
Central European Journal of Economic Modelling and Econometrics

Bayesian Variations on the Frisch and Waugh Theme

Jacek Osiewalski∗

Submitted: 19.11.2011, Accepted: 9.12.2011

Abstract

The paper is devoted to discussing consequences of the so-called Frisch-
Waugh Theorem to posterior inference and Bayesian model comparison.
We adopt a generalised normal linear regression framework and weaken
its assumptions in order to cover non-normal, jointly elliptical sampling
distributions, autoregressive specifications, additional nuisance parameters and
multi-equation SURE or VAR models. The main result is that inference based
on the original full Bayesian model can be obtained using transformed data
and reduced parameter spaces, provided the prior density for scale or precision
parameters is appropriately modified.
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Jacek Osiewalski

1 Introduction

In their 1933 Econometrica paper Ragnar Frisch and Frederic V. Waugh showed that
in a time-series context the same OLS estimates were obtained whether a regression
with a time trend was fitted to original variables or the "de-trended" data were used
in a regression without trend variable. This simple result is a consequence of purely
algebraic properties of the OLS estimator. 70 years later it was formulated in a
more general way; Greene (2003, p.27) stated the "Frisch-Waugh Theorem" in the
following form (slightly modified here):

In the linear least squares regression of vector y on two sets of variables, X1 and
X2, the sub-vector b1 [of the OLS estimator b] is the set of coefficients obtained when
the residuals from a regression of y on X2 alone are regressed on the set of residuals
obtained when each column of X1 is regressed on X2.

Intuitively, and quite obviously, this result is applicable in the Bayesian context when
posterior calculations coincide with the OLS ones. In particular, in the normal linear
regression framework with the Jeffreys prior density we can obtain the marginal
posterior distribution of the sub-vector β1 (of the regression parameter vector β)
using only the OLS residuals defined above. The same holds for linear autoregressive
models under an improper uniform prior on the coefficients. This justifies building the
Bayesian model in terms of appropriately transformed observables (de-trended, de-
seasonalised, . . . ) and β1 alone (instead of β). Care should be taken, however, about
the form of the prior density in such reduced Bayesian models in order to guarantee
coherence with the original model.
The aim of this paper is to formally discuss such coherence issues within a generalized
normal linear regression model and to weaken its assumptions in order to cover
non-normal elliptical sampling distributions, autoregressive specifications, additional
nuisance parameters and multi-equation framework. We consider not only posterior
inference on parameters of interest (β1), but also the calculation of Bayes factors for
competing specifications. The main result is that using transformed data and reduced
parameter spaces is fully coherent with the Bayesian model for original observables
and parameters, provided the prior density for the scale or precision parameters is
appropriately modified.
The motivation for such an elementary Bayesian study came mainly from Kleibergen
and Paap (2002). In that paper the VAR(1) model was built for highly transformed
economic time series in order to exclusively focus on long-run properties. However,
the prior density was not modified accordingly. Although the appropriate correction
of the prior can be less important in practice, there is still some need for a basic
theoretical Bayesian study focused on coherence of specifications for original and
transformed variables.
The structure of the paper is as follows. In the next section the basic model framework
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is presented and the simplest Bayesian result is formulated. Important generalizations
are discussed in sections 3 and 4.

2 The basic multiple regression framework
We consider the generalized regression model (with non-random regressors)

y
(n×1)

= X
(n×K)

β
(K×1)

+ ε = X1
(n×K1)

β1
(K1×1)

+ X2
(n×K2)

β2
(K2×1)

+ ε,

E(ε) = 0, V (ε) = τ−1Ω,
(1)

where K = K1 + K2 < n, X has full column rank K, Ω is symmetric
positive definite and β2 as well as τ > 0 are nuisance parameters. The K1-
dimensional sub-vector (corresponding to β1) of the GLS estimator of β can be

written as b1 =
(
X̃ ′1Ω−1X̃1

)−1

X̃ ′1Ω−1ỹ where ỹ = My, X̃1 = MX1, M =

In − X2

(
X ′2Ω−1X2

)−1
X ′2Ω−1. That is, b1 can be obtained using GLS directly to

the appropriately transformed variables, as if

ỹ
(n×1)

= X̃1
(n×K1)

β1
(K1×1)

+ ε∗, E(ε∗) = 0, V (ε∗) = τ−1Ω. (2)

We call (2) a quasi-model, because the true relationship is

ỹ = X̃1β1 + ε̃, ε̃ = Mε, E(ε̃) = 0, V (ε̃) = τ−1MΩM ′,

with a singular covariance matrix as M is singular. An obvious Bayesian application
of these consequences of purely algebraic properties of the GLS estimator can be
stated as follows:

