore, changes in the liability mix will not only affect the “pure
longevity risk” component, i.e., the risk given known future investment returns, but also
the interactions between longevity risk and investment risk. Ignoring these interactions
may lead to inaccurate quantification of the hedge potential that arises from combining
different types of liabilities (for example, the natural hedge potential of death benefits).

In this section we investigate the effect of interactions between unhedgeable financial
risk and longevity risk in portfolios with single life annuities, survivor annuities, and
death benefits. To do so, we determine the buffer percentage c from (6) and (13) for
various asset and liability mixes, and compare the results to the buffers resulting from
a liability-only approach in (10) with r = 4%. To quantify the impact of unhedgeable
financial risk, we consider four different investment strategies for the buffer portfolio:
100% one-year zero-coupon bonds; 67% one-year zero-coupon bonds, 33% equity; 33%
one-year zero-coupon bonds, 67% equity; and 100% equity. With regard to the liability
mix, we consider portfolios that differ in terms of gender mix (ratios of male insured
rights over total insured rights for each product) and in terms of product mix (ratios
of insured rights for the different life insurance products) for each gender. Gender mix
nontrivially affects the required buffer percentage because male and female mortality
trends are not perfectly correlated. Product mix nontrivially affects the required buffer
percentage because survivor annuity payments and single life annuity payments are
negatively correlated. Therefore, we consider two types of insured individuals, male
insureds and female insureds aged 65, who each may hold insured rights (δi,p, see (2))
for three different types of liabilities: single life annuities (p = sl), survivor annuities
(p = surv), and death benefits (p = db). The partner of a male insured (if present) is
aged 62; the partner of a female insured (if present) is aged 68. It is verified easily that
the minimum required buffer percentage c is then given by (6) and (13) with:5

L̃τ = (1− γ) ·
[
L̃sl,τ (65, f) + wf · L̃surv,τ (65, 68, f,m) + df · L̃db,τ (65, f)

]

+ γ ·
[
L̃sl,τ (65,m) + wm · L̃surv,τ (65, 62,m, f) + dm · L̃db,τ (65,m)

]
, (14)

where L̃sl,τ (·), L̃surv,τ (·), and L̃db,τ (·) are as defined in (1), and where

• γ is the fraction of male single life annuities rights relative to the total single life
annuities rights,

5Straightforward algebra shows that the aggregate liability payment in year τ in (2) is given by (14)
multiplied by

∑
i∈I

δi,sl, the total insured rights for single life annuities. It follows immediately from
Proposition 2 that the minimum required buffer percentage c is unaffected when all liability payments
are divided by

∑
i∈I

δi,sl > 0.
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• wg for g ∈ {m, f} is the ratio of survivor annuity rights for gender g over single
life annuities rights for gender g, and,

• dg for g ∈ {m, f} is the ratio of death benefit rights for gender g over single life
annuities rights for gender g.

In Subsection 5.1 we investigate interactions between longevity risk and investment risk
in portfolios of single life and survivor annuities (dg = 0). In Subsection 5.2 we quantify
the effect of unhedgeable investment risk on the hedge potential from including death
benefits (dg 6= 0).

5.1 Interaction effects in annuity portfolios

In this section we consider portfolios of single life and survivor annuities, and quantify the
effect of unhedgeable investment risk on: (i) the required buffer percentage for a given
liability mix, and, (ii), the hedge potential that arises from the liability mix. Without
death benefits, it follows from (14) that the effect of liability mix is fully characterized
by the gender mix γ, and by the ratios wm and wf of insured rights for survivor annuities
over insured rights for single life annuities for males and females, respectively.

Figure 1 displays the minimum required buffer percentage c as a function of gender mix
and product mix in portfolios of single life and survivor annuities. To limit the number
of parameters, we consider the case where the product mix is equal for both genders,
i.e., wm = wf = w.

The left panels in Figure 1 display the minimum required buffer percentage c as a
function of gender mix (i.e., γ), for three different product mixes:

• top panel: portfolios with only single life annuities, i.e., with w = 0;

• middle panel: portfolios with both single life and survivor annuities where the in-
sured right for survivor annuities is 35% of the insured right for single life annuities,
i.e., with w = 0.35,

• bottom panel: portfolios with both single life and survivor annuities where the in-
sured right for survivor annuities is 70% of the insured right for single life annuities,
i.e., with w = 0.7.

The right panels display the minimal required buffer percentage c as a function of prod-
uct mix (i.e., w), for three different gender mixes:

• top panel: portfolios with only male insureds, i.e., with γ = 1;

• middle panel: portfolios with only female insureds, i.e., with γ = 0;

• bottom panel: portfolios with 50% male insured rights and 50% female insured
rights, i.e., with γ = 0.5.
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In each case we consider four different asset mixes for the buffer portfolio: 100% equity
(dashed-dotted lines), 67% equity and 33% one-year zero-coupon bonds (dotted lines),
33% equity and 67% one-year zero-coupon bonds (dashed lines), and 100% one-year zero-
coupon bonds (thin solid lines). The bold solid lines lines correspond to the benchmark
liability-only case with a constant and deterministic return of r = 0.04.
The figure shows that there are important interactions between longevity risk and in-
vestment risk. First, the effect of unhedgeable financial risk depends strongly on the
liability mix. Second, the effect of liability mix depends nontrivially on the asset mix.
Specifically, we observe the following.

Liability mix effects (i.e., effects of gender mix and product mix). For any given
asset mix, both gender mix and product mix can significantly affect the required buffer
percentage, because different types of liabilities have different sensitivities to changes in
mortality rates. Specifically:

• For each product mix w, portfolios with exclusively male liabilities (γ = 1) require
lower buffer percentages than portfolios with exclusively female liabilities (γ = 0).
However, in portfolios with only single life annuities (i.e., w = 0, top panel), risk is
minimized with a mixture of female and male liabilities. This occurs because male
and female liabilities are imperfectly correlated, so that there is some diversification
effect from combining these liabilities.6 Including survivor annuities (middle and
lower panels) increases the correlation between male and female liabilities and
thus reduces the diversification effect. As a consequence, mixing male and female
liabilities does not yield significant risk reduction in these cases.

• Combining single life with survivor annuities (right panels) may either increase
or decrease the required buffer percentage. This occurs because there are two
opposite effects. On the one hand survivor annuities can reduce required buffers
because survivor annuity payments are negatively correlated with single life annu-
ity payments.7 On the other hand, survivor annuity payments are more affected
by the uncertainty in future survival probabilities because they have a longer dura-
tion (see Table 1). For portfolios with predominantly female rights (middle panel),

6The underlying intuition in both cases is as follows. In each case, the random variable of interest
can be written as a convex combination L = αL1 + (1− α)L2 of two present value variables L1 and L2.
It holds that

Var {L} = α
2 ·Var {L1}+ (1− α)2 ·Var {L2}+ 2α(1− α) · Cov{L1, L2}.

Thus, the variance is minimized with an unbalanced portfolio that puts all weight on the liability with
the lowest variance if Cov{L1, L2}̇ > min{Var {L1} ,Var {L2}}, but the variance is minimized at an

internal α ∈ (0, 1) if Cov{L1, L2}̇ < min{Var {L1} ,Var {L2}}. Thus, shifting more weight to the higher
risk liability is beneficial if the covariance is sufficiently low.

