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Jacek Osiewalski, Anna Pajor

1 Introduction
Investors calculate Value-at-Risk (VaR) for their portfolios, which are usually quite
large. VaR means the loss (of the portfolio value) that would be reached or exceeded
with a given probability α (usually 0.05 or smaller) over a certain time horizon (most
often from 1 to 10 days). Despite theoretical discussions (see Artzner, Delbaen, Eber,
Heath 1999), VaR has become the standard measure of market risk used both by
financial institutions and by their regulators; see Engle and Manganelli (2004).
VaR is a characteristic of the distribution of the future portfolio value (conditional
on historical data on asset prices) and is closely related to its left tail. In practice,
this probability distribution is unknown and is replaced by a statistical (sampling)
model, that is a family of probability distributions; the data are used to choose its most
appropriate element, which leads to the estimate of VaR. More traditional approaches
to the assessment of VaR are based on parametric statistical models (usually from
the GARCH family), which describe the whole distribution of future returns. The
recently popular CAViaR approach (based on quantile regression) directly focuses on
the α-quantile modelled non-parametrically; see Engle and Manganelli (2004).
In this paper we discuss and compare VaR assessment based on multi- and univariate
parametric models. Multivariate approach is much more difficult, as it explicitly
takes into account the full conditional covariance structure of asset prices: individual
volatilities and correlations. On the other hand, VaR requires only the distribution
of the future value of the portfolio; it can be derived using a univariate model for the
historical values of the portfolio. Such an univariate approach is much simpler, since
it does not need specifying the covariance structure of the assets.
In our comparison we refer to parametric models and use the Bayesian statistical
paradigm that unifies the theory and practice of VaR. Within this paradigm,
the parametric sampling models together with prior distributions can be used as
building blocks for the unique predictive distribution of the future portfolio value.
The predictive distribution automatically takes into account uncertainty about the
parameters of the statistical model used to describe historical data. Also, specification
(model) uncertainty can easily be incorporated using Bayesian pooling ("model
averaging"), not considered in this paper. The predictive Bayesian formulation of
VaR will be called Bayesian VaR.
The focus on the (left) tail of the predictive distribution requires (as its building
block) a statistical model that is capable of estimating and forecasting the chances
of extreme or outlying observations. The practical usefulness of Bayesian VaR
depends on particular models under consideration as well as on numerical methods
used in analysing the predictive distribution. Most of multivariate specifications in
financial econometrics either belong to the MGARCH (Multivariate GARCH) or MSV
(Multivariate Stochastic Volatility) classes or are based on copulas; see Bauwens,
Laurent, Rombouts (2006), Tsay (2005). These models are difficult to estimate; only
a few of them could be practical tools for large portfolios. A solution to the problem of
simple, parsimonious multivariate volatility modelling is a hybrid model proposed by
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Osiewalski (2009); see also Osiewalski and Pajor (2009). This hybrid model is based
on scalar BEKK (SBEKK) correlation structure and the simplest MSV specification,
the Multiplicative Stochastic Factor (MSF) model. Here we use the MSF-SBEKK
type I model for portfolios of dimension n = 34 and n = 50. In order to make the
univariate model of portfolio value comparable to the n-variate model of individual
assets, we consider the univariate specification obtained from the MSF-SBEKK one
by taking n = 1.
In the next section we discuss basic notions and introduce notation. In section 3 we
present the foundations of Bayesian VaR. Section 4 is devoted to our models proposed
for the assessment of VaR. Sections 5 and 6 contain empirical results for portfolios of
dimension 34 and 50, respectively. Section 7 concludes.

2 Portfolio VaR - concepts, notation, modelling
approaches

Consider a portfolio kept at present time (T ) and consisting of n assets; ai denotes
the number of units of asset i possessed now and St,i is the price of asset i at time

t (St,i > 0, ai > 0 for i = 1, . . . , n), thus Wt =
n∑
i=1

aiSt,i is the time t value of this

portfolio. The s-period return rate on the portfolio is:

R∗t:t+s =
(Wt+s −Wt)

Wt
=

n∑
i=1

ωt,iRt:t+s,i,

where Rt:t+s,i = (St+s,i−St,i)
St,i

is the s-period return rate on asset i and ωt,i = aiSt,i
Wt

is the share of asset i in the time t portfolio value. For most results ai > 0 is not
required (short sale is allowed), only Wt > 0 has to be assumed. Note that the sum
of ωt,i over the assets (i = 1, . . . , n) is always 1 by construction.
Assume that we observe the n-variate time series of individual return rates for
t = 1, . . . , T and we are interested in forecasting R∗T :T+s, the s-period ahead return
on the portfolio kept at time T . Forecasting R∗T :T+s is closely related to the definition
of V aRT :T+s, the s-period ahead Value-at-Risk of the portfolio. If ΨT denotes the
current and past asset prices, then V aRT :T+s(α) for a given probability level α is
defined by the following equality:

Pr {WT+s ≤WT − V aRT :T+s(α)|ΨT } = α, (1)

which can be written as

Pr

{
R∗T :T+s ≤

−V aRT :T+s(α)
WT

|ΨT

}
= α. (2)

Under any continuous distribution, the relative s-period ahead Value-at-Risk
(corresponding to some fixed, small α) is the absolute value of the α-quantile of
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the conditional distribution of the s-period ahead return on the portfolio, given the
current and past asset prices.
The ordinary return rates Rt:t+s,i > −1 are rarely used in statistical modelling of
asset prices and returns. Instead, the logarithmic return rates rt+1,i = ln

(
St+1,i
St,i

)
=

= ln (Rt:t+s,i + 1) are the quantities being modelled; they can take any real value and
easily aggregate over time:

rt:t+s,i = ln (Rt:t+s,i + 1) = ln
(
St+s,i
St,i

)
=

s∑
j=1

ln
(

St+j,i
St+j−1,i

)
=

s∑
j=1

rt+j,i

Since Rt:t+s,i + 1 = exp

(
s∑
j=1

rt+j,i

)
and R∗t:t+s =

n∑
i=1

ωt,iRt:t+s,i, we can rewrite (1)

as

Pr

−1 +
n∑
i=1

ωT,i exp

 s∑
j=1

rT+j,i

 ≤ −V aRT :T+s(α)
WT

|ΨT

 = α, (3)

i.e. the relative VaR is the absolute value of the α-quantile of some non-linear function
of future logarithmic returns.

