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Abstract

We generalize Athey�s (2001) and McAdams� (2003) results on the existence of
monotone pure strategy equilibria in Bayesian games. We allow action spaces to be
compact locally-complete metrizable semilattices and type spaces to be partially or-
dered probability spaces. Our proof is based upon contractibility rather than convexity
of best reply sets. Several examples illustrate the scope of the result, including new
applications to multi-unit auctions with risk-averse bidders.

1. Introduction

In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib-

rium exists whenever a Bayesian game satis�es a Spence-Mirlees single-crossing property.

Athey�s result is now a central tool for establishing the existence of monotone pure strat-

egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently,

McAdams (2003) has shown that Athey�s results, which exploit the assumed total order-

ing of the players�one-dimensional type and action spaces, can be extended to settings in

which type and action spaces are multi-dimensional and only partially ordered. This permits

new existence results in auctions with multi-dimensional types and multi-unit demands (see

McAdams (2004)). The techniques employed by Athey and McAdams, while ingenious, have

their limitations and do not appear to easily extend beyond the environments they consider.

We therefore introduce a new approach.

The approach taken here exploits an important unrecognized property of a large class of

Bayesian games. In these games, the players�pure-strategy best-reply sets, while possibly

�I wish to thank David McAdams, Roger Myerson, Max Stinchcombe and Jeroen Swinkels for helpful
conversations, and Sergiu Hart and Benjamin Weiss for providing an example of a compact metrizable
semilattice that is not locally complete. Financial support from the National Science Foundation (SES-
9905599, SES-0214421, SES-0617884) is gratefully acknowledged.



nonconvex, are always contractible.1 This observation permits us to generalize the results of

Athey and McAdams in several directions. First, we permit in�nite-dimensional type spaces

and in�nite-dimensional action spaces. Both can occur, for example, in share-auctions where

a bidder�s type is a function expressing his marginal valuation at any quantity of the good,

and where a bidder�s action is a downward-sloping demand schedule. Second, even when type

and action spaces are subsets of Euclidean space, we permit more general joint distributions

over types, allowing one player to have private information about the support of another�s

private information, as well as permitting positive probability on lower dimensional subsets,

which can be useful when modeling random demand in auctions. Third, our approach allows

general partial orders on both type spaces and action spaces. This can be especially helpful

because, while single-crossing may fail for one partial order, it might nonetheless hold for

another, in which case our existence result can still be applied (see section 5 for two such

applications). Finally, while single-crossing is helpful in establishing the hypotheses of our

main theorem, it is not necessary; our hypotheses are satis�ed even in instances where single-

crossing fails.

The key to our approach is to employ a more powerful �xed point theorem than those

employed in Athey (2001) and McAdams (2003). Both Athey and McAdams apply a �xed-

point theorem to the product of the players�best-reply correspondences � Athey applies

Kakutani�s theorem, McAdams applies Glicksberg�s theorem. In both cases, essentially all

of the e¤ort is geared toward proving that sets of monotone pure-strategy best replies are

convex. Our central observation is that this impressive e¤ort is unnecessary and, more

importantly, that the additional structure imposed to achieve the desired convexity (i.e.,

Euclidean type spaces with the coordinatewise partial order, Euclidean sublattice action

spaces, absolutely continuous type distributions), is unnecessary as well.

The �xed point theorem upon which our approach is based is due to Eilenberg and

Montgomery (1946) and does not require the correspondence in question to be convex-

valued. Rather, the correspondence need only be contractible-valued. Consequently, we

need only demonstrate that monotone pure-strategy best-reply sets are contractible. While

this task need not be straightforward in general, it turns out to be essentially trivial in the

class of Bayesian games of interest here. To gain a sense of this, note �rst that a pure

strategy � a function from types to actions � is a best reply for a player if and only if it

is a pointwise interim best reply for almost every type of that player. Consequently, any

piecewise combination of two best replies � i.e., a strategy equal to one of the best replies

on some subset of types and equal to the other best reply on the remainder of types � is

also a best reply. Thus, by reducing the set of types on which the �rst best reply is employed

1A set is contractible if it can be continuously deformed, within itself, to a single point. Convex sets are
contractible, but contractible sets need not be convex (e.g., the symbol �+�viewed as a subset of R2).
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and increasing the set of types on which the second is employed, it is possible to move from

the �rst best reply to the second, all the while remaining within the set of best replies. With

this simple observation, the set of best replies can be shown to be contractible.2

Because contractibility of best-reply sets follows almost immediately from the pointwise

almost everywhere optimality of interim best replies, we are able to expand the domain of

analysis well beyond Euclidean type and action spaces, and most of our additional e¤ort is di-

rected here. In particular, we require and prove two new results about the space of monotone

functions from partially ordered probability spaces into compact metric semilattices. The

�rst of these results (Lemma A.10) is a generalization of Helly�s selection theorem stating

that, under suitable conditions, any sequence of monotone functions possesses a pointwise

almost everywhere convergent subsequence. The second result (Lemma A.16) provides con-

ditions under which the space of monotone functions is an absolute retract, a property that,

like convexity, renders a space amenable to �xed point analysis.

Our main result, Theorem 4.1, is as follows. Suppose that action spaces are compact

convex semilattices or compact locally-complete metric semilattices, that type spaces are

partially ordered probability spaces, that payo¤s are continuous in actions for each type

vector, and that the joint distribution over types induces atomless marginals for each player

assigning positive probability only to sets that can be order-separated by a �xed countable

set of his types.3 If, whenever the others employ monotone pure strategies, each player�s set

of monotone pure-strategy best replies is nonempty and join-closed,4 then a monotone pure

strategy equilibrium exists.

We provide several applications yielding new existence results. First, we consider both

uniform-price and discriminatory multi-unit auctions with independent private values. We

depart from standard assumptions by permitting bidders to be risk averse. Under risk

aversion, monotonicity of best replies is known to fail under the standard coordinatewise

partial order over types. Nevertheless, by employing an alternative, yet natural, partial

order over types, we are able to demonstrate the existence of a monotone pure strategy

equilibrium with respect to this partial order. In the uniform-price auction no additional

assumptions are required, while in the discriminatory auction each bidder is assumed to have

CARA preferences. Another application considers a price-competition game between �rms

selling di¤erentiated products. Firms have private information about their constant marginal

2Because we are concerned with monotone pure strategy best replies, some care must be taken to ensure
that one maintains monotonicity throughout the contraction. Further, continuity of the contraction requires
appropriate assumptions on the distribution over players�types. In particular there can be no atoms.

3One set is order-separated by another if the one set contains two points between which lies a point in
the other.

4A subset of strategies is join-closed if the pointwise supremum of any pair of strategies in the set is also
in the set.
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cost as well as private information about market demand. While it is natural to assume that

costs may be a¢ liated, in the context we consider it is less natural to assume that information

about market demand is a¢ liated. Nonetheless, and again through a judicious choice of a

partial order over types, we are able to establish the existence of a pure strategy equilibrium

that is monotone in players�costs, but not necessarily monotone in their private information

about demand. Our �nal application establishes the existence of monotone mixed strategy

equilibria when type spaces have atoms.5

If the actions of distinct players are strategic complements �an assumption we do not

impose �Van Zandt and Vives (2006) have shown that even stronger results can be obtained.

They prove that monotone pure strategy equilibria exist under somewhat more general dis-

tributional and action-space assumptions than we employ here, and demonstrate that such

an equilibrium can be obtained through iterative application of the best reply map.6 Van

Zandt and Vives (2006) obtain perhaps the strongest possible results for the existence of

monotone pure strategy equilibria in Bayesian games when strategic complementarities are

present. Of course, while many interesting economic games exhibit strategic complements,

many do not. Indeed, many auction games satisfy the hypotheses required to apply our

result here, but fail to satisfy the strategic complements condition.7 The two approaches are

therefore complementary.

The remainder of the paper is organized as follows. Section 2 presents the essential ideas

as well as the corollary of Eilenberg and Montgomery�s (1946) �xed point theorem that is

central to our approach. Section 3 describes the formal environment, including semilattices

and related issues. Section 4 contains our main result, section 6 contains its proof, and

section 5 provides several applications.

2. The Main Idea

As already mentioned, the proof of our main result is based upon a �xed point theorem

that permits the correspondence for which a �xed point is sought � here, the product of

the players�monotone pure best reply correspondences � to have contractible rather than

convex values.

In this section, we introduce this �xed point theorem and also illustrate the ease with

5A player�s mixed strategy is monotone if every action in the totally ordered support of one of his types
is greater or equal to every action in the totally ordered support of any lower type.

6Related results can be found in Milgrom and Roberts (1990) and Vives (1990).
7In a �rst-price IPV auction, for example, a bidder might increase his bid if his opponent increases her

bid slightly when her private value is high. However, for su¢ ciently high increases in her bid at high private
values, the bidder might be better o¤ reducing his bid (and chance of winning) to obtain a higher surplus
when he does win. Such strictly optimal nonmonotonic responses to increases in the opponent�s strategy are
not possible under strategic complements.
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which contractibility can be established, focussing on the most basic case in which type

spaces are [0; 1], action spaces are subsets of [0; 1], and the marginal distribution over each

player�s type space is atomless.

A subset X of a metric space is contractible if for some x0 2 X there is a continuous

function h : [0; 1]�X ! X such that for all x 2 X; h(0; x) = x and h(1; x) = x0: We then
say that h is a contraction for X:

Note that every convex set is contractible since, choosing any point x0 in the set, the

function h(� ; x) = (1� �)x+ �x0 is a contraction. On the other hand, there are contractible
sets that are not convex (e.g., the symbol �+�). Hence, contractibility is a strictly more

permissive condition than convexity.

A subsetX of a metric space Y is said to be a retract of Y if there is a continuous function

mapping Y onto X leaving every point of X �xed. A metric space (X; d) is an absolute

retract if for every metric space (Y; �) containing X as a closed subset and preserving its

topology, X is a retract of Y: Examples of absolute retracts include closed convex subsets

of Euclidean space or of any metric space, and many nonconvex sets as well (e.g., any

contractible polyhedron).8 The �xed point theorem we make use of is the following corollary

of an even more general result due to Eilenberg and Montgomery (1946).9

Theorem 2.1. Suppose that a compact metric space (X; d) is an absolute retract and that

F : X � X is an upper-hemicontinuous, nonempty-valued, contractible-valued correspon-

dence.10 Then F has a �xed point.

For our purposes, the correspondence F is the product of the players�monotone pure

strategy best reply correspondences and X is the product of their sets of monotone pure

strategies. While we must eventually establish all of the properties necessary to apply The-

orem 2.1, our modest objective for the remainder of this section is to show, with remarkably

little e¤ort, that in the simple environment considered here, F is contractible-valued, i.e.,

that monotone pure best reply sets are contractible.

Suppose that player 1�s type is drawn uniformly from the unit interval [0; 1]. Fix

monotone pure strategies for other players, and suppose that �s : [0; 1] ! A is a monotone

best reply for player 1, where A � [0; 1] is player 1�s compact action set. Indeed, suppose

that �s is player 1�s largest monotone best reply in the sense that if s is any other monotone

8Indeed, a compact subset, X; of Euclidean space is an absolute retract if and only if it is contractible
and locally contractible. The latter means that for every x0 2 X and every neighborhood U of x0; there is
a neighborhood V of x0 and a continuous h : [0; 1] � V ! U such that h(0; x) = x and h(1; x) = x0 for all
x 2 V:

9Theorem 2.1 follows directly from Eilenberg and Montgomery (1946) Theorem 1, because every ab-
solute retract is a contractible absolute neighborhood retract (Borsuk (1966), V (2.3)) and every nonempty
contractible set is acyclic (Borsuk (1966), II (4.11)).
10By upper-hemicontinuous, we shall always mean that the correspondence in question has a closed graph.
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best reply, then �s(t) � s(t) for every type t of player 1: We shall provide a contraction that
shrinks player 1�s entire set of monotone best replies, within itself, to the largest monotone

best reply �s: The simple, but key, observation is that a pure strategy is a best reply for player

1 if and only if it is a pointwise best reply for almost every type t 2 [0; 1] of player 1.
Consider the following candidate contraction. For � 2 [0; 1] and any monotone best reply,

s; for player 1, de�ne h(� ; s) : [0; 1]! A as follows:

h(� ; s)(t) =

(
s(t);

�s(t);

if t � 1� � and � < 1
otherwise.