7This occurs for two reasons. First, an increase in life expectancy of the insured delays the onset
of payments of the survivor annuity, so that they are more heavily discounted. Second, the difference
between male and female life expectancies decreases, so that the duration of survivor annuity payments
decreases.
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Figure 1: Required buffer percentage for portfolios of single life and survivor annuities.
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The left panels display the required buffer percentage as a function of γ (gender

mix). The upper panel represents a fund with only single life annuities (w = 0), the

middle panel one with single life annuities and survivor annuities with w = 0.35, and

the bottom panel one with single life annuities and survivor annuities with w = 0.7.

The right panels display the required buffer percentage as a function of w (product

mix). The upper panel represents a fund with only males (γ = 1), the middle one

a fund with only females (γ = 0), and the bottom one a fund with 50% male rights

and 50% female rights (γ = 0.5). The curves correspond to different compositions

of the buffer portfolio: thin solid curves: 100% one-year zero-coupon bonds; dashed

curves: 67% one-year zero-coupon bonds and 33% equity; dotted curves: 33% one-

year zero-coupon bonds and 67% equity; dashed-dotted curves: 100% equity. The

bold solid curves correspond to the liability-only approach.
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the former effect dominates; for portfolios with half male and half female rights
(bottom panel), the latter effect dominates.

• Accurate quantification of liability mix effects requires specification of the asset
mix. For example, the middle right panel shows that the potential risk reduction
from combining single life annuities with survivor annuities is significantly larger
when the buffer portfolio is fully invested in equity than for the other asset mixes
that we consider.

Impact of unhedgeable investment risk. We observe two effects:

• For every liability mix, the required buffer percentage is significantly affected by
unhedgeable investment risk. An increase in equity leads to a higher expected
return, but it also yields a higher probability that the realized return is lower than
expected. The impact of unhedgeable financial risk is minimized when 1/3 of the
buffer is invested in equity.

• Accurate quantification of the effect of unhedgeable financial risk requires specifi-
cation of the liability mix. For example, for portfolios with predominantly female
rights, unhedgeable investment risk affects the required buffer more strongly when
the fraction of survivor annuity rights is high. The opposite holds for portfolios
with half male and half female rights. Although we are not interested in the best
equity portfolio, we do observe that the reserve requirement is lower if the insurer
invests some of his buffer portfolio in equities. This is due to the use of a particular
quantile of L in the determination of the reserve requirements and the equity risk
premium. Hence, the investment strategy which reduces the ruin probability will
depend on the quantile used in the ruin probability.

These results suggest that separately quantifying investment risk and longevity risk, as is
proposed by the Dutch regulator, likely leads to inaccurate quantifications of the impact
of longevity risk. Second, ignoring the impact of unhedgeable financial risk may lead
to inaccurate quantification of the risk reduction that arises from combining different
types of longevity-linked liabilities.

5.2 Natural hedge potential of death benefits

In this subsection we investigate the effect of unhedgeable investment risk on the natural
hedge potential from death benefits in portfolios of life annuities. To do so, we determine
the minimum required buffer percentage c as a function of both asset and liability mix.
We then compare the results to the benchmark case considered in the existing literature
(for example, Wang et al. 2010, and Tsai et al. 2010), where: (i) longevity risk is
quantified with a liability-only approach (i.e., ignoring unhedgeable financial risk), and,
(ii) longevity-linked liabilities other than single life annuities and death benefits (such
as, for example, survivor annuities) are ignored.

The following proposition shows that in the benchmark case longevity risk in single
life annuities can be fully hedged by death benefits.
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Proposition 3 Let r
be,(τ)
s = rbus = r, for s = 0, · · · , T , and τ = 1, · · · , T , and for some

(non-random) r > 0. Then, for portfolios of single life annuities and death benefits with

dm = df =
1 + r

r
, (15)

it holds that the terminal asset value AT is unaffected by longevity risk, and is nonneg-
ative for any c > 0.

Proof. It follows from the proof of Proposition 2 that AT = [(1 + c) · BEL− L] ·
(1 + r)T , with L =

∑T
τ=1

L̃τ

(1+r)τ . Moreover, it follows from (14), (15), and the fact that

the portfolio does not contain survivor annuities (i.e., wm = wf = 0) that:

L̃τ = (1− γ)
[
L̃sl,τ (65,m) + δL̃db,τ (65,m)

]
+ γ ·

[
L̃sl,τ (65, f) + δL̃db,τ (65, f)

]
,

where δ = 1+r
r . Therefore,

L = (1− γ) · L(m) + γ · L(f),

where for g ∈ {m, f}, it holds that:

L(g) :=
T∑

τ=1


 τp

(g)
65 + δ ·

(
τ−1p

(g)
65 − τp

(g)
65

)

(1 + r)τ




=
T−1∑

τ=1




(
1− δ + δ

1+r

)

(1 + r)τ


 τp

(g)
65 − (1− δ) · T p

(g)
65

(1 + r)T
+ δ · 0p

(g)
65

= δ.

The last equality follows from δ = 1+r
r , 0p

(g)
x = 1, and T p

(g)
x = 0. Therefore, BEL =

L = δ, and the terminal asset value is given by AT = c ·δ ·(1+r)T , which is deterministic
and nonnegative for any c > 0. �

Proposition 3 shows that in the benchmark liability-only case that is typically examined
in the literature, longevity risk in single life annuities can be fully hedged with death
benefits. In the remainder of this section we show that unhedgeable investment risk can
significantly reduce the hedge potential from death benefits in portfolios of life annuities.

Figure 2 displays the effect of death benefits on the required buffer percentage c for
portfolios of single life and survivor annuities, and for given investment strategies. It
considers a case where product mix is identical for both genders, i.e., w = wm = wf

and d = dm = df . The left panels in Figure 2 display the minimum required buffer
percentage c as a function of d, the ratio of the insured rights for death benefits over
single life annuities, in portfolios with only single life annuities, i.e., with w = 0. The
right panels display the minimum required buffer as a function of d, for portfolios of
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Figure 2: Required buffer percentage for portfolios of single life and survivor annuities
and death benefits
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The graphs present the required buffer percentage as a function of d (ratio of death

benefits) in portfolios of life insurance products. The left panels correspond to

portfolios with only single life annuities, the right panels correspond to portfolios

with single life annuities and survivor annuities with w = 0.5. The upper panels

correspond to a fund with only males (γ = 1), the middle panels correspond to a

fund with only females (γ = 0), and the lower panels correspond to a fund with

50% male and 50% female rights (γ = 0.5). The curves correspond to different

compositions of the buffer portfolio: thin solid curves: 100% one-year zero-coupon

bonds; dashed curves: 67% one-year zero-coupon bonds and 33% equity; dotted

curves: 33% one-year zero-coupon bonds and 67% equity; dashed-dotted curves:

100% equity. The bold solid curves correspond to the liability-only approach.
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single life annuities and survivor annuities with w = 0.5. The top panel corresponds
to males (i.e., γ = 1), the middle panel to females (i.e., γ = 0), and the bottom panel
to portfolios with 50% male rights and 50% female rights (γ = 0.5). In each case
we consider four different investment strategies for the buffer portfolio: 100% equity
(dashed-dotted lines), 67% equity and 33% one-year zero-coupon bonds (dotted lines),
33% equity and 67% one-year zero-coupon bonds (dashed lines), and 100% one-year
zero-coupon bonds (thin solid lines). The bold solid lines correspond to the benchmark
liability-only case with a constant and deterministic return of r = 0.04.