The usual linear approximation exp

(
s∑
j=1

rt+j,i

)
≈ 1 +

s∑
j=1

rt+j,i can lead to serious

errors, especially when s is so large that the s-period ahead return distribution is
diffuse. Consider a simple example with just one asset (n = 1) and the Student t
distribution with 4 degrees of freedom, St(4), for 10rT :T+s (that is, the 0.1 St(4)
distribution for rT :T+s itself). This distribution of rt can be obtained from the
N
(
0, τ−1

)
distribution of rt (given its precision τ) and the Gamma distribution of

τ (with mean 10 and variance 50), representing rather low precision. In this case
(3) is equivalent to Pr

{
St(4) ≤ 10 ln

(
1− V aRT :T+s(α)

WT

)}
= α; true and approximate

values of relative VaR are presented in Table 1. For small α, the true relative VaR
can be overestimated quite substantially.
Conditioning on observed data and small-sample inference on non-linear functions
of unobserved quantities are natural within the Bayesian approach to statistics.
Therefore this approach is advocated for determining the s-period ahead VaR.

Table 1: Relative VaR for rT :T+s distributed as 0.1 St(4)

α 0.005 0.01 0.0125 0.025 0.05
approximate VaR 0.4604 0.3747 0.3495 0.2776 0.2132

true VaR 0.3690 0.3125 0.2950 0.2424 0.1920
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3 Foundations of Bayesian VaR assessment

The sampling model, i.e. a family of probability distributions of the observables
ỹ ∈ Ỹ ⊂ RN indexed by some parameter θ ∈ Θ ⊂ RK , is the common starting point
of both the sampling-theory and Bayesian parametric approaches to statistics. In
financial applications ỹ groups all the modelled logarithmic return rates, including
the forecasted ones. The Bayesian model is defined as a joint distribution on the
product of the sample and parameter spaces (Ỹ and Θ). In terms of densities, it can
be represented as

p (ỹ, θ) = p (ỹ|θ) p (θ) , (4)

where p (ỹ|θ) is the sampling density and p (θ) is the prior density. As in the Bayesian
approach the parameters are not fundamentally different from unobservable (latent)
variables, p (θ) will represent the distribution of all parameters and latent variables, if
the latter are present in the model. In order to cover prediction as well as parameter
estimation, assume that ỹ = (y, yf ), where y ∈ Y represents observed return rates,
yf ∈ Yf denotes unobserved returns (to be forecasted), and Ỹ = Y × Yf . Bayesian
inference relies on the following decomposition of the joint density (4):

p (y, yf , θ) = p (yf |y, θ) p (y|θ) p (θ) = p (yf |y, θ) p (θ|y) p (y) , (5)

Inference on all unknown and unobserved quantities (parameters, latent variables and
future observables) can be based on the joint posterior – predictive density function

p (θ, yf |y) = p (yf |y, θ) p (θ|y) , (6)

where p (yf |y, θ) is the sampling predictive density (conditional on the parameters and
latent variables), p (θ|y) = p(y|θ)p(θ)

p(y) is the posterior density (of the parameters and
latent variables) and p (y) =

∫
Θ

p (y|θ) p (θ) dθ is the marginal density of the observed

returns.
If we are only interested in prediction of future returns, as in the case of determining
the portfolio VaR through (3), we use the Bayesian predictive distribution

p (yf |y) =
∫

Θ

p (yf |y, θ) p (θ|y) dθ, (7)

which fully reflects uncertainty regarding θ, given the data, the choice of a sampling
model and a prior density; this uncertainty is formalized through the posterior density.
If a particular function of yf is of interest (like R∗T :T+s, the s-period ahead portfolio
return), its distribution is directly obtained from p (yf |y).
Non-Bayesian VaR assessments can be based on the sampling predictive distribution
p (yf |y, θ) with the parameters replaced by their estimates. The use of p

(
yf |y, θ = θ̂

)
can lead to substantially different inference on tail behaviour than relying on the
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Bayesian predictive distribution. For a simple example assume that n = 1 and the
sampling predictive density for future logarithmic returns, p (rT :T+s|y, θ), is Normal
with mean 0 and unknown precision τ , which has the Gamma posterior distribution
with shape and scale parameter ν

2 ; then p (rT :T+s|y) is Student t with ν degrees of
freedom. In this case the usual non-Bayesian VaR would be calculated using the
thin Normal tail and the Bayesian VaR would be based on the thicker Student tail,
properly reflecting parameter uncertainty. Of course, there is little practical difference
between both approaches when τ is estimated very precisely (large ν), but this need
not be the case (like when ν is small, which leads to substantial differences).
Whereas the sampling-theory justification of inference procedures is based on the
sampling properties in Ỹ (given unknown, but fixed, parameter value θ), Bayesians
consider the probability distribution of θ and yf given the observed values of y,
without contemplating what could have been observed in repeated sampling. On the
formal level, introducing a distribution over the parameter space and conditioning
on the observations are the distinctive features of the Bayesian approach. Also, the
subjective interpretation of probability as a measure of degree of belief (or uncertainty)
is widely adopted by Bayesian statisticians. Thus, the portfolio VaR fulfilling (1)-(3)
can be interpreted in an intuitively straightforward manner: "given the data, the
statistical model and prior information, one can be (1-α)·100% sure that the future
value of a given portfolio, WT+s, will be greater than WT − V aRT :T+s(α)."
Finally, let us consider two modelling strategies for assessing portfolio VaR. The first
one amounts to assuming some n-variate model for individual logarithmic returns rt,i
and obtaining the α-quantile of the predictive distribution of

R∗T :T+s = −1 +
n∑
i=1

ωT,i exp

 s∑
j=1

rT+j,i

 ,

a non-linear function of future returns. The second approach amounts to directly
modelling univariate series of portfolio logarithmic returns rWt+1 = ln

(
Wt+1
Wt

)
and

examining the predictive distribution of rWT :T+s = ln
(
WT+s
WT

)
. Since

rWt+1 = ln

(
n∑
i=1

ωt,i exp (rt+1,i)