Note that h(0; s) = s; h(1; s) = �s; and h(� ; s)(t) is always either �s(t) or s(t) and so is a

best reply for almost every t. Hence, by the key observation in the previous paragraph,

h(� ; s)(�) is a best reply. The pure strategy h(� ; s)(�) is monotone because it is the smaller
of two monotone functions for low values of t and the larger of them for high values of t.

Moreover, because the marginal distribution over player 1�s type is atomless, the monotone

pure strategy h(� ; s)(�) varies continuously in the arguments � and s; when the distance
between two strategies of player 1 is de�ned to be the integral with respect to his type

distribution of their absolute pointwise di¤erence (see section 6).11 Consequently, h is a

contraction under this metric, and so player 1�s set of monotone best replies is contractible.

It�s that simple.

Figure 2.1 shows how the contraction works when player 1�s set of actions A happens to

be �nite, so that his set of monotone best replies cannot be convex in the usual sense unless

it is a singleton. Three monotone functions are shown in each panel, where 1�s actions are

on the vertical axis and 1�s types are on the horizontal axis. The dotted line step function

is s; the solid line step function is �s; and the thick solid line step function (red) is the step

function determined by the contraction h:

In panel (a), � = 0 and h coincides with s. The position of the vertical line (blue)

appearing in each panel represents the value of � : The vertical line (blue) appearing in each

panel intersects the horizontal axis at the point 1 � � . When � = 0 the vertical line is at

the far right-hand side, as shown in panel (a). As indicated by the arrow, the vertical line

moves continuously toward the origin as � moves from 0 to 1. The thick (red) step function

determined by the contraction h is s(t) for values of t to the left of the vertical line and is

�s(t) for values of t to the right; see panels (b) and (c). The step function h therefore changes

continuously with � because the areas between strategies change continuously. In panel (d),

� = 1 and h coincides with �s: So altogether, as � moves continuously from 0 to 1; the image

of the contraction moves continuously from s to �s:

11This particular metric is important because it renders a player�s payo¤ continuous in his strategy choice.
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(a) (b)

(c) (d)

Figure 2.1: The Contraction

Two points are worth mentioning before moving on. First, single-crossing plays no role

in establishing the contractibility of sets of monotone best replies. As we shall see, ensuring

the existence of monotone pure strategy best replies is where single-crossing can be helpful.

Thus, the present approach clari�es the role of single-crossing insofar as the existence of

monotone pure strategy equilibrium is concerned.12 Second, the action spaces employed in

the above illustration are totally ordered, as in Athey (2001). Consequently, if two actions

are optimal for some type of player 1, then the maximum of the two actions, being one or

the other of them, is also optimal. The optimality of the maximum of two optimal actions

is important for ensuring that a largest monotone best reply exists. When action spaces are

only partially ordered (e.g., when actions are multi-dimensional with, say, the coordinatewise

partial order), the maximum of two optimal actions need not even be well-de�ned, let alone

optimal. Therefore, to also cover partially ordered action spaces, we assume in the sequel

(see section 3) that action spaces are semilattices � i.e., that for every pair of actions there

is a least upper bound (l.u.b.) � and that the l.u.b. of two optimal actions is optimal.

Stronger versions of both assumptions are employed in McAdams (2003).

12Both Athey (2001) and McAdams (2003) employ single-crossing to help establish the existence of
monotone best replies and to establish the convexity of the set of monotone best replies. Their single-
crossing conditions are therefore more restrictive than necessary. See Subsection 4.1.
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3. The Environment

3.1. Partial Orders, Lattices and Semilattices

Let A be a nonempty set partially ordered by � :13 If A is endowed with a sigma-algebra of
subsets A; then the partial order � on A is called measurable if f(a; b) 2 A�A : b � ag is a
member of A�A:14 If A is endowed with a topology, then the partial order � on A is called
closed if f(a; b) 2 A� A : b � ag is closed in the product topology. The partial order � on
A is called convex if f(a; b) 2 A�A : b � ag is convex. Note that if the partial order on A is
convex then A is convex because a � a for every a 2 A: Say that A is upper-bound-convex if
it contains the convex combination of any two members whenever one of them, �a say, is an

upper bound for A �i.e., �a � a for every a 2 A.15 Every convex set is upper-bound-convex.
For a; b 2 A; if the set fa; bg has a least upper bound (l.u.b.) in A; then it is unique

and will be denoted by a _ b, the join of a and b: In general, such a bound need not exist.
However, if every pair of points in A has an l.u.b. in A; then we shall say that A is a

semilattice. It is straightforward to show that, in a semilattice, every �nite set, fa; b; :::; cg;
has a least upper bound, which we denote by _fa; b; :::; cg or a _ b _ ::: _ c:
If the set fa; bg has a greatest lower bound (g.l.b.) in A; then it too is unique and it will

be denoted by a ^ b; the meet of a and b: Once again, in general, such a bound need not
exist. If every pair of points in A has both an l.u.b.. in A and a g.l.b. in A, then we say

that A is a lattice.16

Clearly, every lattice is a semilattice. However, the converse is not true. For example,

employing the coordinatewise partial order on vectors in Rm; the set of vectors whose sum
is at least one is a semilattice, but not a lattice.

A metric semilattice is a semilattice, A; endowed with a metric under which the join

operator, _; is continuous as a function from A�A into A. In the special case in which A is
a metric semilattice in Rm under the Euclidean metric, we say that A is a Euclidean metric
semilattice. Note also that because in a semilattice b � a if and only if a _ b = b, a partial
order in a metric semilattice is necessarily closed.17

A semilattice A is complete if every nonempty subset S of A has a least upper bound, _S;
in A: A metric semilattice A is locally complete if for every a 2 A and every neighborhood
13Hence, � is transitive (a � b and b � c imply a � c); re�exive (a � a); and antisymmetric (a � b and

b � a imply a = b):
14Recall that A�A is the smallest sigma algebra containing all sets of the form B � C with B;C in A:
15Sets without upper bounds are trivially upper-bound-convex.
16De�ning a semilattice in terms of the join operator, _, rather than the meet operator, ^; is entirely a

matter of convention.
17The converse can fail. For example, the set A = f(x; y) 2 R2+ : x+ y = 1g[ f(1; 1)g is a semilattice with

the coordinatewise partial order, and this order is closed under the Euclidean metric. But A is not a metric
semilattice because whenever an 6= bn and an; bn ! a; we have (1; 1) = lim(an_bn) 6= (lim an)_(lim bn) = a.
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U of a; there is a neighborhood W of a contained in U such that every nonempty subset S

of W has a least upper bound, _S; contained in U: Lemma A.18 establishes that a compact
metric semilattice A is locally complete if and only if for every a 2 A and every sequence
an ! a; limm(_n�man) = a:18 A distinct su¢ cient condition for local completeness is given
in Lemma A.20.

Some examples of compact locally-complete metric semilattices are,

� �nite semilattices

� compact sublattices of Rm�because the join of any two points is their coordinatewise
maximum

� compact Euclidean metric semilattices (Lemma A.19)

� compact upper-bound-convex semilattices in Rm endowed with the coordinatewise par-
tial order (Lemmas A.17 and A.19)

� The space of continuous functions f : [0; 1] ! [0; 1] satisfying for some � > 0 the

Lipschitz condition jf(x)� f(y)j � � jx� yj ; endowed with the maximum norm kfk =
maxx jf(x)j ; and partially ordered by f � g if f(x) � g(x) for all x 2 [0; 1]:

The last example is an in�nite dimensional compact locally-complete metric semilattice.

In general, and unlike compact Euclidean metric semilattices, in�nite dimensional metric

semilattices need not be locally complete even if compact and convex.19

Finally, if a; b; and c are members of a partially ordered set, we say that b lies between a

and c if a � b � c:

3.2. A Class of Bayesian Games

There are N players, i = 1; 2; :::; N: Player i�s type space is Ti and his action space is Ai;

and both are nonempty and partially ordered. Unless a notational distinction is helpful, all

partial orders, although possibly distinct, will be denoted by � : Player i�s payo¤ function is
ui : A� T ! R, where A = �Ni=1Ai and T = �Ni=1Ti: For each player i; Ti is a sigma-algebra
of subsets of Ti; and members of Ti will often be referred to simply as measurable sets. The
common prior over the players�types is a countably additive probability measure � de�ned

on T1 � :::� TN : Let G denote this Bayesian game.
18Hence, compactness and metrizability of a lattice under the order topology (see Birkoh¤ (1967, p.244)

are su¢ cient, but not necessary, for local completeness of the corresponding semilattice.
19No Lp space is locally complete when p < +1 and endowed with the pointwise partial order. See

Hart and Weiss (2005) for a compact metric semilattice that is not locally complete. Their example can be
modi�ed so that the space is in addition convex and locally convex.
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We shall make use of the following additional assumptions, where �i denotes the marginal

of � on Ti: Hence, the domain of �i is Ti: For every player i;

G.1 The partial order on Ti is measurable.

G.2 The probability measure �i on Ti is atomless.

G.3 There is a countable subset T 0i of Ti such that every set in Ti assigned positive proba-
bility by �i contains two points between which lies a point in T

0
i :

G.4 Ai is a compact metric space and a semilattice with a closed partial order.20

G.5 Either (i) Ai is a convex and locally convex topological space and the partial order on

Ai is convex, or (ii) Ai is a locally-complete metric semilattice.21

G.6 ui(a; t) is bounded, jointly measurable, and continuous in a 2 A for every t 2 T:

Assumptions G.1-G.6 strictly generalize the assumptions in Athey (2001) and McAdams

(2003) who assume that each Ai is a compact sublattice of Euclidean space and hence a

compact locally-complete metric semilattice, that each Ti is a Euclidean cube [0; 1]mi endowed

with the coordinatewise partial order, and that � is absolutely continuous with respect to

Lebesgue measure.22 ;23 This additional structure is necessary for their Kakutani-Glicksberg-

based approach.24

In addition to permitting in�nite-dimensional type spaces, assumption G.1 permits the

partial order on player i�s type space to be distinct from the usual coordinatewise partial

order when Ti is Euclidean. As we shall see, this �exibility is very helpful in providing new

equilibrium existence results for multi-unit auctions with risk averse bidders.

20Note that G.4 does not require Ai to be a metric semilattice �its join operator need not be continuous.
21It is permissible for (i) to hold for some players and (ii) to hold for others. A topological space is convex

if the operation of taking convex combinations of pairs of points yields a point in the space and is jointly
continuous in the pair of points and in the weights on them. A topological space is locally convex if for every
open set U; every point in U has a convex open neighborhood contained in U .
22McAdams (2003) assumes, further, that the joint density over types is everywhere strictly positive.
23If � is absolutely continuous and each Ti = [0; 1]mi ; then let T 0i be the set of points in Ti with rational

coordinates. Consequently, if �i(B) > 0; then by Fubini�s theorem there exists ti 2 (0; 1)mi such that
B \ [0; 1]ti contains a continuum of members, any two of which de�ne an interval containing a member of
T 0i : Hence, G.3 holds.
24Indeed, suppose a player�s action set is the semilattice A = f(1; 0); (1=2; 1=2); (0; 1); (1; 1)g in R2; with the

coordinatewise partial order and note that A is not a sublattice of R2. It is not di¢ cult to see that this player�s
set of monotone pure strategies from [0; 1] into A; endowed with the metric d(f; g) =

R 1
0
jf(x)� g(x)j dx; is

homeomorphic to three line segments joined at a common endpoint. Consequently, this strategy set is not
homeomorphic to a convex set and so neither Kakutani�s nor Glicksberg�s theorems can be directly applied.
On the other hand, this strategy set is an absolute retract (see Lemma A.16), which is su¢ cient for our
approach.
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Assumption G.2 is used to establish the contractibility of the players�sets of monotone

best replies and in particular to construct an associated contraction that is continuous in a

topology in which payo¤s are continuous as well.