In line with results reported in, for example, Wang et al. (2010) and Tsai et
al. (2010), we find that death benefits can significantly reduce the required buffer
percentages in portfolios of life annuities. However, we find that the risk reduction can
be significantly affected by unhedgeable investment risk. Specifically,

• Ignoring the effect of unhedgeable financial risk leads to significant overestimation
of the hedge potential. Whereas with a liability-only approach to quantify longevity
risk (bold solid lines)), the minimum required buffer percentage under the optimal
hedge is zero (see Proposition 3), it varies from around 4% to more than 9%,
depending on the asset mix when we take into account the effect of unhedgeable
financial risk.

• Accurate quantification of the hedge potential requires specification of both the exist-
ing liability mix and the asset mix. While the hedge potential from death benefits
is generally different for female liabilities (middle row) and for male liabilities (up-
per row), the difference is much more significant for the risky investment strategy
(100% stocks) than for the other strategies that we consider. Also, comparing the
left and right panels shows that, depending on the investment strategy, the hedge
potential from death benefits may, but need not, decrease significantly when the
portfolio also contains survivor annuities.

6 Hedge effects of survivor swaps

In this section we investigate the hedge potential from investing in survivor swaps.
Dowd, Blake, Cairns, and Dawson (2006) discuss the mechanism and use of survivor
swaps as an instruments for managing, hedging, and trading mortality-dependent risks.
A survivor swap can be defined as a swap involving at least one future (stochastic)
mortality-dependent payment. Given this definition, the most basic case of a survivor
swap is an exchange of a single fixed payment for a single mortality-dependent payment.
More precisely, let ref denote a reference population. Then, at time t = 0, party A
agrees with party B that A pays to B at time τ > 0 the amount K(τ, ref) known at
time 0, and B pays to A at the amount S(τ, ref) which depends on realized mortality
until date τ in the reference population, and is thus currently stochastic. The payments
made in this agreement are that party B pays A the amount S(τ, ref) − K(τ, ref),
if K(τ, ref) < S(τ, ref), and party A pays B the amount K(τ, ref) − S(τ, ref), if
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K(τ, ref) > S(τ, ref). Hence, the payment from party B to party A equals:

SS(τ, ref) = S(τ, ref)−K(τ, ref), (16)

where S(τ, ref) is the random mortality-dependent payment and K(τ, ref) is the fixed
payment.

The survivor swaps we consider in this paper is one where the floating leg S(τ, ref)
is the realized survival rate for the 65-year old cohort in the underlying reference pop-

ulation, i.e., S(τ, ref) = τp
(ref)
65 . Typically, the fixed leg K(τ, ref) is determined such

that there is no cash transfer at the time of the issue. However, there is currently no
publicly traded market in longevity-linked products and hence we do not observe the
market price of longevity risk.8 To avoid making assumptions regarding the price of
the swap, we set K(τ, ref) equal to the current expected value of S(τ, ref). Then, the
payment in period τ of the survivor swap is given by:

SS(τ, ref) = τp
(ref)
65 − E

[
τp

(ref)
65

]
, (17)

and there is a cash transfer at the time of issue which equals the (over the counter) price
of the survivor swap. We consider a vanilla survivor swap V SS(ref) that consists of a
portfolio of survivor swaps with maturities τ = 1, · · · , T .

It now remains to specify a reference population. A natural reference group from
the point of view of the insurer (party B) is the population of the insurer. However,
the insurer may then have more information about the population than the seller (party
A) of the survivor swap. Since the insurer may have this private information, buying a
survivor swap can be interpreted as a signal that the reference group has low mortality
probability, and hence the price of the survivor swaps would be high, see Biffis and
Blake (2010). Another problem with the natural reference group from the point of view
of the insurer is the tradeability of the survivor swaps; when every life insurer has a
different reference group, many different survivor swaps are needed. This would lead to
much higher transaction costs for the seller of the survivor swap, since he has to put
extra efforts in estimating the size of longevity risk in the survivor swaps (Blake, Cairns,
Dowd, and McMinn, 2006). In order to eliminate the private information problem and to
increase the tradeability, the whole population of a country is often chosen as reference
group, since the information on this reference group is the same for the issuer and buyer
of the swap. An example is the first longevity bond9 issued by European Investment
Bank/Bank National de Paris announced in November 2004, which had as reference
population the English and Welsh males at age 65 in 2003.

In this section we investigate the effect on solvency capital requirement of vanilla
survivor swaps with reference population the Dutch aged 65 in 2006. We use two different

8For an excellent discussion on issues related to pricing of longevity-linked assets or liabilities, see
Bauer, Boerger, and Russ (2010).

9The longevity bond was issued by the EIB and managed by BNP Paribas. The face value was £540
million, and was primarily intended for purchase by U.K. pension funds. The survivor swap involved
yearly coupon payments that were tied to an initial annuity payment of £50 million indexed to the
survivor rates of English and Welsh males aged 65 years in 2003. The longevity bond was withdrawn
prior to issue (Mitchell, Piggott, Sherris, and Yow, 2006).
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vanilla survivor swaps, one with reference group the whole male population aged 65 (i.e.,
ref = m), and another with reference group the whole female population aged 65 (i.e.,
where ref = f). Let sm (sf ) be the number of vanilla survivor swaps with reference
population males (females). Then, the liability payment in year τ , net of payoff from
longevity swaps, is given by:

L̃τ = L̃τ − sm · SS(τ,m)− sf · SS(τ, f). (18)

Let VV SS (sm, sf ) denote the date-0 (over the counter) price of the vanilla survivor swap.
Then, it follows from Proposition 2 and (6) that the minimal required initial asset value
in order to limit the probability of ruin to ε is given by:

A0 = BEL+ c(sm, sf ) · BEL+ VV SS (sm, sf ) ,

where

c(sm, sf ) =
Q1−ε(L(sm, sf ))

BEL
− 1,

with

L(sm, sf ) = BEL+
T∑

τ=1

L̃τ − E

[
L̃τ

]
− sm · SS(τ,m)− sf · SS(τ, f)
∏τ

s=1

(
1 + r

(bu)
s

) .