)
,

the univariate model that would exactly correspond to the n-variate specification
is overly complicated and the only practical solution is to consider some standard
univariate class for portfolio returns. Thus, the two approaches (n- and univariate)
are not formally coherent and their comparison is an empirical question, addressed in
this paper. Our conjecture is that a univariate model from a flexible parametric family
can explain and predict portfolio returns not worse than any n-variate specification
that requires huge simplifications in order to cope with large n.
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4 The hybrid VAR(1)-MSF-SBEKK type I Bayesian
model

First we consider a multivariate specification for individual assets. Let
rt = (rt,1 . . . rt,n) denote n-variate observations on logarithmic return rates, which
we model using the basic VAR(1) framework:

rt = δ0 + rt−1∆ + εt, t = 1, . . . , T, . . . , T + s. (8)

The n(n + 1) elements of δ = (δ0 (vec∆)′)′ are common parameters, which can
be treated as a priori independent of all other (model-specific) parameters; we
can assume for them some multivariate prior, e.g. standard Normal N

(
0, In(n+1)

)
,

truncated by the restriction that all eigenvalues of ∆ lie inside the unit circle.
Following Osiewalski and Pajor (2009), we specify the conditional distribution of the
residual process εt by conditioning on its past Ψt−1, some univariate latent process
(gt) and the parameters. We assume the so-called type I hybrid specification:

εt = ζtH
1
2
t

√
gt, (9)

ln gt = φ ln gt−1 + σgηt, (ζt, ηt)
′ ∼ iiN(0[(n+1)×1], In+1), (10)

Ht = (1− β − γ)A+ β
(
ε′t−1εt−1

)
+ γHt−1. (11)

That is, εt is conditionally Normal with mean vector 0 and covariance matrix gtHt,
where gt is a latent process and Ht is a square matrix of order n that has the scalar
BEKK(1,1) structure. Thus, the corresponding conditional distribution of rt (given
its past and latent variables) is Normal with mean µt = δ0 + rt−1∆ and covariance
matrix gtHt.
The presence of the latent AR(1) process in the conditional covariance matrix helps
in explaining outlying observations, and the dependence on the past data (through
the SBEKK structure of Ht) prevents the entries of the conditional covariance matrix
gtHt from sharing the same dynamic pattern. Thus the model has time-varying
conditional correlations without introducing more latent processes. In fact, the hybrid
model defined by (9)-(11) nests two simple basic structures. In the limiting case when
σg → 0 and φ = 0 we are in the SBEKK model, while β = 0 and γ = 0 lead to the
MSF case.
In (11) A is a free symmetric positive definite matrix of order n; for A−1 we assume
the Wishart prior with n degrees of freedom and mean In; β and γ are free scalar
parameters, jointly uniformly distributed over the unit simplex. As regards initial
conditions for Ht, we can either take H0 = h0In and treat h0 > 0 as an additional
parameter, a priori Exponentially distributed with mean 1, or fix H0. For the
parameters of the latent process we use the same priors as Pajor (2005); for φ: Normal
with mean 0 and variance 100, truncated to (-1, 1), for σ−2

g : Exponential with mean
200; g0 is fixed (equals 1).
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In order to obtain the required quantiles of the predictive distribution of future
logarithmic returns, we follow the approximation explained in Osiewalski and Pajor
(2009). That is, we use OLS for the VAR(1) parameters and replace A by the
empirical covariance matrix of the OLS residuals from the VAR(1) part. The Bayesian
analysis for the remaining parameters and future return rates is then based on
the conditional posterior and predictive distributions given the particular values of
the highly dimensional parameters (δ and A). These conditional distributions are
sampled using the Gibbs scheme with Metropolis-Hastings steps, as shown in detail
in Osiewalski and Pajor (2009).
In order to make the univariate model of portfolio value comparable to the n-variate
volatility model of individual assets, we consider for the portfolio logarithmic returns
rWt the univariate AR(1) specification with the error term described by the hybrid SV-
GARCH(1,1) process, which is the n = 1 special case of the MSF-SBEKK structure.
So we assume

rWt = δ∗0 + δ∗r∗t−1 + ε∗t , (12)

ε∗t = ζ∗t
√
gtht, (13)

ln gt = φ ln gt−1 + σgηt, (ζ∗t , ηt)
′ ∼ iiN(0[2×1], I2), (14)

ht = (1− β − γ) a∗ + β
(
ε∗t−1

)2 + γht−1, t = 1, . . . , T, . . . , T + s. (15)

We take the prior distribution corresponding to the previous (n-variate) case (with
n = 1). Now we do not face the dimensionality problem, but for comparison with the
n-variate model, the posterior and predictive distribution is sampled (using the Gibbs
scheme with Metropolis-Hastings steps) conditionally on preliminary non-Bayesian
estimates as in the n-variate case.

5 VaR for a portfolio with 34 assets
As the first dataset we use the same stock data representing 34 companies, which
are used in Osiewalski and Pajor (2009). Summary statistics for the percentage daily
logarithmic returns (100rt,i) in the period January 30, 2003 – August 29, 2007 are
shown in Table A1 in Appendix; on August 29, 2007 companies number 1–23 were
included in mWIG40 and number 24–34 in WIG20, two important indices of the
Warsaw Stock Exchange. The approximate Bayesian approach (using the proposed
data-based values of the highly dimensional matrix parameters) was applied. The
posterior results on volatility and conditional correlation are presented in Osiewalski
and Pajor (2009) for the whole length of time series (T = 1149). Here we start with
T = 939 initial observations (covering the period February 3, 2003 – October 23,
2006) and consider p = 200 VaR assessments for 1-, 2-, . . . , 10-day trading horizons.
For Bayesian estimation the whole dataset available at time T +k (k = 0, 1, . . . , p−1)
is used. We calculate predictive distributions of rt (or rWt ) based on the dataset
available at time T + k for each k = 0, 1, . . . , p − 1 (up to T + p − 1 = 1138). Thus
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we obtained 200 predictive distributions for 1-, 2-, . . . , 10-day forecast horizons, and
then V aRt:t+s(α) for t = T, . . . , T + p− 1 and s = 1, 2, . . . , 10.
Our portfolio consists of one unit of each asset, i.e. a = (a1, a2, . . . , an) = (1, . . . , 1)′ .
The univariate time series of the value of such portfolio is characterised by the daily
logarithmic returns rWt presented in Figure 1; the daily value changes are shown in
Figure 2. The V aRt:t+1(α) assessments for α = 0.05 and α = 0.1 are presented in
Figures 3 and 4, respectively.