Lemma 1. Let the error term in (1) be n-variate Normal, let X be non-random
and let Ω be fully known. Assume the prior density p (β, τ) = p (β1, τ) p (β2) =
c2p (β1, τ), β2 ∈ RK2 where c2 is an arbitrary positive constant (i.e., the prior density
for β2 is improper uniform). Then p (y, β1, τ) ∝ τ−

K2
2 p (β1, τ) fn

N

(
ỹ|X̃1β1, τ

−1Ω
)

i.e., the marginal density p (y, β1, τ), and thus the posterior density for (β1, τ), can
be obtained as if the transformed data followed the auxiliary quasi-model (2) and we
took p∗ (β1, τ) ∝ τ−

K2
2 p (β1, τ) as the prior.

Remark that fn
N (w|a,D) = (2π)−

n
2 (detD)−

1
2 exp

[
− 1

2 (w − a)′D−1(w − a)
]
is here

used to denote not only the probability density function of the Normal distribution.
When applied to ỹ = My, with singular M , it gives the functional form of the
improper density of y (given β1 and τ) that appears after integrating out β2 from the
original Bayesian model (which is a σ-finite measure, but not a probability measure).
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Proof: Our assumptions lead to the Bayesian model characterised by the joint density
function p (y, β1, β2, τ) = c2p (β1, τ) fn

N

(
y|X1β1 +X2β2, τ

−1Ω
)
, which can also be

written as

p (y, β1, β2, τ) = c2 (2π)
K2
2
[
det
(
X ′2Ω−1X2

)]− 1
2 τ−

K2
2 p (β1, τ) ·

·fn
N

(
ỹ|X̂1β1, τ

−1Ω
)
·

·fK2
N

(
β2|β̂2 (β1) , τ−1

(
X ′2Ω−1X2

)−1
)
,

(3)

where β̂2 (β1) =
(
X ′2Ω−1X2

)−1
X ′2Ω−1 (y −X1β1) is the conditional GLS estimate of

β2 (given β1). Integrating out the nuisance parameter vector β2 we obtain the desired
result:

p (y, β1, τ) = c2 (2π)
K2
2
[
det
(
X ′2Ω−1X2

)]− 1
2 τ−

K2
2 p (β1, τ) fn

N

(
ỹ|X̃1β1, τ

−1Ω
)
, (4)

where all positive constants can be omitted for the purpose of posterior inference.

3 Useful generalisations
The assumptions of Lemma 1 are very strong and they unnecessarily restrict the scope
of Bayesian applications of the Frisch-Waugh theorem. So we consider important
extensions: random regressors depending on y, non-Normal elliptical distributions of
ε and, finally, unknown Ω (in the next section). We would like to cover autoregressive
models first. Their crucial feature is that the transformation from ε to y in (1) is
one to one with unitary Jacobian. Note that in the case of autoregressive models we
condition on some initial observations without making this conditioning explicit in
our notation.

Lemma 2. Let the error term in (1) be n-variate Normal with fully known positive
definite matrix Ω, let X be such a function of y that the transformation from ε to
y is 1 - 1 with unitary Jacobian (and X is of full column rank with probability 1).
Then, under the prior p (β, τ) = p (β1, τ) p (β2) = c2p (β1, τ), one obtains the following
marginal density

p (y, β1, τ) ∝
[
det
(
X ′2Ω−1X2

)]− 1
2 τ−

K2
2 p (β1, τ) fn

N

(
ỹ|X̃1β1, τ

−1Ω
)
.

Proof: Due to the assumption of unitary Jacobian, the Bayesian model is now
represented by the joint density function of exactly the same form as in (3) and,
thus, (4) holds. The only difference is that now X1 and X2 are functions of y, so we
cannot omit the determinant in (4).
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Hence, despite random regressors depending on y, the posterior density for (β1, τ)
can be obtained using the auxiliary quasi-model (2) and p∗ (β1, τ) ∝ τ−

K2
2 p (β1, τ) as

the prior.
The results presented in Lemma 1 and 2 are important not only for posterior inference
on the parameter of interest (β1) in one particular regression or autoregressive model,
but also for Bayesian model comparison through Bayes factors and posterior odds,
provided that the competing models differ only by the part involving parameters of
interest. Assume that y = X

(j)
1 β

(j)
1 +X2β2 + ε (with β(j)

1 of dimension K(j)
1 ; j = 1, 2)

represent alternative models for the same y. These specifications fulfil all assumptions
of Lemma 2, with p(j)

(
β

(j)
1 , τ

)
as priors for τ and model specific parameters. Using

(4) for each model separately, we can write the Bayes factor B12 =
p(1) (y)
p(2) (y)

as the

ratio of two integrals, A1 and A2, where

Aj =
∫ ∫

τ−
K2
2 p
(
β

(j)
1 , τ

)
fn

N

(
ỹ|X̃(j)

1 β
(j)
1 , τ−1Ω

)
dτ dβ

(j)
1 (j = 1, 2).