Note that c(sm, sf ) · BEL now represents the required buffer in excess of the best
estimate of the liabilities and the price of the vanilla survivor swap. Note also that a
change in the portfolio of swaps not only affects the required buffer, but also the price
of the portfolio, VV SS (sm, sf ). Because we choose not to make assumptions regarding
the price of the survivor swaps, we cannot determine the “optimal” fraction of survivor
swaps, i.e., the fraction that minimizes the required asset value A0. However, for any
given portfolio of survivor swaps (sm, sf ), we can determine the relative attractiveness
of the vanilla survivor swaps for different liability mixes and asset mixes. Moreover, for
any given asset mix, we can determine the maximum price of the portfolio of survivor
swaps under which a lower asset value, i.e., A0, is sufficient to cover all future liabilities
with probability at least 1 − ε with survivor swaps than without survivor swaps. This
maximum price is given by:

V max
V SS (sm, sf ) = [c(0, 0) − c(sm, sf )] · BEL. (19)

In Subsection 6.1 we investigate how the hedge effect of survivor swaps depends on
the liability and asset mix in a benchmark case without basis risk, i.e., in a setting in
which the survival rates of the insured population are identical to those of the reference
population. In Subsection 6.2 we investigate how these effects are affected by basis
risk that arises from differences in the mortality experience in the reference group of
the survivor swap and the population of the insurer. In order to focus on the effect of
unhedgeable financial risk on the reduction in longevity risk, we consider the investment
strategies defined in Section 5.
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6.1 Vanilla survivor swaps and product mix

We now investigate the potential hedge effects of survivor swaps for portfolios of life
insurance products with different product and gender mixes, and different investment
strategies. We also determine the maximum price under which investing in survivor
swaps leads to lower capital requirements in each case. In order to reduce the number
of parameters, we let sm = γ · s, and sf = (1− γ) · s. It then follows immediately from
(1), (14), and (17), and from the fact that there is no basis risk, that longevity risk in a
fraction s of the single life annuity rights for both males and females is fully hedged.10

Figures 3 and 4 display the minimum required buffer, and the maximum price as
defined in (19), respectively, as a function of s for different asset and liability mixes,
i.e., in portfolios of single life annuities (left panels), and in portfolios of single life and
survivor annuities with w = 0.5 (right panels), for males (top panel), females (middle
panel), and γ = 0.5 (bottom panel). In each case we consider four different investment
strategies for the buffer portfolio: 100% equity (dashed-dotted lines), 67% equity and
33% one-year zero-coupon bonds (dotted lines), 33% equity and 67% one-year zero-
coupon bonds (dashed lines), and 100% one-year zero-coupon bonds (thin solid lines).
The bold solid lines correspond to the benchmark liability-only case with a constant and
deterministic return of r = 0.04.

From Figure 3 we observe that survivor swaps can lead to significant reductions in
the required solvency buffer. However, the effect depends strongly on both liability mix
and asset mix. Because there is no basis risk, longevity risk in portfolios with only single
life annuities (left panels) can be fully eliminated by survivor swaps (with s = 1). For
portfolios with also survivor annuities, the maximal risk reduction is attained by buying
either strictly more or strictly less survivor swaps than the face value of the single life
annuities, i.e., with s < 1 or s > 1. This occurs because survivor annuities to some
extent can provide a natural hedge for single life annuities, but on the other hand are
also affected more strongly by longevity risk because they have longer duration. The
first effect dominates for portfolios with only female insureds, whereas the second effect
dominates for portfolios with half male and half female insured rights. Comparing the
top left and right panels shows that for male insureds, the hedge potential of survivor
swaps reduces dramatically when the portfolio also contains survivor annuities. Com-
paring the right top and middle panels shows that the hedge potential of survivor swaps
in portfolios with both single life annuities and survivor annuities is sufficiently weaker
in portfolios with predominantly male insureds.

With regard to the interaction between longevity risk and investment risk, we ob-
serve that ignoring the effect of unhedgeable financial risk may lead to both over- or
underestimation of the hedge potential of survivor swaps, depending on the investment
strategy.

10It follows from (1), (14), and (17) that when sm = γ · s, and sf = (1− γ) · s, a fraction s of the

single life annuity payments in year τ , γ · L̃sl,τ (65, m) + (1− γ) · L̃sl,τ (65, f), is effectively replaced by

its expected value, γ · E
[
L̃sl,τ (65, m)

]
+ (1− γ) · E

[
L̃sl,τ (65, f)

]
.
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Figure 3: Required buffer percentage for portfolios of annuities and vanilla survivor
swaps without basis risk
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The figure displays the required buffer percentage, c(s, s) as a function of s, for

a fund with only single life annuities (w = 0) (left panels) and for a fund with

single life and survivor annuities with w = 0.5 (right panels). The upper row

corresponds to a fund with only males (γ = 1), the middle row to a fund with

only females (γ = 0), and the lower row to a fund with 50% male and 50% female

rights (γ = 0.5). The curves correspond to different compositions of the buffer

portfolio: thin solid curves: 100% one-year zero-coupon bonds; dashed curves: 67%

one-year zero-coupon bonds and 33% equity; dotted curves: 33% one-year zero-

coupon bonds and 67% equity; dashed-dotted curves: 100% equity. The bold solid

curves correspond to the liability-only approach.
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Figure 4: Maximum price of vanilla survivor swaps without basis risk
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The figure displays the maximum price, p = c(0, 0) − c(s, s), as a function of s,

for a fund with only single life annuities (w = 0) (left panels) and for a fund with

single life and survivor annuities with w = 0.5 (right panels). The upper row

corresponds to a fund with only males (γ = 1), the middle row to a fund with

only females (γ = 0), and the lower row to a fund with 50% male and 50% female

rights (γ = 0.5). The curves correspond to different compositions of the buffer

portfolio: thin solid curves: 100% one-year zero-coupon bonds; dashed curves: 67%

one-year zero-coupon bonds and 33% equity; dotted curves: 33% one-year zero-

coupon bonds and 67% equity; dashed-dotted curves: 100% equity. The bold solid

curves correspond to the liability-only approach.
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6.2 Vanilla survivor swaps with basis risk

In the previous section we showed that vanilla survivor swaps can substantially reduce
reserve requirements in portfolios of life insurance products. For portfolios consisting of
only single life annuities, they can even eliminate all longevity risk. However, in these
calculations we have ignored the impact of basis risk, i.e., the mortality rates of the
individuals in the reference group for the vanilla survivor swap are assumed to be equal
to the mortality rates of the insured population. There is ample empirical evidence,
however, that survival rates of insured populations can differ significantly from those
of the general population. As discussed above, there are important hurdles to create
a liquid market in survivor swaps without basis risk, because that would require fine
tuning the survivor swap to the population of the insurer.

Dowd, Cairns, and Blake (2006) investigate the hedge effectiveness of a longevity
bond with basis risk that arises because the longevity bond is based on the mortality
experience of the cohort of 60-year-old males, and the insured population consists of
65-year-old males. They find that the hedge potential is not significantly affected by
this basis risk. In this paper we quantify the effect of basis risk that arises due to
differences in survival probabilities for insured individuals compared to those of the whole
population. It is well-documented that, due to adverse selection, survival probabilities
of insured individuals are generally different from those of the whole population (see, for
example, Brouhns et al. 2002, and Denuit, 2008). Following Brouhns et al. (2002) and
Denuit (2008), we will distinguish basis risk in case of group insureds, which is relevant
in particular for pension funds, and basis risk in case of individual insureds, which is
particularly relevant for insurance companies.