Figure 1: Daily growth rates of the portfolio value; n = 34 and a = (1, . . . , 1)′

(January 31, 2003 – August 28, 2007); the vertical line represents October 23, 2006
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Figure 2. Daily changes in the portfolio value (January 31, 2003 – August 28, 2007; n=34); 
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In order to compare 1-day ahead Value-at-Risk obtained in two different ways, i.e.
using n-variate MSF-SBEKK model for individual assets or its univariate counterpart
for the portfolio value, we use popular non-Bayesian criteria. They include: the failure
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Figure 3: −V aRt:t+1(0.05), n = 34
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Figure 4. -VaRt:t+1 (0.01), n = 34 
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rate and p-value for the Kupiec test as well as different loss functions (defined below)
for V aRt:t+1(α); see Tables 2–4. We also use the Conditional Autoregressive Value
at Risk (or CAViaR) model (with asymmetric slope):

qt(α) = β0 + β1qt−1(α) + β2 |Dt−2:t−1|+ β3 |Dt−2:t−1| I(−∞,0)(Dt−2:t−1) (16)

of Engle and Manganelli (2004); it is applied directly to the series {Dt:t+s} of daily
value changesDt:t+s = Wt+s−Wt (not to the logarithmic returns); thus, qt(α) denotes
the conditional α-quantile of Dt−1:t, I(−∞,0)(·) is the characteristic function of the
interval (−∞, 0).

The losses are generally calculated as Ls = 1
p

T+p−1∑
t=T

lt:t+s, where for lt:t+s we have
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the "tick" loss if:

lt:t+s =

{
(α− 1) (Dt:t+s + V aRt:t+s(α)) , if Dt:t+s < −V aRt:t+s(α),
α (Dt:t+s + V aRt:t+s(α)) , if Dt:t+s ≥ −V aRt:t+s(α);

the Lopez loss if:

lt:t+s =

{
1 + (Dt:t+s + V aRt:t+s(α))2

, if Dt:t+s < −V aRt:t+s(α),
0, if Dt:t+s ≥ −V aRt:t+s(α);

the firm’s loss if:

lt:t+s =

{
(Dt:t+s + V aRt:t+s(α))2

, if Dt:t+s < −V aRt:t+s(α),
cV aRt:t+s(α), if Dt:t+s ≥ −V aRt:t+s(α).

see e.g. Lopez (1998), Sarma, Thomas, Shah (2003), Lee (2008). We also compute
(and present in Table 4) the average loss on the portfolio when the loss is larger than
V aRt:t+s(α), that is

ALs =

T+p−1∑
t=T

I(−∞,0) (Dt:t+s + V aRt:t+s(α)) |Dt:t+s|

T+p−1∑
t=T

I(−∞,0) (Dt:t+s + V aRt:t+s(α))

The outcomes of the Kupiec test for the 1-day ahead VaR seem to indicate that the
univariate approach is more accurate and our Bayesian assessment competes with the
one based on CAViaR (Table 2; the best case is in bold). The "tick" loss function
does not give such a clear picture, but the Lopez and firms’ losses are smallest for our
Bayesian VaR based on the univariate approach (Table 3 and 4). The results show
that, in the case of this particular portfolio, the n-variate MSF-SBEKK approach is
unnecessary for risk assessment. On the other hand, the univariate special case gives
us the flexible parametric SV-GARCH(1,1) specification that can be very successful
in VaR analysis. It is usually not worse than CAViaR (sometimes much better) and
leads to assessments that are highly correlated with the ones based on CAViaR; see
Table 5.
In Tables 6 and 7 we present V aRt:t+s(α) results for all forecast horizons
(s = 1, 2, . . . , 10); the results were obtained using univariate and n-variate MSF-
SBEKK models, respectively. The univariate SV-GARCH model gives better VaR
forecasts for all s.
It may be the case that the approximate character of our posterior and predictive
analysis, based on the OLS estimates of matrix parameters, is partly responsible for
the poor performance of our n-variate model. However, this is impossible to verify as
the exact posterior analysis is infeasible for n = 34.
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Table 2: The failure rate and p-value for the Kupiec test for V aRt:t+1(α), n = 34

α
(frequency) failure rate Kupiec test p-value

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 0.02 0.015 0.020 0.211 0.508 0.211
0.025 0.06 0.035 0.040 0.007 0.392 0.211
0.05 0.1 0.075 0.065 0.004 0.130 0.351
0.1 0.185 0.105 0.135 0.000 0.815 0.115

Note: The failure rate is defined as the proportion of Dt:t+1’s smaller than the −V aRt:t+1(α)

Table 3: "Tick" and Lopez loss functions for V aRt:t+1(α), n = 34

α
"Tick" loss function Lopez loss function

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 1.92 2.06 2.239 19.18 17.97 29.941
0.025 4.47 4.36 4.641 85.10 64.09 81.045
0.05 8.05 7.60 7.487 221.61 145.63 181.945
0.1 13.51 12.42 12.486 509.19 324.67 361.133

Table 4: Firm’s loss functions for V aRt:t+1(α) and average loss on the portfolio when
the loss is larger than V aRt:t+1(α), n = 34

α

Firm’s loss function
with c = 0.000167 (average WIBOR O/N

rate)

Average loss on the portfolio when the loss is
larger than V aRt:t+1(α)

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 19.178 17.979 29.947 170.848 168.680 170.848
0.025 85.052 64.076 81.025 133.508 149.227 136.856
0.05 221.522 145.575 181.894 119.272 129.937 115.975
0.1 509.010 324.577 361.007 93.605 118.261 100.464
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Table 5: Correlation coefficients between V aRt:t+1(α) for α = 0.01 and α = 0.05
(upper part), for α = 0.025 and α = 0.1 (lower part), n = 34