Thus, the fully correct Bayes factor can be obtained using two auxiliary Bayesian
models for transformed data (that is, two quasi-models of the form (2) together with
appropriately modified priors). The formal explanation is that p(1) (y) and p(2) (y)

have common part equal to c (2π)
K2
2
[
det
(
X ′2Ω−1X2

)]− 1
2 (see (4)), which cancels

when the Bayes factor is calculated.
In most cases the value of the Bayes factor cannot be obtained using the analytical

approach. But if p
(
β

(j)
1 , τ

)
= f

K
(j)
1

N

(
β

(j)
1 |a(j), τ−1D(j)

)
fG

(
τ |n0

2 ,
s0
2

)
, i.e. the

priors are of the natural conjugate Normal-Gamma form, then the Bayes factor

B12 can be expressed as B12 = A1
A2

=
[

det
(

Ω+X̃
(2)
1 D(2)X̃

(2)
1
′
)

det
(

Ω+X̃
(1)
1 D(1)X̃

(1)
1
′
)] 1

2 (
S2
S1

)n+n0−K2
2

, where

Sj = s0 +
(
ỹ − X̃(j)

1 a(j)
)′ (

Ω + X̃
(j)
1 D(j)X̃

(j)
1
′
)−1 (

ỹ − X̃(j)
1 a(j)

)
. Note that in the

prior structure assumed here the marginal Gamma prior for τ (with mean n0
s0

and variance 2 n0
(s0)2

) is common, only the conditional Normal priors for model-
specific parameters differ. This leads to so simple analytical results. The factor(

S2
S1

)−K2
2

in B12 corresponds to the term τ−
K2
2 in the integrands of A1 and A2.

Thus, the lack of the prior correction term τ−
K2
2 would result in an incorrect value

B∗12 = B12

(
S2
S1

)K2
2

instead of the true Bayes factor B12 for comparing specifications

y = X
(j)
1 β

(j)
1 +X2β2 + ε (j = 1, 2) under an improper uniform prior of common β2.

As yet, we have assumed a general prior structure for (β1, τ). But Osiewalski and Steel
(1993a,b) showed that the Jeffreys prior of the precision parameter τ ensures perfect
robustness of the form of p (y, β) with respect to changes of the distribution of ε within
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the class of all n-variate continuous ellipsoidal distributions. This immediately leads
to:

Lemma 3. Let the error term of the relation y = X1β1 + X2β2 + ε be n-variate
ellipsoidal with the density function p (ε|β1, β2, τ) =

[
det
(
τ−1Ω

)]− 1
2 g
(
τ · ε′Ω−1ε

)
,

where g is a non-negative function such that
∞∫
0

g(z)z
n−2

2 dz = π−
n
2 Γ
(

n
2

)
. Let Ω be

fully known and let X = [X1 X2] be such a function of y that the transformation from
ε to y is 1 - 1 with unitary Jacobian (and X is of full column rank with probability
1). Assume an improper prior p (β, τ) = p (β1) p (β2) p (τ) = cτ−1p (β1), β2 ∈ RK2 ,
τ ∈ R1

+. Then the true marginal density function of y and β1, p (y, β1), can be
obtained by integrating out τ from the auxiliary function

pN (y, β1, τ) = c (2π)
K2
2
[
det
(
X ′2Ω−1X2

)]− 1
2 τ−

K2+2
2 p (β1) fn

N

(
ỹ|X̃1β1, τ

−1Ω
)
. (5)

Proof: The Bayesian model is now represented by the joint density

p (y, β, τ) = cτ−1p (β1)
[
det
(
τ−1Ω

)]− 1
2 g
(
τε′Ω−1ε

)
= cτ

n−2
2 p (β1) det (Ω)−

1
2 g
(
τε′Ω−1ε

)
.

where ε = y − (X1β1 +X2β2). Using the basic property of the
nonnegative function g we easily integrate τ out and obtain p (y, β) =
c (π)−

n
2 Γ
(

n
2

)
(det Ω)−

1
2 p (β1)