We use the Cox-type relational model to model mortality rates of the insured pop-
ulation. Specifically, the relationship between the gender-specific mortality rates of in-
sured group h relative to the gender-specific mortality rates for the total (country-wide)
population group g, is modeled as (see Brouhns et al. 2002, and Denuit 2008):

log(µ
(h)
x,t ) = α(h) + β(h) · log(µ(g)

x,t), (20)

where α(h) denotes the time- and age-independent difference in mortality rates between
group g and h, and β(h) denotes the speed of the future mortality improvements of
the group h relative to the general population with gender g. We use the estimated
parameter reported in Denuit (2008), which are given in Table 2 for group insureds and
individual insureds, and for both males and females.11

The negative sign of α(h) indicates that the forces of mortality of group and individual
insureds are lower than the general population. A larger negative value of α(h) indicates
that the difference in the forces of mortality between group h and the general population
is larger. The value of β(h) smaller than one, in combination with a negative value of

11Notice that β(h) < 1, which implies that the speed of the future mortality improvements in the
insured population is smaller than the corresponding speed for the general population. This occurs
because the adverse selection observed in the Belgian individual life market is so strong that the future
improvements for the insured population are weaker than for the general population.
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h = (m, group) h = (f, group) h = (m, individual) h = (f, individual)

α(h) -0.71755 -0.577829 -1.54351 -1.024695

β(h) 0.79180 0.843850 0.81849 0.906784

Table 2: Parameters estimates of the Cox relational model. Source: Denuit (2008).

α(h), implies that the difference in the forces of mortality between group h and the
general population are smaller at old ages than at young ages.

As before, we let sm = γ · s, and sf = (1− γ) · s, and we again consider the case
where the reference population of the vanilla survivor swap is the general population of
males and females, respectively, but we now let mortality rates of the insured persons
be given by (20).12

In Figures 5 and 6 we display the minimum required buffer as a function of s, for
different asset and liability mixes, i.e., in portfolios of single life annuities (left panels),
and in portfolios of single life and survivor annuities with w = 0.5 (right panels), for
males (top panel), females (middle panel), and γ = 0.5 (bottom panel). In each case
we consider four different investment strategies for the buffer portfolio: 100% equity
(dashed-dotted lines), 67% equity and 33% one-year zero-coupon bonds (dotted lines),
33% equity and 67% one-year zero-coupon bonds (dashed lines), and 100% one-year
zero-coupon bonds (thin solid lines). The bold solid lines correspond to the benchmark
liability-only case with a constant and deterministic return of r = 0.04. Figure 5 corre-
sponds to group insureds, and Figure 6 corresponds to individual insureds. We assume
that if an insured person belongs to group (individual) insureds, the same holds for the
insured’s partner.13

Comparing Figures 5 and 6 shows that the hedge effectiveness of survival swaps
with basis risk is significantly smaller than without basis risk, especially for portfolios
with both single life and survivor annuities.

12In our model, mortality probabilities of the general population and of the population of the insurer
are perfectly correlated. The low hedge effectiveness of the survival swaps is caused by the fact that
survival probabilities are non-linear transformations of the logarithm of the forces of mortality. The
effect is stronger for portfolios with both single life and survivor annuities because the dependency
between males and females.

13Typically, the mortality probabilities of spouses are similar, due to, for instance, the living conditions.
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Figure 5: Required buffer percentage for portfolios of annuities and vanilla survivor
swaps with basis risk: group insureds
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The figure displays the required buffer percentage as a function of s, for a fund

with only single life annuities (w = 0) (left panels) and for a fund with single life

and survivor annuities with w = 0.5 (right panels). The upper row corresponds

to a fund with only males (γ = 1), the middle row to a fund with only females

(γ = 0), and the lower row to a fund with 50% male and 50% female rights (γ =

0.5). The curves correspond to different compositions of the buffer portfolio: thin

solid curves: 100% one-year zero-coupon bonds; dashed curves: 67% one-year zero-

coupon bonds and 33% equity; dotted curves: 33% one-year zero-coupon bonds and

67% equity; dashed-dotted curves: 100% equity. The bold solid curves correspond

to the liability-only approach.
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Figure 6: Required buffer percentage for portfolios of annuities and vanilla survivor
swaps with basis risk: individual insureds
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The figure displays the required buffer percentage as a function of s, for a fund

with only single life annuities (w = 0) (left panels) and for a fund with single life

and survivor annuities with w = 0.5 (right panels). The upper row corresponds

to a fund with only males (γ = 1), the middle row to a fund with only females

(γ = 0), and the lower row to a fund with 50% male and 50% female rights (γ =

0.5). The curves correspond to different compositions of the buffer portfolio: thin

solid curves: 100% one-year zero-coupon bonds; dashed curves: 67% one-year zero-

coupon bonds and 33% equity; dotted curves: 33% one-year zero-coupon bonds and

67% equity; dashed-dotted curves: 100% equity. The bold solid curves correspond

to the liability-only approach.
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7 Conclusions

This paper quantifies the effect of longevity risk of portfolios of life insurance products,
taking into account that longevity risk induces unhedgeable financial risk. We find
that unhedgeable financial risk induces non-trivial interactions between asset mix and
liability mix. These interactions affect the impact of longevity risk for any given type of
liability, as well as the potential effects of combining different types of liabilities and/or
investing in longevity-linked assets.

Our results suggest that analyzing the joint effect of liability mix and asset mix
on the overall risk is important for two reasons. First, taking into account interactions
between financial risk and longevity risk may lead to more accurate solvency measures.
Separating investment risk and longevity risk, as is often proposed by regulators, un-
avoidably leads to inaccurate quantifications of the impact of longevity risk. Second,
ignoring the impact of unhedgeable financial risk may lead to inaccurate quantifica-
tion of the risk reduction that arises from combining different types of longevity-linked
assets and liabilities. Specifically, insurers may be able to reduce their sensitivity to
longevity risk by redistributing their risk. Our results indicate that the extent to which
insurers may benefit from such mutual reinsurance depends not only on their liability
portfolios, but also on their investment strategies. Finally, our results indicate that the
hedge potential from investing in longevity-linked asset such as survivor swaps depends
nontrivially on both the asset mix and the liability mix.
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A The distribution of the financial returns

In this section we briefly describe the quantification of the financial risk. Financial risk
might arise due to investing in (default-free) zero-coupon bonds with different times to
maturity or in an equity stock index. The bonds are described by the Vasicek-model,
while the stock index is modeled by a Geometric Brownian Motion with time-varying
drift. We allow for correlation between the bonds and the stock index.

In case of the Vasicek-model the instantaneous spot rate, rt, evolves as an Ornstein-
Uhlenbeck process with constant coefficients:

drt = (a− brt) dt+ σdZ1
t , (21)

where a, b, and σ are model parameters, and Z1
t is a standard Brownian Motion. The

stock index, St, follows a Geometric Brownian Motion with time-varying drift:

dSt = µtStdt+ σSStdZ
2
t , µt = rt + λSσS , (22)

where λS and σS are model parameters, and Z2
t is a standard Brownian Motion. The

correlation between the standard Brownian Motions Z1
t and Z2

t is equal to ρ.