α=0.01
α=0.025

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR α=0.05

α=0.1

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR

n-variate
MSF-

SBEKK
1 0.804 0.692

n-variate
MSF-

SBEKK
1 0.745 0.553

univariate
SV-

GARCH
0.776 1 0.899

univariate
SV-

GARCH
0.684 1 0.806

CAViaR 0.614 0.875 1 CAViaR 0.503 0.797 1

Table 6: V aRt:t+s(0.05) - univariate MSF-SBEKK (SV-GARCH), n = 34

s 1 2 3 4 5 6 7 8 9 10
FR 0.075 0.075 0.08 0.095 0.09 0.08 0.08 0.075 0.08 0.1

p-value
for

Kupiec
test

0.1296 0.1296 0.0722 0.009 0.019 0.0722 0.0722 0.1296 0.0722 0.004

ALs 129.94 205.72 223.99 234.91 269.29 309.95 352.62 372.33 428.43 433.15
tick loss 7.6035 11.864 14.104 15.477 17.8 19.625 21.411 23.41 26.408 28.184
Lopez
loss

1.3567 1.4166 1.3658 1.2836 1.3085 1.3539 1.3495 1.3872 1.4219 1.3519

Table 7: V aRt:t+s(0.05) – n-variate MSF-SBEKK, n = 34

s 1 2 3 4 5 6 7 8 9 10
FR 0.1 0.09 0.115 0.135 0.135 0.135 0.13 0.14 0.12 0.135

p-value for
Kupiec test 0.004 0.019 0.0003 4 · 10−6 4 · 10−6 4 · 10−6 10−6 10−6 0.0001 4 · 10−6

ALs 119.27 194.72 202.63 220.73 245.24 281.7 313.44 325.8 388.05 398.16
tick loss 8.0514 13.438 15.295 17.546 19.886 22.623 25.379 27.841 31.546 35.001

Lopez loss 221.61 748.03 843.22 872.75 1266.7 1775.7 2280.1 3107.9 3891.2 4352.6
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6 VaR for a portfolio with 50 assets

6.1 One unit of each asset

Now we use stock data (on 50 companies) from the period May 13, 2005 – February, 23,
2010 (T = 1149); in February or March 2010 companies number 1–34 were included
in mWIG40 and 35–50 in WIG20. Summary statistics for the daily percentage
logarithmic returns (100rt,i) are shown in Table A2 in Appendix. Again, the
considered portfolio consists of one unit of each asset. The percentage logarithmic
returns and daily changes of the portfolio value are shown in Figures 5 and 6,
respectively. While the previous time series (of the same length) ended just before
the financial crisis, now we analyse the data that include the whole period of market
turbulences. So there are two new aspects: the financial crisis and a larger portfolio
(n = 50). For the n-variate model we use the same approximate Bayesian approach
as previously. Again, we start with T = 998 initial observations (now from the period
May 13, 2005 – May, 12, 2009) and consider p = 200 VaR assessments for 1-, 2- ,. . . ,
10-day trading horizons. Note that our analysis covers the period of a slow recovery
from the very deep crisis.

Figure 5: Daily growth rates of the portfolio value; n = 50 and a = (1, . . . , 1)′

(May 16, 2005 – February 23, 2010); the vertical line represents May 12, 2009
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Figure 6. Daily changes in the portfolio value (May 16, 2005 – February 23, 2010; n=50; 
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The results presented for one day ahead VaR (Tables 8-10) clearly indicate that now
the n-variate approach is more accurate and that our Bayesian assessment (based on
the parametric MSF-SBEKK structure) competes with the one based on CAViaR.
Interestingly, VaRs based on univariate approaches (CAViaR and SV-GARCH) are
highly correlated, as in the previous example; see Table 11. For this dataset the s-
day ahead VaR for s > 1, obtained within the n-variate model, is worse (than the
assessment based on the univariate SV-GARCH model) only with respect to the tick
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Figure 6: Daily changes in the portfolio value (May 16, 2005 – February 23, 2010;
n = 50; a = (1, . . . , 1)′); the vertical line represents May 12, 2009
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loss; it is usually much better in terms of the failure rate and Lopez loss (see Tables
12 and 13).

Table 8: The failure rate and p-value for the Kupiec test for V aRt:t+1(α), n = 50,
a = (1, . . . , 1)′

α
(frequency) failure rate Kupiec test p-value

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 0.010 0.015 0.015 1.000 0.508 0.508
0.025 0.020 0.025 0.03 0.639 1.000 0.660
0.05 0.045 0.065 0.06 0.742 0.351 0.529
0.1 0.110 0.12 0.105 0.642 0.359 0.815

Note: The failure rate is defined as the proportion of Dt:t+1’s smaller than the −V aRt:t+1(α)

Table 9: "Tick" and Lopez loss functions for V aRt:t+1(α), n = 50, a = (1, . . . , 1)′

α
"Tick" loss function Lopez loss function

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 2.286 2.341 2.430 63.316 68.848 19.523
0.025 4.389 4.509 4.902 112.060 133.847 99.808
0.05 7.431 7.581 8.018 187.108 227.417 210.195
0.1 12.324 12.427 12.920 348.888 416.769 366.585
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Table 10: Firm’s loss functions for V aRt:t+1(α) and average loss on the portfolio when
the loss is larger than V aRt:t+1(α), n = 50 and a = (1, . . . , 1)′

α

Firm’s loss function
with c = 0.000114 (average WIBOR O/N

rate)

Average loss on the portfolio when the loss is
larger than V aRt:t+1(α)

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 63.325 68.850 19.529 213.700 188.880 215.610
0.025 112.055 133.835 99.793 177.075 169.632 159.928
0.05 187.074 227.361 210.146 146.729 133.258 135.460
0.1 348.786 416.656 366.488 109.687 110.548 112.785

Figure 7: −V aRt:t+1(0.05) for n = 50, a = (1, . . . , 1)′
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Table 11: Correlation coefficients between V aRt:t+1(α) for α = 0.01 and α = 0.05
(upper part), for α = 0.025 and α = 0.1 (lower part), n = 50, a = (1, . . . , 1)′

α=0.01
α=0.025

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR α=0.05

α=0.1

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR

n-variate
MSF-

SBEKK
1 0.446 0.326

n-variate
MSF-

SBEKK
1 0.468 0.361

univariate
SV-

GARCH
0.452 1 0.689

univariate
SV-

GARCH
0.481 1 0.808

CAViaR 0.371 0.795 1 CAViaR 0.329 0.783 1

J. Osiewalski, A. Pajor
CEJEME 2: 253-277 (2010)

268



Bayesian Value-at-Risk for a Portfolio...