Assumption G.3 connects the partial order on a player�s type space with his marginal

distribution, and it implies in particular that no atomless subset of a player�s type space

having positive probability can be totally unordered. For example, if Ti = [0; 1]2 is endowed

with the Borel sigma-algebra and the coordinatewise partial order, G.3 requires �i to assign

probability zero to any atomless negatively sloped line in Ti. In fact, whenever Ti happens

to be a separable metric space and Ti contains the open sets, G.3 holds if every atomless set
having positive �i-measure contains two �strictly ordered�points (Lemma A.21).

25

Together with G.1 and G.4, G.3 ensures the compactness of the players�sets of monotone

pure strategies (Lemma A.10) in a topology in which payo¤s are continuous.26 Thus, al-

though G.3 is logically unrelated to Milgrom andWeber�s (1985) absolute-continuity assump-

tion on the joint distribution over types, it plays the same compactness role for monotone

pure strategies as the Milgrom-Weber assumption plays for distributional strategies.27 ;28

Assumption G.5 is used in ensuring that the set of monotone pure strategies is an absolute

retract and therefore amenable to �xed point analysis.

Assumption G.6 is used to ensure that best replies are well de�ned and that best-reply

correspondences are upper-hemicontinuous. Assumption G.6 is trivially satis�ed when action

spaces are �nite. Thus, for example, it is possible to consider auctions here by supposing

that players�bid spaces are discrete. We do so in section 5.

As functions from types to actions, best replies for any player i are determined only up to

�i measure zero sets. This leads us to the following de�nitions. A pure strategy for player i is

a function, si : Ti ! Ai; that is �i-a.e. (almost-everywhere) equal to a measurable function,

and is monotone if t0i � ti implies si(t0i) � si(ti) for all ti; t0i 2 Ti.29 ;30 Let Si denote player
25Two points in a partially ordered metric space are strictly ordered if they are contained in disjoint open

sets such that every point in one set is greater or equal to every point in the other.
26Indeed, without G.3, a player�s type space could be the negative diagonal in [0; 1]2 endowed with the

coordinatewise partial order. But then every measurable function from types to actions would be monotone
because no two distinct types are ordered. Compactness in a useful topology is then e¤ectively precluded.
27To see that even G.2 and G.3 together do not imply the Milgrom and Weber (1985) restriction that �

is absolutely continuous with respect to the product of its marginals �1 � ::: � �n, note that G.2 and G.3
hold when there are two players, each with unit interval type space, and where types are drawn according
to Lebesgue measure conditional on any one of �nitely many positively or negatively sloped lines in the unit
square.
28One might wonder whether G.3 can be weakened by requiring instead merely that every atomless set in

Ti assigned positive probability by �i contains two distinct ordered points. The answer is �no,�in the sense
that this weakening permits examples in which every measurable function from [0; 1] into [0; 1] is monotone,
precluding compactness of the set of monotone pure strategies in a useful topology.
29Recall that a property P (ti) holds �i-a.e. if the set of ti for which P (ti) holds contains a measurable

subset having �i-measure one.
30Because under G.4 Ai is a metric space, we willl always endow Ai with the Borel sigma-algebra. Thus
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i�s set of pure strategies and let S = �Ni=1Si:
A vector of pure strategies, (ŝ1; :::; ŝN) 2 S is an equilibrium if for every player i and

every pure strategy s0i for player i;Z
T

ui(ŝ(t); t)d�(t) �
Z
T

ui(s
0
i(ti); ŝ�i(t�i); t)d�(t);

where the left-hand side, henceforth denoted by Ui(ŝ); is player i�s payo¤ given the joint

strategy ŝ; and the right-hand side is his payo¤ when he employs s0i and the others employ

ŝ�i.

It will sometimes be helpful to speak of the payo¤ to player i�s type ti from the action

ai given the strategies of the others, s�i: This payo¤, which we will refer to as i�s interim

payo¤, is

Vi(ai; ti; s�i) �
Z
T

ui(ai; s�i(t�i); t)d�i(t�ijti);

where �i(�jti) is a version of the conditional probability on T�i given ti: A single such version
is �xed for each player i once and for all.

4. The Main Result

Call a subset of player i�s pure strategies join-closed if for any pair of strategies, si; s0i; in the

subset, the strategy taking the action si(ti) _ s0i(ti) for each ti 2 Ti is also in the subset.31

We can now state our main result, whose proof is provided in section 6.

Theorem 4.1. If G.1-G.6 hold, and each player�s set of monotone pure best replies is non-

empty and join-closed whenever the others employ monotone pure strategies, then G pos-

sesses a monotone pure strategy equilibrium.

A strengthening of Theorem 4.1 can be helpful when one wishes to demonstrate not

merely the existence of a monotone pure strategy equilibrium but the existence of a monotone

pure strategy equilibrium within a particular subset of strategies. For example, in a uniform-

price auction for m units, a strategy mapping a player�s m-vector of marginal values into

a vector of m bids is undominated only if his bid for a kth unit is no greater than his

marginal value for a kth unit. As formulated, Theorem 4.1 does not directly permit one to

measurable subsets of Ai are the Borel subsets.
31Note that when the join operator is continuous, as it is in a metric semilattice, the resulting function is

a.e.-measurable, being the composition of a.e.-measurable and continuous functions. But even when the join
operator is not continuous, because the join of two monotone pure strategies is monotone, it is a.e.-measurable
under the hypotheses of Lemma A.11.
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demonstrate the existence of an undominated equilibrium.32 The next result takes care of

this. Its proof is a straightforward extension of the proof of Theorem 4.1, and is provided in

Remark 8.

A subset of player i�s pure strategies is called pointwise-limit-closed if whenever s1i ; s
2
i ; :::

are each in the set and sni (ti) !n si(ti) for �i almost-every ti 2 Ti; then si is also in the
set. A subset of player i�s pure strategies is called piecewise-closed if whenever si and s0i
are in the set, then so is any strategy s00i such that for every ti 2 Ti either s00i (ti) = si(ti) or
s00i (ti) = s

0
i(ti):

Theorem 4.2. Under the hypotheses of Theorem 4.1, if for each player i; Ci is a join-closed,

piecewise-closed and pointwise-limit-closed subset of pure strategies containing at least one

monotone pure strategy, and the intersection of Ci with i�s set of monotone pure best replies

is nonempty whenever every other player j employs a monotone pure strategy in Cj, then G

possesses a monotone pure strategy equilibrium in which each player i�s pure strategy is in

Ci.

Remark 1. When player i�s action space is a semilattice with a closed partial order (as

implied by G.4) and Ci is de�ned by any collection of weak inequalities, i.e., if Fi and Gi
are arbitrary collections of measurable functions from Ti into Ai and Ci = \f2Fi;g2Gifsi 2
Si : g(ti) � si(ti) � f(ti) for �i a.e. ti 2 Tig; then Ci is join-closed, piecewise-closed and
pointwise-limit-closed.

The next section provides conditions that are su¢ cient for the hypotheses of Theorem

4.1.

4.1. Su¢ cient Conditions

Both Athey (2001) and McAdams (2003), within the con�nes of a lattice, make use of

quasisupermodularity and single-crossing conditions on interim payo¤s. We now provide

weaker versions of both of these conditions, as well as single condition that is weaker than

their combination.

Suppose that player i�s action space, Ai; is a lattice. We say that player i�s interim payo¤

function Vi is weakly quasisupermodular if for all monotone pure strategies s�i of the others,

all ai; a0i 2 Ai; and every ti 2 Ti;

Vi(ai; ti; s�i) � Vi(ai ^ a0i; ti; s�i) implies Vi(ai _ a0i; ti; s�i) � Vi(a0i; ti; s�i):
32Note that it is not possible to restrict the action space alone to ensure that the player chooses an

undominated strategy since the bids that he must be permitted to choose will depend upon his private type,
i.e., his vector of marginal values.
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McAdams (2003) imposes the stronger assumption of quasisupermodularity � due to

Milgrom and Shannon (1994) �which requires, in addition, that the second inequality must

be strict if the �rst happens to be strict.33 It is well-known that Vi is supermodular in actions

�hence weakly quasisupermodular �when the coordinates of a player�s own action vector

are complementary, i.e., when Ai = [0; 1]K is endowed with the coordinatewise partial order

and the second cross-partial derivatives of Vi(ai1; :::; aiK ; ti; s�i) with respect distinct action

coordinates are nonnegative.34

We say that i�s interim payo¤ function Vi satis�es weak single-crossing if for all monotone

pure strategies s�i of the others, for all player i action pairs a0i � ai; and for all player i type
pairs t0i � ti;

Vi(a
0
i; ti; s�i) � Vi(ai; ti; s�i)

implies

Vi(a
0
i; t

0
i; s�i) � Vi(ai; t0i; s�i):

Athey (2001) and McAdams (2003) assume that Vi satis�es the slightly more stringent

single-crossing condition in which, in addition to the above, the second inequality is strict

whenever the �rst one is.35 We next present a condition that will be shown to be weaker

than the combination of weak quasisupermodularity and weak single-crossing.

Return now to the case in which Ai is merely a semilattice. For any joint pure strategy of

the others, player i�s interim best reply correspondence is a mapping from his type into the

set of optimal actions �or interim best replies �for that type. Say that player i�s interim best

reply correspondence is monotone if for every monotone joint pure strategy of the others,

whenever action ai is optimal for player i when his type is ti; and a0i is optimal when his

type is t0i � ti; then ai _ a0i is optimal when his type is t0i:36

The following result relates the above conditions to the hypotheses of Theorem 4.1.

Proposition 4.3. The hypotheses of Theorem 4.1 are satis�ed if G.1-G.6 hold, and if for

each player i and for each monotone joint pure strategy of the other players, at least one of

the following three conditions is satis�ed.37

33When actions are totally ordered, as in Athey (2001), interim payo¤s are automatically supermodular,
and hence both quasisupermodular and weakly quasisupermodular.
34Complementarities between the actions of distinct players is not implied. This is useful because, for

example, many auction games satisfy only own-action complementarity.
35For conditions on the joint distribution of types, �; and the players�payo¤ functions, ui(a; t); that imply

the more stringent condition, see Athey (2001, pp.879-81), McAdams (2003, p.1197) and Van Zandt and
Vives (2005).
36This is strictly weaker than requiring the interim best reply correspondence to be increasing in the strong

set order, which in any case requires the additional structure of a lattice (see Milgrom and Shannon (1994)).
37Which of the three conditions is satis�ed is permitted to depend both on the player, i; and on the joint

pure strategy employed by the others.
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1. Player i�s action space is a lattice and i�s interim payo¤ function is weakly quasisuper-

modular and satis�es weak single-crossing.

2. Player i�s interim best reply correspondence is nonempty-valued and monotone.

3. Player i�s set of monotone pure strategy best replies is nonempty and join-closed.

Furthermore, the three conditions are in increasing order of generality, i.e., 1 =) 2 =) 3:

Proof. Because, under G.1-G.6, the hypotheses of Theorem 4.1 hold if condition 3 holds for

each player i; it su¢ ces to show that 1 =) 2 =) 3: So, �x some player i and some monotone

pure strategy for every player but i for the remainder of the proof.

(1 =) 2): Suppose i�s action space is a lattice. By G.4 and G.6, for each of i�s types,

his interim payo¤ function is continuous on his compact action space. Player i therefore

possesses an optimal action for each of his types and so his interim best reply correspondence

is nonempty-valued. Suppose that action ai is optimal for i when his type is ti and a0i is

optimal when his type is t0i � ti: Then because ai ^ a0i is no better than ai when i�s type is
ti; weak quasisupermodularity implies that ai _ a0i is at least as good as a0i when i�s type is
ti: Weak single-crossing then implies that ai _ a0i is at least as good as a0i when i�s type is t0i:
Since a0i is optimal when i�s type is t

0
i so too must be ai _ a0i: Hence, i�s interim best reply

correspondence is monotone.

(2 =) 3): Let Bi : Ti � Ai denote i�s interim best reply correspondence. If ai and

a0i are in Bi(ti); then ai _ a0i is also in Bi(ti) by the monotonicity of Bi(�) (set ti = t0i in

the de�nition of a monotone correspondence). Consequently, Bi(ti) is a subsemilattice of

i�s action space for each ti and therefore i�s set of monotone pure strategy best replies is

join-closed (measurability of the pointwise join of two strategies follows as in footnote 31).