Let P
(n)
t be the price at time t of a zero-coupon bond with face value of one which

matures at time t+ n, and let R
(n)
t be the corresponding yield to maturity R

(n)
t . Then

we have:

R
(n)
t ≡

− log
(
P

(n)
t

)

n
=

A
(n)
t

n
+

B
(n)
t

n
· rt, (23)
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with

A
(n)
t =

σ2

4b
·
(
B

(n)
t

)2
−
(
B

(n)
t − n

)
·
(
(a− σλ) · 2b− σ2

2b2

)
,

B
(n)
t =

1− exp (−b · n)
b

,

with the additional parameter λ representing the price of risk.
To estimate the parameters of the Ornstein-Uhlenbeck process and the stock index

process we discretize the stochastic differential equations (SDE) of equations (21) and
(22). Let ∆t be the time step, then we have, with α = a∆t, β = b∆t, and σ∆t = σ

√
∆t:

rt+∆t − rt = α− βrt + ǫt+∆t,

St+∆t − St

St
= (rt + λSσS)∆t+ ǫSt+∆t,

(
ǫt+∆t

ǫSt+∆t

)
| Ft ∼

(
σ∆t 0
0 σS

∆t

)
×N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

where Ft denotes the information available at time t, and N stands for a normal distri-
bution. For estimation purposes, we use five implied moment conditions:

E [ǫt+∆t ] = 0, E
[
ǫ2t+∆t

]
= σ2

∆t,

E
[
ǫSt+∆t

]
= 0, E

[(
ǫSt+∆t

)2]
=

(
σS
∆t

)2
,

E
[
ǫt+∆tǫ

S
t+∆t

]
= ρσ∆tσ

S
∆t.

(24)

In order to estimate the additional parameter λ we assume that the yield on a zero-
coupon bond maturing in n = 10 years from time t is given by (23) plus a mean zero

error term ǫ
(n)
t :

R
(n)
t = −D

(n)
t

n
+

B
(n)
t rt
n

+ ǫ
(n)
t , E

[
ǫ
(n)
t

]
= 0. (25)

We add to the moment restrictions in (24) and (25) as extra moment conditions

E [ǫt+∆trt] = 0, E
[
ǫRt+∆trt

]
= 0, E

[(
ǫ2t+∆t − σ2

∆t

)
rt
]
= 0. (26)

We use daily Dutch financial data obtained from Datastream from January 31, 1997
till January 1, 2007. We use three time series, namely the one month interest rate, the
interest rate on a 10 years Dutch government bond, and the return on the Dutch stock
index “AEX.” When estimating the model parameters using the Generalized Method
of Moments (GMM) (with optimal weighting matrix) based on the moment restrictions
(24)–(26), we make use of the Newey-West covariance matrix estimator. We experi-
mented with the lag length in this estimator. The reported estimates correspond to
lag length equal to ... Table 3 displays the estimates and the standard deviation of the
estimates of the model parameters.
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Table 3: Parameter estimates of distribution of the financial returns

Parameter a b σ λ λS σS ρ

Estimate 0.0045908 0.10399 0.0042971 -0.81134 0.40832 0.23663 -0.028284
St. dev. 0.0011086 0.026058 0.0005669 0.3307 0.17706 0.017793 0.008286

The table displays the estimates and the standard deviation of the estimates
of the model parameters for the distribution of the returns of the assets in
the financial market.

We include two sources of financial risk: process risk and parameter risk. First,
using (22) and (23) and using the GMM-based estimates, there is process risk due to
the fact that future values of rt and St are risky. Next, these forecasts are based on
estimates sensitive to estimation inaccuracy. The corresponding risk is referred to as
parameter risk. Let θ be the vector of all parameters estimated by GMM. The GMM-

estimator θ̂GMM satisfies
√
T
(
θ̂GMM − θ

)
d→ N (0, Vθ). Let V̂θ be a consistent estimator

of Vθ. To quantify the financial risk, we simulate 15,000 scenarios as follows. First, we

simulate a θ from the N
(
θ̂GMM , V̂θ/T

)
-distribution, to incorporate parameter risk,

and then, given this θ, we simulate the relevant future values of rt, R
(n)
t , and St, using

(21)–(23), to incorporate process risk.

B The distribution of the mortality probabilities

In this section we describe the models used to quantify the systematic longevity risk

affecting p
(g)
x,t . Let µ

(g)
x,t denote the force of mortality of a person with age x and gender g

at time t. We assume that for any integer age x, any gender g, and any time t, it holds

that µ
(g)
x+u,t = µ

(g)
x,t , for all u ∈ [0, 1). Then one can verify (see, for example, Pitacco,

Denuit, Haberman, and Olivieri, 2009)

p
(g)
x,t = exp

(
−µ

(g)
x,t

)
= exp

(
−m

(g)
x,t

)
, (27)

where m
(g)
x,t is the central death rate. This rate is given by m

(g)
x,t = D

(g)
x,t/E

(g)
x,t , with

D
(g)
x,t the observed number of deaths in year t in the cohort with gender g and aged x

at the beginning of year t, and with E
(g)
x,t the corresponding number of person years,

the so-called exposure. We use three variants of the Lee and Carter (1992)-model, a
P-Spline model, based on Currie et al. (2004), and four variants of the Cairns, Blake,
and Dowd (2006) (CBD)-model to quantify the systematic longevity risk. The three
variants of the Lee-Carter model are described in Appendix B.1. In Appendix B.2 we
describe the P-splines model. In Appendix B.3 we describe the four models for the
CBD-model. In Appendix B.4 we then describe our approach of simulating scenarios to
generate longevity risk, including model, parameter, and process risk.
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B.1 Lee-Carter (1992) model

In this section we describe the three variants of the Lee-Carter model, namely the models
proposed by Lee and Carter (1992), Brouhns, Denuit, and Vermunt (2002), and Cossette
et al. (2007). The model by Lee and Carter (1992) is given by

log
(
m

(g)
x,t

)
= a(g)x + b(g)x k

(g)
t + ǫ

(g)
x,t , (28)

where k
(g)
t is an index of the level of mortality, a

(g)
x is an age-specific constant de-

scribing the general pattern of mortality by age, b
(g)
x is an age-specific constant de-

scribing the relative speed of the change in mortality by age, and where ǫ
(g)
x,t repre-

sents the measurement error, assumed to satisfy ǫ
(g)
x,t | Kt ∼ N

(
0, σ2

x,g

)
, conditional on

Kt =
{
k
(g)
τ | g ∈ {m, f}, τ = t, t− 1, ...

}
. Moreover, we assume that the ǫ

(g)
x,t are inde-

pendent for different x and g, conditional on Kt.

To model the process for
(
k
(m)
t , k

(f)
t

)′
over time, we use an ARIMA(0,1,1) model

(as best fitting ARIMA-model)

k
(m)
t = k

(m)
t−1 + c(m) + e

(m)
t + θ(m)e

(m)
t−1, (29)

k
(f)
t = k

(f)
t−1 + c(f) + e

(f)
t + θ(f)e

(f)
t−1, (30)

where c(g) is the gender g specific drift term which indicates the average annual change of

k
(g)
t , θ(g) is the gender specific moving average coefficient, and e

(g)
t is the gender specific

innovation such that
(
e
(m)
t

e
(f)
t

)
| Kt−1 ∼

(
σm 0
0 σf

)
×N

((
0
0

)
,

(
1 ρmf

ρmf 1

))
,

where σg is the gender-specific standard deviation of the error term e
(g)
t , and where ρmf

captures the correlation between e
(m)
t and e

(f)
t .