Figure 8: −V aRt:t+1(0.01) for n = 50, a = (1, . . . , 1)′
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Table 12: V aRt:t+s(0.05) - univariate MSF-SBEKK (SV-GARCH), n = 50,
a = (1, . . . , 1)′

s 1 2 3 4 5 6 7 8 9 10
FR 0.1 0.075 0.07 0.085 0.065 0.075 0.09 0.07 0.065 0.085

p-value for
Kupiec test 0.00 0.13 0.22 0.04 0.35 0.13 0.02 0.22 0.35 0.04

ALs 12.73 14.67 18.77 24.83 22.70 29.35 35.88 31.31 30.64 40.81
tick loss 7.57 9.99 12.88 14.64 17.16 19.49 19.56 21.37 22.94 24.07

Lopez loss 145.08 206.46 416.52 538.06 752.14 957.59 690.62 859.62 1140.31 1018.98

Table 13: V aRt:t+s(0.05) – n-variate MSF-SBEKK, n = 50, a = (1, . . . , 1)′

s 1 2 3 4 5 6 7 8 9 10
FR 0.065 0.045 0.050 0.035 0.035 0.040 0.045 0.055 0.040 0.040

p-value for
Kupiec test 0.351 0.742 1.000 0.305 0.305 0.502 0.742 0.749 0.502 0.502

ALs 8.21 9.70 14.06 12.13 13.87 16.55 19.20 24.08 19.97 19.79
tick loss 7.51 10.66 13.77 15.15 17.90 18.93 19.68 21.21 23.34 24.35

Lopez loss 114.03 160.67 274.67 263.37 449.77 405.15 127.13 144.04 284.96 313.36

6.2 Comparable shares of assets

Now we use the same stock data as previously, but the considered portfolio consists

of ai = aτ,i =
1
n

n∑
i=1

Sτ,i

Sτ,i
units of asset i, that is ωτ,i = 1

50 , where i = 1, . . . , 50, and τ
represents May 12, 2009. (The values of ai are presented in the last column of Table
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A2.) Of course, the shares ωτ,i vary over time, but they are more balanced than in
the previous case (with one unit of each asset). The logarithmic returns and daily
changes of the portfolio value are shown in Figures 9 and 10, respectively. Again,
we start with T = 998 initial observations (from the period May 13, 2005 – May, 12,
2009) and consider p = 200 VaR assessments for 1-,2-,. . . , 10-day trading horizons.
The results for 1-day ahead VaR (Tables 14–16) do not lead to simple conclusions.
Again, the univariate SV-GARCH model gives VAR assessments that are highly
correlated with the ones based on CAViaR (Table 17). Which model is better depends
on the particular criterion. For example, the "tick" loss indicates some preference
for the n-variate MSF-SBEKK model, while the Lopez and firm’s loss suggest that
CAViaR is the optimal model.

Figure 9: Daily growth rates of the portfolio value; n = 50 and ωτ,i = 1
50 (May 16,

2005 – February 23, 2010); the vertical line represents May 12, 2009
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Figure 10. Daily changes in the portfolio value (May 16, 2005 – February 23, 2010; n=50; 

,i=1/50); the vertical line represents May 12, 2009 
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Figure 10: Daily changes in the portfolio value (May 16, 2005 – February 23, 2010;
n = 50; ωτ,i = 1

50 ); the vertical line represents May 12, 2009
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As previously, we also consider the s-day ahead VaR for s > 1. Again, according to the
Lopez loss criterion, the n-variate MSF-SBEKK model is better than its univariate
counterpart (the SV-GARCH model); the latter becomes important if we focus on
the tick loss for s > 6 and Kupiec test for s > 2 (see Tables 18 and 19).
Note that the empirical findings obtained for the porftolio with balanced shares are
not very similar to the previous ones, based on the portfolio with one unit of each
asset. And both are different from the outcomes for the porfolio in Section 5 (n = 34),
so any generalisation of our empirical results is hardly possible.
Finally, in Table 20 we present the posterior means and standard deviations, based on
the whole time series, for basic MSF-SBEKK parameters (given the OLS estimates of
the remaining parameters); we also show the results for the previous dataset (n = 34).
The approximate posterior moments in n-variate models are very similar for the
two datasets, but their counterparts in univariate SV-GARCH models are different
between the datasets and portfolios (and from the n-variate cases) and show that the
SV part is crucial.

Table 14: The failure rate and p-value for the Kupiec test for V aRt:t+1(α), n = 50,
ωτ,i = 1

50

α
(frequency) failure rate Kupiec test p-value

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 0.01 0.02 0.01 1.000 0.211 1.000
0.025 0.02 0.025 0.025 0.639 1.000 1.000
0.05 0.055 0.04 0.035 0.749 0.502 0.305
0.1 0.09 0.1 0.09 0.632 1.000 0.632

Note: The failure rate is defined as the proportion of Dt:t+1’s smaller than the −V aRt:t+1(α)

Table 15: "Tick" and Lopez loss functions for V aRt:t+1(α), n = 50 and ωτ,i = 1
50

α
"Tick" loss function Lopez loss function

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 1.991 2.084 1.971 20.691 18.022 6.400
0.025 3.942 4.258 4.210 52.341 71.158 13.531
0.05 6.729 6.894 7.211 106.337 146.965 85.306
0.1 11.139 10.996 11.464 241.865 284.189 228.027
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Table 16: Firm’s loss functions for V aRt:t+1(α) and average loss on the portfolio when
the loss is larger than V aRt:t+1(α), n = 50 and ωτ,i = 1

50

α

Firm’s loss function
with c = 0.000114 (average WIBOR O/N

rate)