(
ε′Ω−1ε

)−n
2 , which does not depend on the particular

form of g and, thus, is the same as under Normality of the error vector, i.e., as for
g(z) = (2π)−

n
2 exp

(
− z

2

)
; see Osiewalski and Steel (1993a,b). Hence, in order to derive

p (y, β1), we can work with the Bayesian model

pN (y, β1, β2, τ) = cτ−1p (β1) fn
N

(
y|X1β1 +X2β2, τ

−1Ω
)
,

which is marginally equivalent to the original specification. Using Lemmas 1 and 2

we get (5) and, thus, p (y, β1) = pN (y, β1) =
∞∫
0

pN (y, β1, τ) dτ .

Lemma 3 explains that the marginal posterior distribution of β1 alone (but not of τ)
can be obtained using transformed data, provisionally assuming for them the normal
quasi-model (2) and the prior p∗ (β1, τ) ∝ τ−

K2+2
2 p (β1). The fact that posterior

inference on τ is sensitive to the particular form of the ellipsoidal distribution of the
error vector is of little importance as τ is a nuisance parameter (as well as β2).
Under an improper uniform prior for β1, the additional factor τ−

K2
2 in the prior

specification for the auxiliary quasi-model (2) has an obvious interpretation. It
guarantees the correct degrees of freedom (n − K1 − K2 instead of n − K1) of the
Student tmarginal posterior distribution of β1. Working with transformed data means
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integrating out nuisance regression parameters first. This has to be reflected in the
Bayesian quasi-model in order to assure its coherence in terms of p (y, β1) with the
original Bayesian model for untransformed data.

4 Unknown Ω and multi-equation specifications

If the symmetric positive definite matrix Ω is not fully known, but it is only a known
function of some additional unknown parameters, say λ, then things may significantly
complicate. Let us keep all the assumptions of Lemma 3, except that now Ω =
Ω(λ) and the prior is defined on a larger space: p (β, λ, τ) = p (β1, λ) p (β2) p (τ) =
cτ−1p (β1, λ). The same reasoning as in two preceding sections leads to the conclusion
that the marginal density function of y, β1 and λ, p (y, β1, λ), can be obtained by
integrating out τ from the function

pN (y, β1, λ, τ) = c (2π)
K2
2
[
det
(
X ′2Ω−1X2

)]− 1
2 τ−

K2+2
2 p (β1, λ) fn

N

(
ỹ|X̃1β1, τ

−1Ω
)
,

(6)
where both the determinant and, more importantly, the data transformation depend
on λ through Ω. Such dependence makes (6) practically useless.
There is a model structure, however, where - despite the presence of unknown λ - the
data transformation does not involve parameters and, additionally, the determinant
in (6) is multiplicatively separable in the data and unknown λ. This occurs in multi-
equation SURE or VARmodels due to their Kronecker product structure. Let n = mT
(n has been used to denote the dimension of y; now y is divided into m blocks, each
of dimension T ) and assume X2 = Im ⊗Z2, τ−1Ω = Σ⊗ IT = τ−1

(
C−1 ⊗ IT

)
where

Z2 is T × k2 and it has full rank k2 (the column dimension of X2 is K2 = k2m), Σ
is an unknown m ×m symmetric, positive definite matrix, and (τ, C) are such that
τC = Σ−1 and c11 = 1 in C. In this case one easily obtains X ′2Ω−1X2 = C ⊗ (Z ′2Z2)
and

M = Im ⊗
[
IT − Z2 (Z ′2Z2)−1

Z ′2

]
. (7)

Thus, the transformation of y andX1, appearing in the last term of (6), solely depends
on Z2 and the determinant in (6) has the required product structure. The form
of the model with so simple algebraic properties is well known; its i-th equation
(i = 1, . . . ,m) can be written as

y(i)
(T×1)

= Z1(i)
(T×k1(i))

β1(i)
(k1(i)×1)

+ Z2
(T×k2)

β2(i)
(k2×1)

+ ε(i). (8)

where the first part of the structure allows for possibly different variables in each
equation and cross-equation restrictions, while the second part assumes the same k2

regressors in each equation and completely free nuisance coefficients (with no cross-
equation restrictions). In order to put (8) into the framework of the initial specification
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(1) we write

y =

 y(1)

· · ·
y(m)

 , X1 =

 Z1(1) · · · 0
· · · · · · · · ·
0 · · · Z1(m)

 , β1 =

 β1(1)

· · ·
β1(m)

 ,

X2 = Im ⊗ Z2, β2 =

 β2(1)

· · ·
β2(m)

 , ε =

 ε(1)

· · ·
ε(m)


and stress that only X2 need to have the Kronecker product structure, although
both X1 and X2 are block-diagonal (the column dimension and rank of X1 is K1 =
m∑

i=1

k1(i), the same as the row dimension of β1). Finally, let λ be the column vector of

dimension L = (m+1)m−2
2 that consists of all distinct unknown entries of C; formally

vech(C)=[1 λ′]′.