In case of the model by Brouhns, Denuit, and Vermunt (2002), the age and gender
specific numbers of deaths are modeled by a Poisson process,

D
(g)
x,t | K̃t ∼ Poisson

(
E

(g)
x,t e

a
(g)
x +b

(g)
x k

(g)
t

)
, (31)

with K̃t = Kt
⋃{

E
(g)
x,τ | g ∈ {m, f}, all x, τ = t, t− 1, ...

}
. We assume that the D

(g)
x,t are

independent for different x and g, conditional on K̃t. The process for
(
k
(m)
t , k

(f)
t

)′
is

modeled as in case of the Lee and Carter (1992)-model, i.e., via equations (29)–(30).
As third model, we consider Cossette et al. (2007). These authors model the age

specific numbers of deaths D
(g)
x,t via the Binomial Gumbel process,

D
(g)
x,t | K̃t ∼ Bin

(
E

(g)
x,t , 1− exp

(
−ea

(g)
x +b

(g)
x k

(g)
t

))
, (32)
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Table 4: Estimation results for the Lee-Carter models

Model g c(g) θ(g) σg ρ

Lee-Carter m −1.854 −0.131 1.612 0.881
f −1.576 −0.373 1.779

Brouhns, Denuit, and Vermunt m −1.849 −0.096 1.376 0.897
f −1.519 −0.148 1.572

Cossette et al. m −1.854 −0.097 1.386 0.916
f −1.529 −0.160 1.594

Parameter estimates of equations (29)–(30)). Lee-Carter: Lee and Carter
(1992)-model; Brouhns, Denuit, and Vermunt: Brouhns, Denuit, and Vermunt

(2002)-model; Cossette et al.: Cossette et al. (2007)-model.

where we again assume that the D
(g)
x,t are independent for different x and g, conditional

on K̃t, and where we model the process for
(
k
(m)
t , k

(f)
t

)′
via equations (29)–(30).

The model-specific parameters are estimated imposing the required normalizations
and using the estimation techniques as described in the corresponding papers. In order

to avoid localized age induced anomalies in b̂
(g)
x in the three models, we follow Renshaw

and Haberman (2003). These authors proposed to smooth the age specific estimated

parameters b̂
(g)
x using cubic B-splines, with internal knots,

ζ
(g)
0 + ζ

(g)
1 x+ ζ

(g)
2 x2 + ζ

(g)
3 x3 +

r∑

j=1

ζ
(g)
3+j(x− xj)

3
+, (33)

where (x−xj)
3
+ = (x−xj)

3, in case x−xj > 0, and zero otherwise. As internal knots we
use x1 = 9.5, x2 = 20.5, x3 = 50.5, x4 = 60.5, and xr = x5 = 80.5. The cubic B-splines

are fitted to the (model specific) estimated b̂
(g)
x using the method of least squares.

Age, gender, and time specific numbers of death and exposed to death are obtained
from the Human Mortality Database.14 In our case x ∈ {0, 1, 2, ..., 99, 100+}, with 100+

the age group of people aged 100 years or more. We use the time period 1977–2006,
so that T = 2006. This time period minimizes the statistic proposed by Booth et al.
(2002) to test the hypothesis that the age components in the original Lee-Carter model
are invariant over time. The parameter estimates relevant for the quantification of the

systematic longevity risk are plotted in Figure 7 (the b̂
(g)
x ) and Table I (the parameter

estimates of equations (29)–(30)).
To forecast the future mortality probabilities, we use (27), combined with (28),

(31), or (32) (depending on the model), together with (29)–(30) and (33). Let q̂
(g)
x,T+s =

1 − p̂
(g)
x,T+s be the s-periods ahead model-specific forecasted one-year death probability

(starting from the end of the sample T = 2006). To avoid a jump-off bias in the forecasts,

14See www.mortality.org.
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Figure 7: Estimated b
(g)
x after smoothing using cubic B-splines. Left panel: g = m;

right panel: g = f . The solid curve corresponds to the Lee and Carter (1992)-model;
the dashed curve corresponds to the Brouhns, Denuit, and Vermunt (2002)-model, and
the dotted curve corresponds to the Cossette et al. (2007)-model.

we correct this forecast using as correction factor q
(g)
x,T/q̂

(g)
x,T , with q

(g)
x,T the observed one-

year death probability in year T and q̂
(g)
x,T the corresponding model-specific one-year

death probability.

B.2 P-Splines

In this section we describe the P-spline model proposed by Currie, Durbin, and Eilers
(2004). Let By = By(xy), be a ny × cy regression matrix of B-splines based on ex-
planatory variable xy and let Ba = Ba(xa), be a na × ca regression matrix of B-splines
based on explanatory variable xa. The regression matrix for our model is the Kronecker
product:

B = By ⊗Ba.

For the general population we assume:

D(m) +D(f) | E(m) + E(f) ∼ Poisson
((

E(m) + E(f)
)
exp

(
Bα(p)

))
, (34)

where the data is arranged in column order, that is D(g) = vec
(
D(g)

)
and E(g) =

vec
(
E(g)

)
, and the log of a vector is the log applied componentwise. The general trend
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Table 5: Parameter settings and Output P-spline model

General Males-general Females-general

bdega 3 3 3
porda 2 2 2
na 91 91 91
ca 21 21 21
λa 15 1400 820

bdega 3 3 3
pordy 2 2 2
ny 30 30 30
cy 8 8 8
λy 72 3000 1800

This table displays the parameter settings and output of the P-spline model.

in the force of mortality of the whole population is given by Bα(p). For the difference
in the forces of mortality between the general population and the gender specific forces
of mortality we regress for both g = m and g = f :

D(g) | E(g) ∼ Poisson
(
E(g) exp

(
Bα̂(p) +Bα(g)

))
, (35)

where Bα(p) is estimated in the previous step and, thus, assumed to be known in the
second step.

To avoid under-smoothing, we use a penalty on α of the form α′Pα, where the
penalty matrix P is given by:

P = λaIcy ⊗D
′

aDa + λyD
′

yDy ⊗ Ica,

with λa and λy smoothing parameters, Icy an identity matrix of size cy, Da a so-called
difference matrix of dimension (ca − pa) × ca (that takes the column-wise difference of
another matrix when post-multiplied), where pa is the order of the penalty on age, and
with Ica and Dy defined similarly. Given the smoothing parameters λa and λy, the
parameter vector α is estimated by maximizing the log-likelihood based on (34) or (35)
(with Bα̂(p) given), corrected for the penalty 1

2α
′Pα. The smoothing parameters λa and

λy are set such that they optimize the Bayesian Information Criterion (BIC).
Currie, Durbin, and Eilers (2004) provide an easy way not only to estimate α,

but also to calculate forecasts given α. Moreover, these authors provide an approxi-
mate normal distribution by which the sampling inaccuracy in the estimate α̂ can be
quantified.