It remains to show that i�s set of monotone pure best replies is nonempty.

Let �ai(ti) = _Bi(ti); which is well-de�ned because G.4 and Lemma A.6 imply that Ai is
a complete semilattice. Because i�s interim payo¤ function is continuous in his action, Bi(ti)

is compact. Hence Bi(ti) is a compact subsemilattice of Ai and so Bi(ti) is itself complete

by Lemma A.6. Therefore, �ai(ti) is a member of Bi(ti) implying that �ai(ti) is optimal for

every ti: It remains only to show that �ai(ti) is monotone (measurability in ti can be ensured

by Lemma A.11).

So, suppose that t0i �i ti: Because �ai(ti) 2 Bi(ti) and �ai(t0i) 2 Bi(t0i); the monotonicity of
Bi(�) implies that �ai(ti) _ �ai(t0i) 2 Bi(t0i): Therefore, because �ai(t0i) is the largest member of
Bi(t

0
i) we have �ai(t

0
i) = �ai(ti) _ �ai(t0i) � �a(ti); as desired.

Remark 2. The environments considered in Athey (2001) and McAdams (2003) are strictly

more restrictive than G.1-G.6 permit. Moreover, their conditions on interim payo¤s are
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strictly more restrictive than condition 1 of Proposition 4.3. Theorem 4.1 is therefore a

strict generalization of their main results.

When G.1-G.6 hold, it is often possible to apply Theorem 4.1 by verifying condition

1 of Proposition 4.3. But there are important exceptions. For example, Reny and Zamir

(2004) have shown in the context of asymmetric �rst-price auctions that, when bidders have

distinct and �nite bid sets, monotone best replies exist even though weak single-crossing

fails. Further, since action sets (i.e., real-valued bids) there are totally ordered, best reply

sets are necessarily join-closed and so the hypotheses of Theorem 4.1 are satis�ed even

though condition 1 of Proposition 4.3 is not. A similar situation arises in the context of

multi-unit discriminatory auctions with risk averse bidders (see subsection 5 below). There,

under CARA utility weak quasisupermodularity fails but sets of monotone best replies are

nonetheless non-empty and join-closed because condition 2 of Proposition 4.3 is satis�ed.

We now turn to several applications of our results.

5. Applications

5.1. Uniform-Price Multi-Unit Auctions with Risk Averse Bidders

Consider a uniform-price auction with n bidders and m homogeneous units of a single good

for sale. Each bidder i simultaneously submits a bid, b = (b1; :::; bm); where bi1 � ::: � bim
and each bik is taken from the �nite set B � [0; 1]. Call bik bidder i�s kth unit-bid. The

uniform price, p; is the m + 1st highest of all nm unit-bids. Each unit-bid above p wins a

unit at price p, and any remaining units are awarded to unit-bids equal to p according to a

random-bidder-order tie-breaking rule.38

Bidder i�s private type is his vector of nonincreasing marginal values, so that his type

space is Ti = fti 2 [0; 1]m : ti1 � ::: � timg. Bidder i is risk averse with utility function for
money ui : [�m;m] ! R; where u0i > 0; u00i � 0: If bidder i�s type is ti and he wins k units
at price p; his payo¤ is ui(ti1+ :::+ tik� kp): Types are chosen independently across bidders
and bidder i�s type-vector is chosen according to the density fi; which need not be positive

on all of Ti:39

Multi-unit uniform-price auctions always have trivial equilibria in weakly dominated

strategies in which some player always bids very high on all units and all others always

38The tie-breaking rule is as follows. Bidders are ordered randomly and uniformly. Then, one bidder at a
time according to this order, each bidder�s total remaining demand (i.e., his number of bids equal to p); or
as much as possible, is �lled at price p per unit until supply is exhausted.
39It is possible to permit a bidder�s total demand to be stochastic in the sense that, for each k > 1; his

marginal value for a kth and higher unit may be zero with positive probability, as might occur if a bidder�s
endowment of the good were private information. We will not pursue this here.
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bid zero. We wish to establish the existence of monotone pure strategy equilibria that are

not trivial in this sense. But observe that, because the set of feasible bids is �nite, bidding

above one�s marginal value on some unit need not be weakly dominated. Indeed, it might be

a strict best reply for bidder i of type ti to bid bk > tik for a kth unit so long as no feasible

bid is in [tik; bk). Such a kth unit-bid might permit bidder i to win a kth unit and earn a

surplus with high probability rather than risk losing the unit by bidding below tik. On the

other hand, in this instance there is never any gain, and there might be a loss, from bidding

above bk on a kth unit.

Call a monotone pure strategy equilibrium nontrivial if for each bidder i; for fi almost-

every ti; and for every k; bidder i�s kth unit-bid does not exceed the smallest feasible bid

greater than or equal to tik: As shown by McAdams (2006), under the coordinatewise partial

order on type and action spaces, nontrivial monotone pure strategy equilibria need not exist

when bidders are risk averse, as we permit here. Nonetheless, we will demonstrate that a

nontrivial monotone pure strategy equilibrium does exist under an economically motivated

partial order on type spaces that di¤ers from the coordinatewise partial order; we maintain

the coordinatewise partial order the action space Bm of m-vectors of unit-bids.

Before introducing the new partial order, it is instructive to see what goes wrong with

the coordinatewise partial order on types. The heart of the matter is that single-crossing

fails. To see why, it is enough to consider the case of two units. Fix monotone pure strategies

for the other bidders and consider two bids for bidder i, �b = (�b1;�b2) and b = (b1; b2); where
�bk > bk for k = 1; 2: Suppose that when bidder i employs the high bid, �b; he is certain to win

both units and pay �p for each, while he is certain to win only one unit when he employs the

low bid, b: Further, suppose that the low bid yields a price for the one unit he wins that is

either p or p0 > p; each being equally likely. Thus, the expected di¤erence in his payo¤ from

employing the high bid versus the low one can be written as,

1

2

�
ui(ti1 + ti2 � 2�p)� ui(ti1 � p0)

�
+
1

2

�
ui(ti1 + ti2 � 2�p)� ui(ti1 � p)

�
:

Single-crossing requires this di¤erence, when nonnegative, to remain nonnegative when bid-

der i�s type increases according to the coordinatewise partial order, i.e., when ti1 and ti2 in-

crease. But this can fail when risk aversion is strict because, whenever ti1+ ti2�2�p > ti1�p0;
the �rst utility di¤erence above strictly falls when ti1 increases. Consequently, the expected

di¤erence can become negative if the second utility di¤erence is negative to start with.

The economic intuition for the failure of single-crossing is straightforward. Under risk

aversion, the marginal utility of winning a second unit falls when the dollar value of a �rst

unit rises, giving the bidder an incentive to reduce his second unit bid so as to reduce the

price paid on the �rst unit. We now turn to the new partial order, which ensures that a
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Figure 5.1: Types that are ordered with t0i are bounded between two lines through t
0
i , one

being vertical, the other having slope �i:

higher type is associated with a higher marginal utility of winning each additional unit.

For each bidder i; let �i =
u0i(�m)
u0i(m)

� 1 � 0; and consider the partial order, �i; on Ti
de�ned as follows: t0i �i ti if,

1. t0i1 � ti1; and
2. t0ik � �i(t0i1 + :::+ t0ik�1) � tik � �i(ti1 + :::+ tik�1); for all k 2 f2; :::;mg:

(5.1)

Figure 5.1 shows the types that are greater than and less than a typical type, t0i ; when

types are two-dimensional, i.e., when m = 2:

Under the Euclidean metric and Borel sigma-algebra on the type space, the partial order

�i de�ned by (5.1) is clearly closed so that G.1 is satis�ed. Because the marginal distribution
of each player�s type has a density, G.2 is satis�ed as well. To see that G.3 is satis�ed, let T 0i
be the set of points in Ti with rational coordinates and suppose that

R
B
fi(ti)dti > 0 for some

Borel subset B of Ti: Then B must have positive Lebesgue measure in Rm: Consequently, by
Fubini�s theorem, there exists z 2 Rm (indeed there is a positive Lebesgue measure of such
z�s) such that the line de�ned by z+R((1+�i); (1+�i)2; :::; (1+�i)m) intersects B in a set of
positive one-dimensional Lebesgue measure on the line. Therefore we may choose two distinct

points, ti and t0i in B that are on this line. Hence, t
0
i� ti = �((1+�i); (1+�i)2; :::; (1+�i)m),

where we may assume without loss that � > 0: But then, t0i1 � ti1 = �(1 + �i) > 0 and for
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k 2 f2; :::;mg;

t0ik � tik = �(1 + �i)
k

= �f1 + �i[1 + (1 + �i) + (1 + �i)2 + :::+ (1 + �i)k�1]g

= �(1 + �i) + �i[�(1 + �i) + �(1 + �i)
2 + :::+ �(1 + �i)

k�1]

= �(1 + �i) + �i[(t
0
i1 � ti1) + (t0i2 � ti2) + :::+ (t0ik�1 � tik�1)]

> �i[(t
0
i1 � ti1) + (t0i2 � ti2) + :::+ (t0ik�1 � tik�1)]:

Consequently, for any t0i 2 T 0i close enough to (t0i + ti)=2;

t0i �i t0i �i ti;

according to the partial order �i de�ned by (5.1). Hence, G.3 is satis�ed.
As noted in section 4.1, actions spaces, being �nite sublattices, are locally complete

compact metric semilattices. Hence, G.4 and G.5 (ii) hold. Also, G.6 holds because action

spaces are �nite. Thus, we have so far veri�ed G.1-G.6.

McAdams (2004) shows that each bidder�s interim payo¤ function is modular and hence

quasisupermodular. By condition 1 of Proposition 4.3, the hypotheses of Theorem 4.1 will

be satis�ed if interim payo¤s satisfy weak single crossing, which we now demonstrate. It is

here where the new partial order �i in (5.1) is fruitfully employed.
To verify weak single crossing it su¢ ces to show that ex-post payo¤s satisfy increasing

di¤erences. So, �x the strategies of the other bidders, a realization of their types, and an

ordering of the players for the purposes of tie-breaking. With these �xed, suppose that

the bid, �b; chosen by bidder i of type ti wins k units at the price �p per unit, while the

coordinatewise-lower bid, b; wins j � k units at the price p � �p per unit. The di¤erence in

i�s ex-post utility from bidding �b versus b is then,

ui(ti1 + :::+ tik � k�p)� ui(ti1 + :::+ tij � jp): (5.2)

Assuming that t0i �i ti in the sense of (5.1), it su¢ ces to show that (5.2) is weakly greater
at t0i than at ti: Noting that (5.1) implies that t

0
il � til for every l; it can be seen that, if

j = k; then (5.2), being negative, is weakly greater at t0i than at ti by the concavity of ui. It
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therefore remains only to consider the case in which j < k; where we have,

ui(t
0
i1 + :::+ t

0
ik � k�p)� ui(ti1 + :::+ tik � k�p) � u0i(m)[(t

0
i1 � ti1) + :::+ (t0ik � tik)]

� u0i(m)[(t
0
i1 � ti1) + :::+ (t0ij+1 � tij+1)]

� u0i(�m)[(t0i1 � ti1) + :::+ (t0ij � tij)]

� ui(t
0
i1 + :::+ t

0
ij � jp)� ui(ti1 + :::+ tij � jp);

where the �rst and fourth inequalities follow from the concavity of ui and because a bidder�s

surplus lies between m and �m; and the third inequality follows because t0i �i ti in the sense
of (5.1). We conclude that weak single crossing holds and so the hypotheses of Theorem 4.1

are satis�ed.