Theorem. Let ε, the vector grouping the error terms of the whole system
(8), be mT -variate ellipsoidal with the density function p

(
ε|β1, β2,Σ−1

)
=[

det
(
Σ−1 ⊗ IT

)] 1
2 g
[
ε′
(
Σ−1 ⊗ IT

)
ε
]
, where g is a non-negative function such that

∞∫
0

g(z)z
n−2

2 dz = π−
n
2 Γ
(

n
2

)
. Let X1 and X2 be such functions of y that the

transformation from ε to y is 1 - 1 with unitary Jacobian. Assume an improper
prior p

(
β,Σ−1

)
= p (β1) p (β2) p

(
Σ−1

)
= cp (β1)

[
det
(
Σ−1

)]−m+1
2 . Then the true

marginal density function of y and β1, p (y, β1), can be obtained by integrating out
Σ−1 from the auxiliary function

pN

(
y, β1,Σ−1

)
= c (2π)

mk2
2 [det (Z ′2Z2)]−

m
2
[
det
(
Σ−1

)]− k2+m+1
2

·p (β1) fmT
N

(
ỹ|X̃1β1,Σ⊗ IT

)
.

(9)

Proof: Remind that Σ−1 = τC and vech(C) =[1 λ′]′. Thus, vech
(
Σ−1

)
= τ [1 λ′]′,

the Jacobian of the transformation from Σ−1 to (τ, C) is τL and, in terms of (λ, τ),
the prior is

p (β, τ, λ) = cp (β1) [det (τC)]−
m+1

2 τ
m(m+1)−2

2 = cp (β1) det (C)−
m+1

2 τ−1,

i.e. of the form p (β, τ, λ) = cτ−1p (β1, λ), which, for any g, guarantees perfect
marginal equivalence of our Bayesian model p (y, β1, β2, τ, λ) and the auxiliary
Bayesian model pN (y, β1, β2, τ, λ) based on the Normality assumption for the error
vector. That is, p (y, β1, β2, λ) and pN (y, β1, β2, λ) coincide, and so do their respective
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marginal density functions p (y, β1) and pN (y, β1). But, in order to derive the latter,
we can first integrate β2 from pN (y, β1, β2, τ, λ); this leads to (6), which in the case
of model (8) specialises to

pN (y, β1, τ, λ) = c (2π)
mk2

2 [det (Z ′2Z2)]−
m
2 (detC)−

k2+m+1
2 τ−

mk2+2
2

·p (β1) fmT
N

(
ỹ|X̃1β1, τ

−1
(
C−1 ⊗ IT

))
,

(10)

where the data transformation matrix is given in (7). The change of parameterisation
in (10), from (τ , C) back to Σ−1 (with Jacobian equal to τ−L), leads to pN

(
y, β1,Σ−1

)
in (9), which yields the required marginal density function pN (y, β1) = p (y, β1).
In order to perform valid posterior inference on β1(i)’s in the m-equation system (8),
we can use the auxiliary quasi-model for transformed data, i.e. the last factor in (9),

but we have to multiply the original prior by
[
det
(
Σ−1

)]− k2
2 . In the specific case of a

m-variate regression model, i.e. for k1(i) = k1 (i = 1, . . . ,m) and X1 = Im ⊗Z1, with
the improper uniform prior for the K1–(i.e., mk1–)dimensional vector β1 (grouping all
β1(i)’s), the marginal posterior distribution of β1(i) in equation i is k1-variate Student
t with T − k1− k2−m+ 1 degrees of freedom (see Zellner 1971), not T − k1−m+ 1.
For systems with large number of nuisance coefficients (k2) and small sample size T
(short time series) the degrees of freedom correction can be practically important.
As explained in Section 3, our results are important not only for posterior inference
on β1. They also justify using auxiliary quasi-models for transformed data together
with appropriately modified priors when one wants to make the formal Bayesian
comparison of different m-equation systems (8) which differ only in the part involving
β1(i)’s.
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