The application of the P-spline method requires a large number of settings. Table
5 presents the settings that we used. As data we used the Dutch mortality data from
1977 till 2006 for the ages 20 till 110.
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B.3 CBD models

In this section we describe the third class of models, the CBD-models, first introduced
in Cairns, Blake, and Dowd (2006). Later several extensions have been proposed, see for
example, Cairns et al. (2009). The CBD models fit the one-year mortality probabilities

q
(g)
x,t = 1− p

(g)
x,t . The general specification of the CBD-model is given by

log

(
q
(g)
x,t

1− q
(g)
x,t

)
= β

(g)
1,xκ

(g)
1,t + β

(g)
2,xκ

(g)
2,t + β

(g)
3,xκ

(g)
3,t + β

(g)
4,xγ

(g)
t−x, (36)

where β
(g)
j,x , j = 1, · · · , 4, are possibly age dependent constants, and κ

(g)
j,t , j = 1, 2, 3,

represent time effects, γ
(g)
t−x is a cohort effect, and ǫ

(g)
x,t is a residual. We consider the four

following possibilities. We define the set C as the set of all cohort years that have been
included in the analysis, i.e., C = {c = t− x | t ∈ T , x ∈ X}, where T is the sample
period and X is the set of ages considered.

1) β
(g)
1,x = 1, β

(g)
2,x = x− x, β

(g)
3,x = β

(g)
4,x = 0 (where x is the mean of the ages in X ).

2) As 1) but with β
(g)
4,x = 1, together with the identification constraints

∑
c∈C γ

(g)
c =

∑
c∈C c · γ(g)c = 0.

3) As 2) but with β
(g)
3,x = (x− x)2 − σ2

x (where σ2
x is the variance of the ages in X ),

together with the extra identification constraint
∑

c∈C c2 · γ(g)c = 0.

4) As 2) but with β
(g)
4,x = C(g) − x, for some constant parameter C(g), together with

the (single) identification constraint
∑

c∈C γ
(g)
c = 0.

Version 1) is the original CBD-model, proposed in Cairns, Blake, and Dowd (2006). Let

κt =
(
κ
(m)
1,t , κ

(m)
2,t , κ

(m)
3,t , κ

(f)
1,t , κ

(f)
2,t , κ

(f)
3,t

)′
, and Kt = {κτ | τ = t, t− 1, · · · }. Similar to the

model by Brouhns, Denuit, and Vermunt (2002), the age and gender specific numbers
of deaths are modeled by a Poisson process,

D
(g)
x,t | K̃t ∼ Poisson

(
m

(g)
x,tE

(g)
x,t

)
,

with K̃t = Kt
⋃{

E
(g)
x,τ | g ∈ {m, f}, all x, τ = t, t− 1, ...

}
, together with the assumption

that the D
(g)
x,t are independent for different x and g, conditional on K̃t. Here, m

(g)
x,t is

linked to q
(g)
x,t via m

(g)
x,t = − log

(
1− q̂

(g)
x,t

)
, cf. (27). The parameters κt, for t ∈ T , γc, for

c ∈ C, and C(g) are estimated by maximizing the corresponding log likelihood, where
we use for T the sample period from 1977 until 2006 and for the set X of ages the ages
60 until 100+.
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Table 6: Parameter estimates of the CBD-models

µ
(m)
1 · 102 µ

(m)
2 · 104 µ

(m)
3 · 105 µ

(f)
1 · 102 µ

(f)
2 · 104 µ

(f)
3 · 105

CBD 1 -1.3723 8.3578 -1.1211 1.3925
CBD 2 -1.3203 3.9099 -1.0141 17.7359
CBD 3 -1.3708 8.0533 2.1365 -0.87047 1.7736 -5.8667
CBD 4 -3.9336 -1.7694 6.7977 36.4297

LogL # par BIC

CBD 1 -12042 120 24905
CBD 2 -9344 236 20302
CBD 3 -9220 294 20449
CBD 4 -9431 240 20503

The table displays the estimation of the parameter µ and the log likelihood,
number of parameter, and the Bayesian Information Criterion (BIC) for the
different CBD-models. For model CBD 4 we have used C(m) = 74 and
C(f) = 75.

In terms of κt, we assume, cf. (29)–(30),

κt = κt−1 + µ+ et, et | Kt−1 ∼ N (0, V ) , (37)

where µ and V represent the mean vector and covariance matrix of Dt = κt−κt−1. Fol-
lowing Cairns, Blake, and Dowd (2006) we assume as non-informative prior distribution
for (µ, V ) the Jeffreys prior:

p (µ, V ) ∝ |V |−3/2,

where |V | is the determinant of the covariance matrix V . The posterior distribution for
(µ, V |D), with D = (D1, · · · ,DT ), then satisfies

V −1|D ∼Wishart
(
T − 1, T−1V̂ −1

)
,

µ|V,D ∼MVN
(
µ̂, T−1V

)
,

where µ̂ =T−1
n∑

t=1

Dt,

and V̂ =T−1
T∑

t=1

(Dt − µ̂) (Dt − µ̂)
′

.

Table 6 displays the estimates of µ for the different models.

B.4 Quantifying Longevity Risk

We include three sources of systematic longevity risk: process risk, parameter risk, and
model risk. First, given a specific model and given the corresponding model specific
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estimates, there is process risk due to fact that future values of q̂
(g)
t are still risky. Next,

given a specific model, the forecasts of q̂
(g)
t are based on model specific estimates, sen-

sitive to estimation inaccuracy. The corresponding risk is referred to as parameter risk.
Finally, different models might be used to calculate the forecasts, resulting. Assuming
that some prior distribution is used to do the forecast calculations, there is in model
risk.

To incorporate model risk, we generate 5000 scenarios from each class of models:
5000 scenarios from the Lee-Carter (1992)-type models (1666 scenarios from the Lee-
Carter (1992) model, 1666 scenarios from the Brouhns, Denuit, and Vermunt (2002)
model, and 1667 scenarios from the Cossete et al. (2007) model); 5000 scenarios from
Cairns-Blake-Dowd (2006) models (1250 scenarios from each of the four variants), and
5000 scenarios from the P-Splines model.

To incorporate parameter risk, we simulate in each of the scenarios parameters in a
model-specific way. For example, in case of the Lee and Carter (1992) model we simulate

α
(g)
x , β

(g)
x , σ2

x,g, c
(g), θ(g), σg, and ρmf , using a bootstrap procedure, following Koissi,

Shapiro, and Högnäs (2006). A similar approach is used in case of the Brouhns, Denuit,
and Vermunt (2002) model and Cossete et al. (2007) model. In case of the P-Splines
model we simulate α-s, using the approximate normal distribution of the estimated
α̂. In case of the CBD-models we simulate µ and V from the corresponding posterior
distribution.

To incorporate process risk, we simulate in case of the Lee-Carter (1992) model,

given the simulated parameter values, future values of k
(g)
t (by simulating future values

of e
(g)
t ) and future values of ε

(g)
x,t . This results in scenario-specific future values of q

(g)
x,t .

In case of the Brouhns, Denuit, and Vermunt (2002) model and Cossete et al. (2007)
model we proceed in a similar way. However, in these models we ignore the potential

process risk in the error terms ε
(g)
x,t , which are set equal to zero (in fact, we did not

present these error terms in these cases). In case of the P-Splines model the simulated
α-s also incorporate process risk. In case of the CBD-models we simulate, given the
simulated µ and V , future values of κt (by simulating future values of et). Similar to
the Brouhns, Denuit, and Vermunt (2002) and Cossete et al. (2007) models, we ignore
both in the P-spline model and the CBD-models the potential process risk in the error

terms ε
(g)
x,t (these error terms are also not presented in case of these models).
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