Finally, for each player i, let Ci denote the subset of his pure strategies such that for fi
almost-every ti; and for every k; bidder i�s kth unit-bid does not exceed �(tik), the smallest

feasible unit-bid greater than or equal to tik. By Remark 1, each Ci is join-closed, piecewise-

closed and pointwise-limit-closed. Further, because the hypotheses of Theorem 4.1 are satis-

�ed, whenever the others employ monotone pure strategies player i has a monotone best reply,

b0i(�); say. De�ning bi(ti) to be the coordinatewise minimum of b0i(ti) and (�(ti1); :::; �(tim))

for all ti 2 Ti implies that bi(�) is a monotone best reply contained in Ci: This is because,
ex-post, any units won by employing b0i(�) that are also won by employing bi(�) are won at
a weakly lower price with bi(�), and any units won by employing b0i(�) that are not won by
employing bi(�) cannot be won at a positive surplus. Hence, the hypotheses of Theorem 4.2

are satis�ed and we conclude that a nontrivial monotone pure strategy equilibrium exists.

We may therefore state the following proposition.

Proposition 5.1. Consider an independent private value uniform-price multi-unit auction

with the random-bidder-order tie-breaking rule and in which bids are restricted to a �nite

grid. Suppose that each bidder i�s vector of marginal values is decreasing and chosen ac-

cording to the density fi, and that each bidder is weakly risk averse.

Then, there is a pure strategy equilibrium of the auction with the following properties.

For each bidder i;

(i) the equilibrium is monotone under the type-space partial order �i de�ned by (5.1)
and under the usual coordinatewise partial order on bids, and

(ii) the equilibrium is nontrivial in the sense that for fi almost-all of his types, and for

every k; bidder i�s kth unit-bid does not exceed the smallest feasible unit-bid greater than

or equal to his marginal value for a kth unit.
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Figure 5.2: After performing the change of variable from ti to xi as described in Remark 4
bidder i�s new type space is triangle OAB and it is endowed with the coordinatewise partial
order. The �gure is drawn for the case in which �i 2 (0; 1):

Remark 3. The partial order de�ned by (5.1) reduces to the usual coordinatewise partial

order under risk neutrality (i.e., when �i = 0), but is distinct from the coordinatewise partial

order under strict risk aversion (i.e., when �i > 0), in which case McAdams (2003) does not

apply since he employs the coordinatewise partial order.

Remark 4. The partial order de�ned by (5.1) can instead be thought of as a change of

variable from ti to say xi; where xi1 = ti1 and xik = tik � �i(ti1 + ::: + tik�1) for k > 1; and
where the coordinatewise partial order is applied to the new type space. Our results apply

equally well using this change-of-variable technique. In contrast, McAdams (2003) still does

not apply because the resulting type space is not the product of intervals, an assumption

he maintains together with a strictly positive joint density.40 See Figure 5.2 for the case in

which m = 2.

Remark 5. One can use the above technique to obtain the existence of a nontrivial monotone

pure strategy equilibrium when bidders�types remain independent but their payo¤s are in-

terdependent. For example, one can permit ui(
Pk

j=1 vij(tij; t�i)�kp) to be bidder i�s ex-post
utility of winning k units at price p when the joint type vector is t and where bidder i�s dollar

40Indeed, starting with the partial order de�ned by (5.1) there is no change of variable that, when combined
with the coordinatewise partial order, is order-preserving and maps to a product of intervals. This is because,
in contrast to a product of intervals with the coordinatewise partial order, under the new partial order there
is never a smallest element of the type space and there is no largest element when �i > 1:
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value for a jth unit, vij(tij; t�i), is strictly increasing in the jth coordinate of i�s type vector

and can depend in any way on all coordinates of the other bidders�type vectors.

Finally, by considering �ner and �ner �nite grids of bids, one can permit unit-bids to be

any nonnegative real number. The proof of the following corollary of Proposition 5.1 is in

the appendix.

Corollary 5.2. The conclusions of Proposition 5.1 remain valid even when the bidders�

unit-bids are permitted to be any nonnegative real number.

5.2. Discriminatory Multi-Unit Auctions with CARA Bidders

Consider the same setup as in Subsection 5.1 with two exceptions. First, change the payment

rule so that each bidder pays his kth unit-bid for a kth unit won. Second, assume that each

bidder�s utility function, ui; exhibits constant absolute risk aversion.

Despite these two changes, single-crossing still fails under the coordinatewise partial order

on types for the same underlying reason as in a uniform-price auction with risk averse bidders.

Nonetheless, just as in the previous section it can be shown here that assumptions G.1-G.6

hold and each bidder i�s interim expected payo¤ function satis�es weak single-crossing under

the partial order �i; de�ned in (5.1).41

For the remainder of this section, we employ the type-space partial order �i; de�ned in
(5.1) and the coordinatewise partial order on the space of feasible bid vectors. Monotonicity

of pure strategies is then de�ned in terms of these partial orders.

If it can be shown that interim expected payo¤s are quasisupermodular, condition 1 of

Proposition 4.3 would permit us to apply Theorem 4.1. However, quasisupermodularity does

not hold in discriminatory auctions with strictly risk averse bidders �even CARA bidders.

The intuition for the failure of quasisupermodularity is as follows. Suppose there are two

units, and let bk denote a kth unit-bid. Fixing b2; suppose that b1 is chosen to maximize a

bidder�s interim payo¤ when his type is (t1; t2), namely,

P1(b1)[u(t1 � b1)� u(0)] + P2(b2)[u((t1 � b1) + (t2 � b2))� u(t1 � b1)];

where Pk(bk) is the probability of winning at least k units:

There are two bene�ts from increasing b1. First, the probability, P1(b1); of winning at

least one unit increases. Second, when risk aversion is strict, the marginal utility, u((t1 �
b1) + (t2 � b2)) � u(t1 � b1); of winning a second unit increases. The cost of increasing b1
is that the marginal utility, u(t1 � b1)� u(0), of winning a �rst unit decreases. Optimizing
41This statement remains true with any risk averse utility function. The CARA utility assumption is

required for a di¤erent purpose which will be revealed shortly.
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over the choice of b1 balances this cost with the two bene�ts. For simplicity, suppose that

the optimal choice of b1 satis�es b1 > t2:

Now suppose that b2 increases. Indeed, suppose that b2 increases to t2: Then the marginal

utility of winning a second unit vanishes. Consequently, the second bene�t from increasing

b1 is no longer present and the optimal choice of b1 may fall � even with CARA utility.

This illustrates that the change in utility from increasing one�s �rst unit-bid may be

positive when one�s second unit-bid is low, but negative when one�s second unit-bid is high.

Thus, the di¤erent coordinates of a bidder�s bid are not necessarily complementary, and weak

quasisupermodularity can fail. We therefore cannot appeal to condition 1 of Proposition 4.3.

Fortunately, we can instead appeal to condition 2 of Proposition 4.3 owing to the following

lemma, whose proof is in the appendix. It is here where we employ the assumption of CARA

utility.

Lemma 5.3. Fix any monotone pure strategies for other bidders and suppose that the

vector of bids bi is optimal for bidder i when his type vector is ti; and that b0i is optimal

when his type is t0i �i ti; where �i is the partial order de�ned in (5.1). Then the vector of
bids bi _ b0i is optimal when his type is t0i:

Because Lemma 5.3 establishes condition 2 of Proposition 4.3, we may apply Theorem

4.1 to conclude that a monotone pure strategy equilibrium exists. Thus, despite the failure

�even with CARA utilities �of both single-crossing with the coordinatewise partial order

on types and of weak quasisupermodularity with the coordinatewise partial order on bids,

we have established the following.

Proposition 5.4. Consider an independent private value discriminatory multi-unit auction

with the random-bidder-order tie-breaking rule and in which bids are restricted to a �nite

grid. Suppose that each bidder i�s vector of marginal values is decreasing and chosen ac-

cording to the density fi, and that each bidder is weakly risk averse and exhibits constant

absolute risk aversion.

Then, there is a pure strategy equilibrium that is monotone under the type-space partial

order �i de�ned by (5.1) and under the usual coordinatewise partial order on bids.

Remark 6. As in Remark 5, similar techniques can be used to obtain the existence of

a monotone pure strategy equilibrium when bidders� types remain independent but their

payo¤s are interdependent.

The proof of the following corollary is in the appendix.

Corollary 5.5. The conlcusions of Proposition 5.4 remain valid even when the bidders�unit

bids are permited to be any nonnegative real number.

23



The two applications provided so far demonstrate that it is useful to have �exibility in

de�ning the partial order on the type space since the mathematically natural partial order

(in this case the coordinatewise partial order on the original type space) may not be the

partial order that corresponds best to the economics of the problem. The next application

shows that even when single crossing cannot be established for all coordinates of the type

space jointly, it is enough for the existence of a pure strategy equilibrium if single-crossing

holds strictly even for a single coordinate of the type space.

5.3. Price Competition with Non-Substitutes

Consider an n-�rm di¤erentiated-product price-competition setting. Firm i chooses price

pi 2 [0; 1]; and receives two pieces of private information � his constant marginal cost,

ci 2 [0; 1]; and information xi 2 [0; 1] about the state of demand in each of the n markets.
The demand for �rm i�s product is Di(p; x) when the vector of prices chosen by all �rms

is p 2 [0; 1]n and when their joint vector of private information about market demand is
x 2 [0; 1]n: Demand functions are assumed to be twice continuously di¤erentiable, strictly
positive when own-price is less than one, and strictly downward-sloping, i.e., @Di(p; x)=@pi <

0:

Some products may be substitutes, but others need not be. More precisely, the n �rms

are partitioned into two subsets N1 and N2.42 Products produced by �rms within each subset

are substitutes, and so we assume that Di(p; x) and @Di(p; x)=@pi are nondecreasing in pj
whenever i and j are in the same Nk. In addition, marginal costs are a¢ liated among �rms

within each Nk and are independent across the two subsets of �rms. The joint density of

costs is given by the continuously di¤erentiable density f(c) on [0; 1]n: Information about

market demand may be correlated across �rms, but is independent of all marginal costs and

has continuously di¤erentiable joint density g(x) on [0; 1]n: We do not assume that market

demands are nondecreasing in x because we wish to permit the possibility that information

that increases demand for some products might decrease it for others.

Given pure strategies pj(cj; xj) for the others, �rm i�s interim expected pro�ts are,

vi(pi; ci; xi) =

Z
(pi � ci)Di(pi; p�i(c�i; x�i); x)gi(x�ijxi)fi(c�ijci)dx�idc�i; (5.3)

so that,

@2vi(pi; ci; xi)

@ci@pi
= �E

�
@Di

@pi

���� ci; xi�+ @

@ci
E(Dijci; xi) + (pi � ci)

@

@ci
E

�
@Di

@pi

���� ci; xi� : (5.4)
42The extension to any �nite number of subsets is straightforward.
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Therefore, if pj(cj; xj) is nondecreasing in cj for each �rm j 6= i and every xj; then,

@2vi(pi; ci; xi)

@ci@pi
� �E

�
@Di

@pi

���� ci; xi� > 0 (5.5)

for all pi; ci; xi 2 [0; 1] such that pi � ci; where the weak inequality follows because both

partial derivatives with respect to ci on the right-hand side of (5.4) are nonnegative. For

example, consider the expectation in the �rst partial derivative (the second is similar). If

i 2 N1; then

E(Dijci; xi) = E [E(Di(pi; p�i(c�i; x�i); x)jci; xi; (cj; xj)j2N2)jci; xi] :

The inner expectation is nondecreasing in ci because the vector of marginal costs for �rms in

N1 are a¢ liated, their prices are nondecreasing in their costs, and their goods are substitutes.

That the entire expectation is nondecreasing in ci now follows from the independence of

(ci; xi) and (cj; xj)j2N2 :

Thus, according to (5.5), when pi � ci single-crossing holds strictly for the marginal

cost coordinate of the type space. On the other hand, single-crossing need not hold for the

market-demand coordinate, xi; since we have made no assumptions about how xi a¤ects

demand.43 Nonetheless, we shall now de�ne a partial order on �rm i�s type space Ti = [0; 1]2

under which a monotone pure strategy equilibrium exists.