Average loss on the portfolio when the loss is
larger than V aRt:t+1(α)

n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR n-variate
MSF-SBEKK

univariate
SV-GARCH

CAViaR

0.01 20.698 18.019 6.409 125.351 172.077 151.327
0.025 52.334 71.147 13.522 155.182 156.248 155.489
0.05 106.293 146.936 85.283 122.419 141.029 143.071
0.1 241.782 284.096 227.945 104.454 102.321 106.855

Figure 11: −V aRt:t+1(0.05) for n = 50, ωτ,i = 1
50
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Figure 12. -VaRt:t+1 (0.01) for n=50 and ,i=1/50 
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Table 17: Correlation coefficients between V aRt:t+1(α) for α = 0.01 and α = 0.05
(upper part), for α = 0.025 and α = 0.1 (lower part), n = 50, ωτ,i = 1

50

α=0.01
α=0.025

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR α=0.05

α=0.1

n-variate
MSF-

SBEKK

univariate
SV-

GARCH
CAViaR

n-variate
MSF-

SBEKK
1 0.362 0.264

n-variate
MSF-

SBEKK
1 0.372 0.247

univariate
SV-

GARCH
0.355 1 0.902

univariate
SV-

GARCH
0.402 1 0.986

CAViaR 0.276 0.847 1 CAViaR 0.247 0.765 1

Table 18: V aRt:t+s(0.05) - univariate MSF-SBEKK (SV-GARCH), n = 50, ωτ,i = 1
50

s 1 2 3 4 5 6 7 8 9 10
FR 0.040 0.030 0.040 0.040 0.045 0.040 0.035 0.005 0.010 0.005

p-value for
Kupiec test 0.502 0.162 0.502 0.502 0.742 0.502 0.305 0.000 0.002 0.000

ALs 141.03 203.01 228.68 249.28 230.08 266.19 283.42 255.71 279.58 321.78
tick loss 6.89 10.21 12.86 13.99 14.81 16.89 17.38 18.20 19.59 20.87

Lopez loss 146.97 385.70 356.18 147.67 52.09 133.13 25.03 6.83 3.20 2.19

Table 19: V aRt:t+s(0.05) – n-variate MSF-SBEKK, n = 50, ωτ,i = 1
50

s 1 2 3 4 5 6 7 8 9 10
FR 0.040 0.030 0.040 0.040 0.045 0.040 0.035 0.005 0.010 0.005

p-value for
Kupiec test 0.749 0.502 0.305 0.074 0.008 0.002 0.008 0.000 0.000 0.000

ALs 122.42 182.49 229.79 269.80 277.70 345.78 350.23 353.36 0 0
tick loss 6.729 10.503 12.372 13.375 14.266 16.457 17.801 18.506 19.708 20.962

Lopez loss 106.34 329.20 258.96 70.42 4.87 108.37 42.37 1.54 0.00 0.00

7 Concluding remarks

The aim of the paper was threefold. First, we wanted to compare the n-variate
and univariate approaches to risk assessment for a large portfolio. Second, we were
eager to learn how the new hybrid MSF-SBEKK type I specification would work in
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Table 20: Posterior means (and standard deviations) of the main MSF-SBEKK
parameters

Example model φ σ2
g β γ β + γ

n = 34
T = 1149

n-variate 0.4995 0.1874 0.0167 0.8523 0.8690
(0.0339) (0.0113) (0.0014) (0.0180) (0.0168)

univariate
a = (1, . . . , 1)

0.9817 0.0117 0.0145 0.3105 0.3253
(0.0100) (0.0057) (0.0120) (0.1970) (0.1965)

n-variate 0.5658 0.1223 0.0119 0.8423 0.8542
(0.0311) (0.0076) (0.0010) (0.0184) (0.0177)

n = 50
T = 1198

univariate
a = (1, . . . , 1)

0.9576 0.0351 0.0178 0.6650 0.6828
(0.0334) (0.0196) (0.0159) (0.2927) (0.2869)

univariate
ωτ,i = 1

50

0.9621 0.0479 0.0084 0.6331 0.6425
(0.0171) (0.0177) (0.0075) (0.2949) (0.2934)

practice. Third, we wanted to show the merits of the Bayesian parametric approach
to Value-at-Risk.
It is not clear that, for VaR assessment, univariate modelling (of portfolio value –
instead of portfolio components) is enough as we initially (wrongly) conjectured.
Multivariate specifications of asset prices are necessary for portfolio choice or
optimisation, and they may be useful for forecasting future returns on a given
portfolio as well. Thus, the n-variate MSF-BEKK model may occur practical and
useful also in VaR analysis for large portfolios.
Our empirical study shows that the new hybrid n-variate and univariate models
behave quite well and can compete with the CAViaR nonparametric specification.
They are important all-purpose alternatives to non-parametric models that were
designed to focus on specific aspects of future returns (and not on their full predictive
distribution). Note that our univariate hybrid model appears as an interesting
by-product of the multivariate analysis. It is a new parametric model that integrates
flexibility of the basic SV structure and simplicity of the GARCH(1,1) specification.
However, our results suggest that the GARCH part may be unnecessary when the
posterior distribution of its parameters is not sharp enough as to exclude zero values.
A formal comparison between the pure SV and hybrid SV-GARCH(1,1) models
would require calculating the Bayes factor, which is beyond the scope of this paper.
Finally, the paper indicates that the Bayesian approach to VaR analysis is fully
relevant and practical. Remind that conditioning on observed data as well as
inference on non-linear functions of unobserved quantities (future logarithmic
returns) are necessary for any appropriate VaR analysis. Both are natural and easy
within Bayesian statistics, equipped with the Markov Chain Monte Carlo (MCMC)
simulation tools.
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Appendix

Table A1: Sample characteristics for the first dataset (January 30, 2003 – August 29,
2007; n = 34)