Note that, because �@Di=@pi is positive and continuous on its compact domain, it

is bounded strictly above zero with a bound that is independent of the pure strategies,

pj(cj; xj) employed by other �rms. Hence, because our continuity assumptions imply that

@2vi(pi; ci; xi)=@xi@pi is bounded, there exists �i > 0 such that for all � 2 [0; �i] and all pure
strategies pj(cj; xj) nondecreasing in cj;

@2vi(pi; ci; xi)

@ci@pi
+ �

@2vi(pi; ci; xi)

@xi@pi
> 0; (5.6)

for all pi; ci; xi 2 [0; 1] such that pi � ci:
Inequality (5.6) implies that when pi � ci; the marginal gain from increasing one�s price,

namely,

@vi(pi; ci; xi)

@pi
;

is strictly increasing along lines in (ci; xi)-space with slope � 2 [0; �i]: This provides a basis
43We cannot simply restrict attention to strategies pi(ci; xi) that are monotone in ci and jointly measurable

in (ci; xi) because this set of pure strategies is not compact in a topology rendering ex-ante payo¤s continuous.
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Figure 5.3: Types that are greater than and less than t0i are bounded between two lines
through t0i , one being horizontal, the other having slope �i:

for de�ning a partial order under which players possess monotone best replies.

For each player i; de�ne the partial order �i on Ti = [0; 1]2 as follows: (c0i; x0i) �i (ci; xi)
if �ic0i � x0i � �ici � xi and x0i � xi: Figure 5.3 shows those types greater than and less than
a typical type t0i = (c

0
i ; x

0
i ):

Under the partial order �i; assumptions G.1-G.3 hold as in Example 5.1. The action-
space assumption G.4 clearly holds while G.5 (ii) holds by Lemma A.19 given the usual

partial order over the reals. Assumption G.6 holds by our continuity assumption on demand.

Also, because the action space [0; 1] is totally ordered, the set of monotone best replies is

join-closed because the join of two best replies is, at every ti; equal to one of them or to the

other. Finally, as is shown in the Appendix (see Lemma A.22), under the type-space partial

order, �i; �rm i possesses a monotone best reply when the others employ monotone pure

strategies.

Therefore, by Theorem 4.1, there exists a pure strategy equilibrium in which each �rm�s

price is monotone in (ci; xi) according to �i : In particular, there is a pure strategy equi-
librium in which each �rm�s price is nondecreasing in his marginal cost, the coordinate in

which strict single-crossing holds.

5.4. Type Spaces with Atoms

When type spaces contain atoms, assumption G.2 fails and there may not exist a pure

strategy equilibrium, let alone a monotone pure strategy equilibrium. Thus, one must permit

mixing and we show here how our results can be used to ensure the existence of a monotone

mixed strategy equilibrium.

Because we do not make the Milgrom and Weber (1985) assumption that the joint dis-
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tribution of types is absolutely continuous with respect to the product of its marginals,

it is not useful to de�ne mixed strategies as distributional strategies. For our purposes,

the most direct route is to instead follow Aumann (1964) and de�ne a mixed strategy for

player i to be a measurable function, mi : Ti � [0; 1] ! Ai; where [0; 1] is endowed with

Borel sigma-algebra B; and Ti � [0; 1] is endowed with product sigma-algebra Ti � B: As in
Aumann (1964), mixed strategies m1; :::;mN for the N players are implemented as follows.

The players�types t1; :::; tN are drawn jointly according to � and then, independently, each

player i privately draws !i from [0; 1] according to a uniform distribution. Player i knowing

ti and !i takes the action mi(ti; !i): Player i�s payo¤ given the mixed strategies m1; :::;mN

is therefore,
R
T

R
[0;1]N

ui(m(t; !); t)d!d�; where m(t; !) = (m1(t1; !1); :::;m1(tN ; !N)):

Call a mixed strategy mi : Ti� [0; 1]! Ai monotone if the image of mi(ti; �); i.e., the set
mi(ti; [0; 1]); is a totally ordered subset of Ai for every ti 2 Ti and if every member of the
image of mi(ti; �) is greater than or equal to every member of the image of mi(t

0
i; �) whenever

ti � t0i.44 The following result permits a player�s marginal type-distribution to contain atoms,
even countably many.

Theorem 5.6. If G.1 and G.3-G.6 hold, and each player�s set of monotone pure best replies

is nonempty and join-closed whenever the others employ monotone mixed strategies, then

G possesses a monotone mixed strategy equilibrium.

Proof. For each player i; let T �i denote the set of atoms of �i:
45 Consider the following

surrogate Bayesian game. Player i�s type space is Qi = [(TinT �i )�f0g][ (T �i � [0; 1]) and the
sigma-algebra onQi is generated by all sets of the form (BnT �i )�f0g and (B \ T �i )�C; where
B 2 Ti and C is a Borel subset of [0; 1]: The joint distribution on types, �; is determined

as follows. Nature �rst chooses t 2 T according to the original type distribution �: Then,
for each i; Nature independently and uniformly chooses xi 2 [0; 1] if ti 2 T �i ; and chooses
xi = 0 if ti 2 TinT �i :46 Hence, �i; the marginal distribution on Qi is atomless. Player i is
informed of qi = (ti; xi): Action spaces are unchanged. The xi are payo¤ irrelevant and so

payo¤ functions are as before. This completes the description of the surrogate game.

The partial order on Qi is the lexicographic partial order. That is, q0i = (t
0
i; x

0
i) � (ti; xi) =

qi if either t0i � ti and t0i 6= ti; or t0i = ti and x0i � xi: The metrics and partial orders on the
players�action spaces are unchanged.

44A subset of a partially ordered space is totally ordered if any two members are ordered. Such a subset
is sometimes also called a chain.
45For every ti 2 Ti; the singleton set ftig is in Ti by G.1. See Section A.1 in the Appendix.
46In particular, if for each player i; Bi 2 Ti and Ci is a Borel subset of [0; 1]; and D = �i2I [(BinT �i )�f0g]�

�i2Ic [(Bi \ T �i ) � Ci]; then �(D) = �([�i2I (BinT �i )] � [�i2Ic (Bi \ T �i )])�i2Ic�(Ci); where � is Lebesgue
measure on [0; 1]:
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It is straightforward to show that under the hypotheses above, all the hypotheses of

Theorem 4.1 but perhaps G.3 hold in the surrogate game.47 We now show that G.3 too

holds in the surrogate game.

For each player i; let T 0i denote the countable subset of Ti that can be used to verify G.3 in

the original game and de�ne the countable set Q0i = [T
0
i � f0g][ [T �i �R] ; where R denotes

the set of rationals in [0; 1]. Suppose that for some player i, �i(B) > 0 for some measurable

subset B of Qi: Then either �i(B \ [(TinT �i ) � f0g]) > 0 or �i(B \ (ft�i g � [0; 1])) > 0 for

some t�i 2 T �i : In the former case, �i(fti 2 TinT �i : (ti; 0) 2 Bg) > 0 and G.3 in the original
game implies the existence of t0i and t

00
i in fti 2 TinT 0i : (ti; 0) 2 Bg and t0i in T 0i such that

t00i � t0i � t0i according to the partial order on Ti: But then (t00i ; 0) � (t0i ; 0) � (t0i; 0) according
to the lexicographic partial order on Qi and where (t00i ; 0) and (t

0
i; 0) are in B and (t0i ; 0) is

in Q0i : In the latter case there exist x
0
i; xi in [0; 1] with x

0
i > xi > 0; such that (t

�
i ; xi) and

(t�i ; x
0
i) are in B: But for any rational r between x

0
i and xi we have (t

�
i ; x

0
i) � (t�i ; r) � (t�i ; xi)

according to the lexicographic order on Qi and where (t�i ; r) is in Q
0
i : Thus, the surrogate

game satis�es G.3 and we may conclude, by Theorem 4.1, that it possesses a monotone

pure strategy equilibrium. But any such equilibrium induces a monotone mixed strategy

equilibrium of the original game.

Remark 7. The proof of Theorem 5.6 in fact demonstrates that players need only randomize

when their type is an atom.

6. Proof of Theorem 4.1

Let Mi denote the nonempty set of monotone functions from Ti into Ai, and let M =

�Ni=1Mi: By Lemma A:11; every element ofMi is equal �i almost-everywhere to a measurable

monotone function, and so Mi coincides with player i�s set of monotone pure strategies. Let

Bi : M�i � Mi denote player i�s best-reply correspondence when all players must employ

monotone pure strategies. Because, by hypothesis, each player possesses a monotone best

reply (among all strategies) when the others employ monotone pure strategies, any �xed

point of �ni=1Bi : M � M is a monotone pure strategy equilibrium. The following steps

demonstrate that such a �xed point exists.

STEP I. (M is a nonempty, compact, metric, absolute retract.) Without loss, we may

assume for each player i that the metric di on Ai is bounded:48 Given di; de�ne a metric �i
47Observe that a monotone pure strategy in the surrogate game induces a monotone mixed strategy in the

original game, and that a monotone pure strategy in the original game de�nes a monotone pure strategy in
the surrogate game by viewing it to be constant in xi:
48For any metric, d(�; �); a topologically equivalent bounded metric is min(1; d(�; �)):
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on Mi as follows:49

�i(si; s
0
i) =

Z
Ti

di(si(ti); s
0
i(ti))d�i(ti):

By Lemmas A.13 and A.16, each (Mi; �i) is a compact absolute retract.50 Consequently,

under the product topology �metrized by the sum of the �i �M is a nonempty compact

metric space and, by Borsuk (1966) IV (7.1), an absolute retract.

STEP II. (�ni=1Bi is nonempty-valued and upper-hemicontinuous.) We �rst demonstrate
that, given the metric spaces (Mj; �j); each player i�s payo¤ function, Ui : M ! R; is
continuous under the product topology. To see this, suppose that sn is a sequence of joint

strategies in M; and that sn ! s 2M: By Lemma A.12, for each player i; sni (ti)! si(ti) for

�i almost every ti 2 Ti. Consequently, sn(t)! s(t) for � almost every t 2 T:51 Hence, since
ui is bounded, Lebesgue�s dominated convergence theorem yields

Ui(s
n) =

Z
T

ui(s
n(t); t)d�(t)!

Z
T

ui(s(t); t)d�(t) = Ui(s);

establishing the continuity of Ui:

Because each Mi is compact, Berge�s theorem of the maximum implies that Bi :M�i �
Mi is nonempty-valued and upper-hemicontinuous. Hence, �ni=1Bi is nonempty-valued and
upper-hemicontinuous as well.

STEP III. (�ni=1Bi is contractible-valued.) According to Lemma A.3, for each player i;
assumptions G.1-G.3 imply the existence of a monotone and measurable function �i : Ti !
[0; 1] such that �ifti 2 Ti : �i(ti) = cg = 0 for every c 2 [0; 1]: Fixing such a function �i
permits the construction of a contraction map.52

Fix some monotone pure strategy, s�i; for players other than i, and consider player i�s

set of monotone pure best replies, Bi(s�i). Because Bi(�) is upper-hemicontinuous, it is
closed-valued and therefore Bi(s�i) is compact, being a closed subset of the compact metric

space Mi: By hypothesis, Bi(s�i) is join-closed, and so Bi(s�i) is a compact semilattice

under the partial order de�ned by si � s0i if si(ti) � s0i(ti) for �i-a.e. ti 2 Ti. By Lemma
A.12, this partial order is closed. Therefore, Lemma A.6 implies that Bi(s�i) is a complete

49Formally, the resulting metric space (Mi; �i) is the space of equivalence classes of functions in Mi that
are equal �i almost everywhere � i.e., two functions are in the same equivalence class if the set on which
they coincide contains a measurable subset having �i-measure one. Nevertheless, analogous to the standard
treatment of Lp spaces, in the interest of notational simplicity we focus on the elements of the original space
Mi rather than on the equivalence classes themselves.
50One cannot improve upon Lemma A.16 by proving, for example, that Mi; metrized by �i; is homeomor-

phic to a convex set. It need not be (e.g., see footnote 24).
51This is because if Q1; :::; Qn are such that �(Qi�T�i) = �i(Qi) = 1 for all i; then �(�iQi) = �(\i(Qi�

T�i)) = 1:
52For example, if Ti = [0; 1]2 and �i is absolutely continuous with respect to Lebesgue measure, we may

take �i(ti) = (ti1 + ti2)=2:
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semilattice so that ~si = _Bi(s�i) is a well-de�ned member of Bi(s�i). Consequently for
every si 2 Bi(s�i), ~si(ti) � si(ti) for �i-a.e. ti 2 Ti: By Lemma A.14, there exists �si 2 Mi

such that �si(ti) = ~si(ti) for �i-a.e. ti �and hence �si 2 Bi(s�i) �and such that �si(ti) � si(ti)
for every ti 2 Ti and every si that is �i-a.e. less or equal to ~si and therefore in particular for
every si 2 Bi(s�i):53

De�ne h : [0; 1]�Bi(s�i)! Bi(s�i) as follows: For every ti 2 Ti;

h(� ; si)(ti) =

(
si(ti);

�si(ti);

if �i(ti) � 1� � and � < 1
otherwise.

(6.1)

Note that h(0; si) = si; h(1; si) = �si; and h(� ; si)(ti) is always either �si(ti) or si(ti) and

so is an interim best reply for �i almost every ti. Moreover, h(� ; si) is monotone because �i
is monotone and �si(ti) � si(ti) for all ti 2 Ti: Hence, h(� ; si) 2 Bi(s�i): Therefore, h will be
a contraction for Bi(s�i) and Bi(s�i) will be contractible if h(� ; si) is continuous, which we

establish next.54

Suppose �n 2 [0; 1] converges to � and sni 2 Bi(s�i) converges to si; both as n!1: By
Lemma A.12, there is a measurable subset, D; of i�s types such that �i(D) = 1 and for all

ti 2 D; sni (ti) ! si(ti): Consider any ti 2 D: There are three cases: (a) �i(ti) < 1 � � ; (b)
�i(ti) > 1 � � ; and (c) �i(ti) = 1 � � : In case (a), � < 1 and �i(ti) < 1 � �n for n large
enough and so h(�n; sni )(ti) = sni (ti) ! si(ti) = h(� ; si): In case (b), �i(ti) > 1 � �n for n
large enough and so for such large enough n; h(�n; sni )(ti) = �si(ti) = h(� ; si)(ti): Because

the remaining case (c) occurs only if ti is in a set of types having �i-measure zero, we have

shown that h(�n; sni )(ti) ! h(� ; si)(ti) for �i-a.e. ti; which, by Lemma A.12 implies that

h(�n; s
n
i )! h(� ; si); establishing the continuity of h:

Thus, for each player i; the correspondence Bi :M�i �Mi is contractible-valued. Under

the product topology, �ni=1Bi is therefore contractible-valued as well.
Steps I-III establish that �ni=1Bi satis�es the hypotheses of Theorem 2.1 and therefore

possesses a �xed point.

Remark 8. The proof of Theorem 4.2 mimics that of Theorem 4.1, but where each Mi is

replaced with Mi \ Ci; and where each correspondence Bi : M�i � Mi is replaced with

53One might wonder why we do not take the more driect route of de�ning, for each ti 2 Ti; �si(ti) = _si(ti),
where the join is taken over all si 2 Bi(s�i). It is because one must show using an argument such as that
given here that �si is in Bi(s�i); which is not obvious by virtue of the direct de�nition alone since each
member of Bi(s�i) is an interim best reply only �i almost everywhere.
54With �i de�ned as in footnote 52, Figure 6.1 provides snapshots of the resulting h(� ; si) as � moves from

zero to one. The axes are the two dimensions of the type vector (ti1; ti2); and the arrow within the �gures
depicts the direction in which the negatively-sloped line, (ti1 + ti2)=2 = 1 � � ; moves as � increases. For
example, panel (a) shows that when � = 0; h(� ; si)(ti) is equal to si(ti) for all ti in the unit square. On the
other hand, panel (c) shows that when � = 3=4; h(� ; si)(ti) is equal to si(ti) for ti below the negatively-sloped
line and equal to �si(ti) for ti above it.
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Figure 6.1: h(� ; si) as � varies from 0 (panel (a)) to 1 (panel (d)) and the domain is the unit
square.

the correspondence B�i : M�i \ C�i � Mi \ Ci de�ned by B�i (s�i) = Bi(s�i) \ Ci: The
proof goes through because the hypotheses of Theorem 4.2 imply that each Mi \ Ci is
compact, nonempty, join-closed, piecewise-closed, and pointwise-limit-closed (and hence the

proof that each Mi \ Ci is an absolute retract mimics the proof of Lemma A.16), and that
each correspondence B�i is upper-hemicontinuous, nonempty-valued and contractible-valued

(the contraction is once again de�ned by 6.1). The result then follows from Theorem 2.1.

A. Appendix

To simplify the notation, we drop the subscript i from Ti; �i; andAi throughout the appendix.
Thus, in this appendix, T; �; and A should be thought of as the type space, marginal
distribution, and action space, respectively, of any one of the players, not as the joint type
spaces, joint distribution, and joint action spaces of all the players. Of course, the theorems
that follow are correct with either interpretation, but in the main text we apply the theorems
below to the players individually rather than jointly and so the former interpretation is the
more relevant. For convenience, we rewrite here without subscripts the assumptions from
section 3.2 that will be used in this appendix.

G.1 T is endowed with a sigma-algebra of subsets, T ; a measurable partial order, and a
countably additive probability measure �:

G.2 The probability measure � is atomless.

G.3 There is a countable subset T 0 of T such that every set in T assigned positive probability
by � contains two points between which lies a point in T 0:

G.4 A is a compact metric space and a semilattice with a closed partial order.
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G.5 Either (i) A is a convex subset of a locally convex linear topological space, and the
partial order on A is convex, or (ii) A is a locally-complete metric semilattice.

A.1. Partially Ordered Measure Spaces

Preliminaries. We say that 	 = (T; T ; �;�) is a partially ordered probability space if G.1
holds, i.e., if T is a sigma-algebra of subsets of T; � is a measurable partial order on T , and
� is a countably additive probability measure with domain T . If, in addition, G.2 holds, we
say that 	 is a partially ordered atomless probability space.
If 	 = (T; T ; �;�) is a partially ordered probability space, Lemma 7.6.1 of Cohn (1980)

implies that the sets �(t) = ft0 2 T : t0 � t) and �(t) = ft0 2 T : t � t0g are in T for
each t 2 T: Hence, for all t; t0 2 T; the interval [t; t0] = ft00 2 T : t0 � t00 � tg is a member
of T , being the intersection of �(t) and �(t0). In particular, the singleton set ftg; being a
degenerate interval, is a member of T for every t 2 T:

Lemma A.1. Suppose that (T; T ; �;�) is a partially ordered probability space satisfying
G.3 and that D 2 T has positive measure under �:Then there are sequences, ftng1n=1 in T 0
and ft0ng1n=1 in D; such that � assigns positive measure to the intervals [tn; t0n] and [t0n; tn+1]
for every n:

Proof. For each of the countably many t0 in T 0; remove from D all members of �(t0) if
D\ �(t0) has �-measure zero and remove from D all members of �(t0) if D\ �(t0) has
�-measure zero. Having removed from D countably many subsets each with �-measure zero,
we are left with a set D0 with the same positive measure as D: Applying G.3 to D0; there
exist t; t0 in D0 and ~t1 in T 0 such that t0 � ~t1 � t: Hence, t0 is a member of both D0 and
�(~t1) implying that �(D\ �(~t1)) > 0; and t is a member of both D0 and �(~t1) implying
that �(D\ �(~t1)) > 0:
Setting D0 = D; we may inductively apply the same argument, for each k � 1; to the

positive �-measure set Dk = Dk�1\ �(~tk), yielding ~tk+1 2 T 0 such that �(Dk\ �(~tk+1)) > 0
and �(Dk\ �(~tk+1)) > 0:
De�ne the sequence ftng1n=1 in T 0 by setting tn = ~t3n�2 and de�ne the sequence ft0ng1n=1

in D by letting t0n be any member of D \ [~t3n�1; ~t3n]: The latter set is always nonempty
because for every k � 1;

�(D \ [~tk; ~tk+1]) � �([Dk�1\ � (~tk)]\ � (~tk+1)])
= �(Dk\ � (~tk+1))
> 0; (A.1)

where the �rst line follows because D contains Dk�1 and the second line follows from the
de�nition of Dk: Hence the two sequences, ftng in T 0 and ft0ng in D; are well-de�ned.
Finally, for every n � 1; (A.1) implies �([tn; t0n]) � �([~t3n�2; ~t3n�1]) � �(D\[~t3n�2; ~t3n�1]) >

0 and �([t0n; tn+1]) � �([~t3n; ~t3n+1]) � �(D \ [~t3n; ~t3n+1]) > 0; as desired.

Corollary A.2. Under the hypotheses of Lemma A.1, if �([a; b]) > 0 then �([a; t�]) > 0 and
�([t�; b]) > 0 for some t� 2 T 0:

Proof. LetD = [a; b] and obtain sequences ftng in T 0 and ft0ng in [a; b] satisfying the conclu-
sion of Lemma A.1. Then letting t� = t2 2 T 0 for example, yields �([a; t�]) � �([t01; t2]) > 0
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where the �rst inequality follows because t01 2 [a; b] implies [a; t�] contains [t01; t�] = [t01; t2];
and �([t�; b]) � �([t2; t

0
2]) > 0 where the �rst inequality follows because t02 2 [a; b] implies

[t�; b] contains [t�; t02] = [t2; t
0
2]:

Lemma A.3. If (T; T ; �;�) is a partially ordered atomless probability space satisfying G.3,
then there is a monotone and measurable function � : T ! [0; 1] such that �(��1(�)) = 0
for every � 2 [0; 1]:

Proof. Let T 0 = ft1; t2; :::g be the countable subset of T in G.3. De�ne � : T ! [0; 1] as
follows:

�(t) =
1X
k=1

2�k1�(tk)(t): (A.2)

Clearly, � is monotone and measurable, being the pointwise convergent sum of monotone
and measurable functions. It remains to show that �(��1(�)) = 0 for every � 2 [0; 1]:
Suppose, by way of contradiction, that �(��1(�)) > 0: Because � is atomless, �(��1(�)nT 0) =

�(��1(�)) > 0 and so applying G.3 to ��1(�)nT 0 yields t0; t00 in ��1(�)nT 0 and tk 2 T 0
such that t00 � tk � t0: But then � = �(t00) � �(t0) + 2�k > �(t0) = �; a contradiction.

A.2. Semilattices

The standard proofs of the next two lemmas are omitted.

Lemma A.4. If G.4 holds, and an; bn; cn are sequences in A such that an � bn � cn for
every n and both an and cn converge to a; then bn converges to a.

Lemma A.5. If G.4 holds, then every nondecreasing sequence and every nonincreasing
sequence in A converges.

Lemma A.6. If G.4 holds, then A is a complete semilattice.

Proof. Let S be a nonempty subset of A: Because A is a compact metric space, S has
a countable dense subset, fa1; a2; :::g: Let a� = limn a1 _ ::: _ an; where the limit exists by
Lemma A.5. Suppose that b 2 A is an upper bound for S and let a be an arbitrary element
of S: Then, some sequence, ank ; converges to a: Moreover, ank � a1 _ a2 _ ::: _ ank � b for
every k: Taking the limit as k !1 yields a � a� � b: Hence, a� = _S:

A.3. The Space of Monotone Functions from T into A

In this subsection we introduce a metric, �; under which the spaceM of monotone functions
from T into A will be shown to be a compact metric space. Further, it will be shown that
under suitable conditions, the metric space (M; �) is an absolute retract. Some preliminary
results are required.
Recall that a property P (t) is said to hold for �-a.e. t 2 T if the set of t 2 T on which P (t)

holds contains a measurable subset having �-measure one. We next introduce an important
de�nition.

De�nition A.7. Given a partially ordered probability space 	 = (T; T ; �;�) and a par-
tially ordered metric space A; say that a monotone function f : T ! A is 	 quasi-continuous
at t 2 T if there are sequences ftng and ft0ng in T such that limn f(tn) = limn f(t

0
n) = f(t)

and the intervals [tn; t] and [t; t0n] have positive �-measure for every n:
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Remark 9. (i) The positive measure condition implies that the intervals are nonempty, i.e.,
that t0n � t � tn for every n: (ii) Because we have not endowed T with a topology, neither
ftng nor ft0ng is required to converge. (iii) f is 	 quasi-continuous at every atom t of �
because we may set tn = t0n = t for all n:

Lemma A.8. Suppose that 	 = (T; T ; �;�) is a partially ordered probability space satis-
fying G.3, that A satis�es G.4, and that f : T ! A is measurable and monotone. Then the
set of points at which f is 	 quasi-continuous is measurable.