Number company average variance kurtosis minimum maximum
1 BPH 0.111 3.633 5.566 -10.566 9.444
2 BDX 0.099 5.738 10.848 -10.807 21.035
3 DUD 0.142 7.464 84.896 -47.505 12.936
4 ECH 0.205 3.570 6.588 -8.278 8.961
5 EMP 0.207 6.703 74.053 -15.575 43.621
6 GRJ 0.187 4.741 10.388 -12.516 15.453
7 BHW 0.054 2.506 28.503 -20.096 8.734
8 BSK 0.096 1.883 7.090 -6.432 6.652
9 KTY 0.112 3.760 5.918 -11.823 9.019
10 KPX 0.318 11.768 19.581 -15.082 35.398
11 KRB 0.048 3.423 20.872 -21.472 8.961
12 MCI 0.370 13.946 11.538 -20.373 33.178
13 MIL 0.130 5.004 9.131 -12.783 14.458
14 MSX 0.160 13.792 12.555 -24.381 28.768
15 MSZ 0.227 18.058 8.234 -25.300 23.974
16 NET 0.021 3.757 16.142 -20.567 8.444
17 EMF 0.093 9.001 15.841 -22.012 24.686
18 ORB 0.126 4.192 7.993 -15.558 10.178
19 PGF 0.101 4.327 16.119 -10.536 21.767
20 PRC 0.027 24.506 11.560 -28.768 34.484
21 STX 0.099 14.130 12.677 -29.523 23.863
22 STP 0.395 7.523 11.815 -9.237 23.309
23 VST 0.325 7.615 9.840 -10.536 18.666
24 AGO 0.007 4.281 5.500 -11.955 8.072
25 BRE 0.167 3.594 5.007 -7.633 8.898
26 BZW 0.109 4.270 4.090 -8.259 7.496
27 CST 0.193 3.802 9.514 -10.488 13.262
28 GTN 0.208 11.946 35.008 -45.392 24.613
29 KGH 0.182 6.471 5.679 -15.590 9.093
30 PEO 0.086 3.854 4.759 -6.579 11.919
31 PKN 0.100 3.610 3.893 -9.298 7.746
32 PXM 0.349 7.723 7.441 -11.725 16.252
33 PND 0.247 16.735 34.983 -53.870 28.395
34 TPS 0.045 3.237 3.731 -8.359 5.617
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Table A2: Sample characteristics for the first dataset (May 13, 2005 – February 23,
2010, n = 50)

Number company average variance kurtosis minimum maximum ai

1 HANDLOWY 0.007 4.854 11.292 -20.096 9.225 1.413
2 INGBSK 0.037 4.897 6.856 -11.647 9.531 0.244
3 NETIA 0.016 3.792 6.764 -10.110 9.531 21.339
4 LPP 0.072 6.020 7.223 -12.234 17.300 0.073
5 STALPROD 0.164 7.635 5.399 -10.882 14.618 0.163
6 SWIECIE 0.033 4.885 6.807 -11.123 12.925 1.560
7 MILLENNIUM 0.026 9.748 6.466 -16.190 14.458 29.605
8 EMPERIA 0.068 7.473 59.876 -18.232 43.621 1.528
9 EUROCASH 0.129 6.005 5.349 -8.224 12.260 6.872
10 KETY 0.002 5.228 6.380 -12.604 12.047 0.992
11 AMREST 0.094 6.069 6.126 -10.821 11.588 1.466
12 ECHO 0.049 8.247 5.948 -11.778 15.498 24.006
13 CCC 0.109 5.618 5.211 -11.584 9.858 1.925
14 BUDIMEX 0.043 6.849 8.383 -10.807 21.035 1.019
15 ELBUDOWA 0.165 5.547 5.456 -8.895 14.041 0.499
16 ORBIS 0.030 6.583 7.285 -15.558 14.497 1.683
17 SYGNITY -0.165 9.074 8.915 -19.776 21.481 3.608
18 MOSTALWAR 0.209 7.146 6.704 -14.559 16.380 1.353
19 KOGENERA 0.096 5.282 10.381 -13.976 18.623 1.049
20 PEP 0.131 6.179 10.309 -19.980 14.914 2.619
21 NFIEMF 0.079 10.747 10.251 -18.447 24.686 6.821
22 MCI 0.072 15.610 10.049 -20.373 33.178 15.936
23 CIECH 0.020 6.529 9.109 -17.313 13.604 2.203
24 KOPEX 0.148 11.698 9.716 -15.763 28.174 4.014
25 POLNORD 0.105 18.393 27.961 -53.870 28.395 2.304
26 ALCHEMIA 0.126 11.403 15.487 -19.863 30.295 10.777
27 MOSTALZAB 0.151 14.937 6.727 -15.894 23.974 17.707
28 VISTULA -0.003 11.648 9.974 -24.512 18.232 58.976
29 GANT 0.215 29.602 15.746 -51.975 33.547 2.610
30 IMPEXMET 0.034 11.864 9.416 -14.542 25.131 45.394
31 STALEXP 0.003 13.214 9.945 -21.337 26.065 48.013
32 DUDA -0.182 15.286 33.898 -47.505 22.314 79.680
33 MOL 0.000 8.952 8.561 -18.232 17.869 0.408
34 KREDYTB 0.041 5.561 37.723 -33.024 13.414 11.703
35 AGORA -0.081 7.534 5.656 -16.919 10.851 4.746
36 PEKAO 0.019 8.040 6.733 -20.585 13.556 0.635
37 KGHM 0.098 11.039 7.336 -23.624 17.693 1.101
38 PKNORLEN -0.023 6.404 4.637 -12.158 12.866 2.675
39 PKOBP 0.026 6.176 4.736 -12.223 9.973 2.623
40 TPSA -0.014 4.092 3.964 -9.022 8.080 4.327
41 BZWBK 0.053 7.845 4.225 -12.143 11.030 0.776
42 ASSECOPOL 0.070 5.295 9.483 -19.506 13.384 1.443
43 GETIN 0.083 7.456 8.714 -14.957 19.479 12.825
44 GTC 0.055 9.773 5.939 -14.660 17.280 4.115
45 TVN 0.043 7.151 6.331 -15.932 12.859 6.840
46 BRE 0.054 8.092 6.212 -14.150 12.900 0.477
47 PBG 0.110 5.341 4.875 -10.003 9.278 0.360
48 POLIMEXMS 0.105 7.982 5.608 -11.725 14.537 19.973
49 CERSANIT 0.028 8.836 5.328 -13.453 13.573 5.467
50 BIOTON -0.037 14.935 6.687 -16.705 20.479 277.406
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