Proof. Suppose that f is 	 quasi-continuous at t 2 T and that the sequences ftng and
ft0ng satisfy the conditions in De�nition A.7. Then, by Corollary A.2, for each n there
exist ~tn; ~t0n in T

0 such that the intervals [tn; ~tn] [~tn; t]; [t; ~t0n]; and [~t
0
n; t

0
n] each have positive

�-measure. In particular, tn � ~tn � t implies f(tn) � f(~tn) � f(t) and t � ~t0n � t0n implies
f(t) � f(~t0n) � f(t0n): Consequently, by Lemma A.4, limn f(~tn) = limn f(~t

0
n) = f(t): We

conclude that the de�nition of 	 quasi-continuity at any t 2 T would be unchanged if the
sequences ftng and ft0ng were required to be in T 0:
Let d be the metric on A and for every t1; t2 2 T and every n = 1; 2; :::; de�ne

T nt1;t2 =

�
t 2 T : �([t1; t]) > 0; �([t; t2]) > 0; d(f(t1); f(t)) <

1

n
; d(f(t2); f(t)) <

1

n

�
:

Then according to the conclusion drawn in the preceding paragraph, the set of points at
which f is 	 quasi-continuous is, T

n�1

S
t1;t22T 0

T nt1;t2 :

Consequently, it su¢ ces to show that each T nt1;t2 is measurable, and for this it su¢ ces to show
that, as functions of t; the functions �([t1; t]); �([t; t2]); d(f(t1); f(t)); and d(f(t2); f(t)) are
measurable.
The functions d(f(t1); f(t)) and d(f(t2); f(t)) are measurable in t because the metric d

is continuous in its arguments and f is measurable. For the measurability of �([t1; t]); let
E = f(t0; t00) 2 T � T : t0 � t00g \ (T� �(t1)): Then E is in T � T by the measurability of
�; and [t1; t] = Et is the slice of E in which the �rst coordinate is t: Proposition 5.1.2 of
Cohn (1980) states that �(Et) is measurable in t: A similar argument shows that �([t; t2]) is
measurable in t:

Lemma A.9. Suppose that G.1, G.3 and G.4 hold, i.e., that 	 = (T; T ; �;�) is a partially
ordered probability space satisfying G.3 and that A satis�es G.4. If f : T ! A is measurable
and monotone, then f is 	 quasi-continuous at �-a.e. t 2 T:

Proof. Let D denote the set of discontinuity points of f: By Lemma A.8, D is a member of
T : It su¢ ces to show that �(D) = 0:
De�ne T nt1;t2 as in the proof of Lemma A.8 so that,

D =
S
n=1

T
t1;t22T 0

�
T nt1;t2

�c
;

and suppose, by way of contradiction, that �(D) > 0: Then, for some N � 1; � (DN) > 0;
where DN = \t1;t22T 0

�
TNt1;t2

�c
:
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Let d denote the metric on A: Then for every t 2 DN and every t1; t2 2 T 0 such that the
intervals [t1; t] and [t; t2] have positive �-measure, either,

d(f(t1); f(t)) �
1

N
or d(f(t2); f(t)) �

1

N
: (A.3)

By Lemma A.1, there are sequences, ftng1n=1 in T 0 and ft0ng1n=1 inDN ; such that � assigns
positive measure to the intervals [tn; t0n] and [t

0
n; tn+1] for every n: Consequently, for every n;

(A.3) implies that either,

d(f(tn); f(t
0
n)) �

1

N
or d(f(tn+1); f(t0n)) �

1

N
: (A.4)

On the other hand, because for every n the intervals [tn; t0n] and [t
0
n; tn+1]; having positive

�-measure, are nonempty, we have t1 � t01 � t2 � t02 � ::: . Hence, the monotonicity of f
implies that,

f(t1) � f(t01) � f(t2) � f(t02) � :::
is a monotone sequence of points in A and must therefore converge by Lemma A.5. But
then both d(f(tn); f(t0n)) and d(f(tn+1); f(t

0
n)) converge to zero, contradicting (A.4), and so

we conclude that �(D) = 0:

Lemma A.10. (A Generalized Helly Selection Theorem). Suppose that G.1, G.3 and G.4
hold, i.e., that 	 = (T; T ; �;�) is a partially ordered probability space satisfying G.3 and
that A satis�es G.4. If fn : T ! A is a sequence of monotone functions �not necessarily
measurable � then there is a subsequence, fnk ; and a measurable monotone function, f :
T ! A; such that fnk(t)!k f(t) for �-a.e. t 2 T:

Proof. Let T 0 = ft1; t2; :::g be the countable subset of T satisfying G.3. Choose a subse-
quence, fnk ; of fn such that, for every i; limk fnk(ti) exists. De�ne f(ti) = limk fnk(ti) for
every i; and extend f to all of T by de�ning f(t) = _fa 2 A : a � f(ti) for all ti � tg.55
By Lemma A.6, this is well de�ned because fa 2 A : a � f(ti) for all ti � tg is non-
empty for each t since it contains any limit point of fnk(t): Indeed, if fnkj (t) !j a; then
a = limj fnkj (t) � limj fnkj (ti) = f(ti) for every ti � t: Further, as required, the exten-
sion to T is monotone and leaves the values of f on ft1; t2; :::g unchanged, where the latter
follows because the monotonicity of f on ft1; t2; :::g implies that fa 2 A : a � f(ti) for all
ti � tkg = fa 2 A : a � f(tk)g: To see that f is measurable, note �rst that f(t) = limm gm(t);
where gm(t) = _fa 2 A : a � f(ti) for all i = 1; :::;m such that ti � tg, and where the limit
exists by Lemma A.5. Because the partial order on T is measurable, each gm is a measurable
simple function. Hence, f is measurable, being the pointwise limit of measurable functions.
Let f be 	 quasi-continuous at t 2 T: By Lemma A.9, it su¢ ces to show that fnk(t)!

f(t): So, suppose that fnkj (t)! a 2 A for some subsequence nkj of nk: By the compactness
of A; it su¢ ces to show that a = f(t):
Because f is 	 quasi-continuous at t 2 T; the argument in the �rst paragraph of the

proof of Lemma A.8 implies that there exist sequences fting and ft0ing in T 0 such that
limn f(tin) = limn f(t

0
in) = f(t) and such that the intervals [tin ; t] and [t; t

0
in ] have positive

�-measure for every n: In particular, the intervals [tin ; t] and [t; t
0
in ] are always nonempty and

55Hence, f(t) = _A if no ti � t:
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so tin � t � t0in, implying by the monotonicity of each fnk that,

fnk(tin) � fnk(t) � fnk(t0in)

for every k and n: Because the partial order on A is closed, taking the limit �rst in k yields,

f(tin) � a � f(t0in);

and taking the limit next in n yields

f(t) � a � f(t);

from which we conclude that a = f(t); as desired.
By setting ffng in Lemma A.10 equal to a constant sequence, we obtain the following.

Lemma A.11. Under G.1, G.3 and G.4, every monotone function from T into A is � almost
everywhere equal to a measurable monotone function.

We now introduce a metric onM; the space of monotone functions from T into A. Denote
the metric on A by d and assume without loss that d(a; b) � 1 for all a; b 2 A: De�ne the
metric, �; onM by

�(f; g) =

Z
T

d(f(t); g(t))d�(t);

which is well-de�ned by Lemma A.11.
Formally, the resulting metric space (M; �) is the space of equivalence classes of monotone

functions that are equal � almost everywhere �i.e., two functions are in the same equivalence
class if there is a measurable subset of T having �-measure one on which they coincide.
Nevertheless, and analogous to the standard treatment of Lp spaces, we focus on the elements
of the original spaceM rather than on the equivalence classes themselves.

Lemma A.12. Under G.1, G.3 and G.4, �(fk; f) ! 0 if and only if d(fk(t); f(t)) ! 0 for
�-a.e. t 2 T:

Proof. (only if) Suppose that �(fk; f) ! 0: By Lemma A.9, it su¢ ces to show that
fk(t)! f(t) for all 	 quasi-continuity points, t; of f:
Let t0 be a 	 quasi-continuity point of f: Because A is compact, it su¢ ces to show that

an arbitrary convergent subsequence, fkj(t0); of fk(t0) converges to f(t0). So, suppose that
fkj(t0) converges to a 2 A: By Lemma A.10, there is a further subsequence, fk0j of fkj and
a monotone measurable function, g : T ! A such that fk0j(t) ! g(t) for � a.e. t in T:
Because d is bounded, the dominated convergence theorem implies that �(fk0j ; g) ! 0: But
�(fk0j ; f)! 0 then implies that �(f; g) = 0 and so fk0j(t)! f(t) for � a.e. t in T:
Because t0 is a 	 quasi-continuity point of f; there are sequences ftng1n=1 and ft0ng1n=1 in

T such that limn f(tn) = limn f(t
0
n) = f(t0) and the intervals [tn; t0] and [t0; t

0
n] have positive

�-measure for every n � 1:
Consequently, because fk0j(t)! f(t) for � a.e. t in T and because the intervals [tn; t0] and

[t0; t
0
n] have positive �-measure, for every n there exist ~tn and ~t

0
n such that tn � ~tn � t0 �

~t0n � t0n; fk0j(
~tn) !j f(~tn) and fk0j(~t

0
n) !j f(~t

0
n). Consequently, fk0j(~tn) � fk0j(t0) � fk0j(

~t0n);

and taking the limit as j !1 yields f(~tn) � a � f(~t0n); so that f(tn) � f(~tn) � a � f(~t0n) �
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f(t0n) and therefore f(tn) � a � f(t0n): Taking the limit of the latter inequality as n ! 1
yields f(t0) � a � f(t0); so that a = f(t0); as desired.
(if) To complete the proof, suppose that fk(t) converges to f(t) for �-a.e. t 2 T: Then,

because d is bounded, the dominated convergence theorem implies that �(fk; f)! 0:
Combining Lemmas A.10 and A.12 we obtain the following.

Lemma A.13. Under G.1, G.3 and G.4, the metric space (M; �) is compact.

Lemma A.14. Suppose that G.1, G.3 and G.4 hold and f : T ! A is monotone. If for every
t 2 T; �f(t) = _g(t); where the join is taken over all monotone g : T ! A s.t. g(t) � f(t) for
�-a.e. t 2 T; then �f : T ! A is monotone and �f(t) = f(t) for �-a.e. t 2 T:56

Proof. Note that �f(t) is well-de�ned for each t 2 T by Lemma A.6, and �f is monotone,
being the pointwise join of monotone functions. It remains only to show that �f(t) = f(t) for
�-a.e. t 2 T:
Suppose �rst that f is measurable. Let C denote the measurable (by Lemma A.8) set of

	 quasi-continuity points of f; and let Lf denote the set of monotone g : T ! A such that
g(t) � f(t) for �-a.e. t 2 T: By Lemma A.9, �(C) = 1:
We claim that f(t) � g(t) for every t 2 C and every g 2 Lf : To see this, �x g 2 Lf

and let D be a measurable set with �-measure one such that g(t) � f(t) for every t 2 D:
Consider t 2 C: Because t is a 	 quasi-continuity point of f; there are sequences ftng and
ft0ng in T such that limn f(tn) = limn f(t

0
n) = f(t) and such that the intervals [tn; t] and

[t; t0n] have positive �-measure for every n: Therefore, in particular, the set D \ [t; t0n] has
positive �-measure for every n: Consequently, for every n we may choose ~tn 2 D\ [t; t0n]; and
therefore f(t0n) � f(~tn) � g(~tn) � g(t); for all n: In particular, f(t0n) � g(t) for all n; so that
f(t) = limn f(t

0
n) � g(t); proving the claim.

Consequently, f(t) � _g2Lfg(t) for every t 2 C: Hence, because f itself is a member of
Lf ; f(t) = _g2Lfg(t) = �f(t) for every t 2 C and therefore for �-a.e. t 2 T:
If f is not measurable, then by Lemma A.11, we may repeat the argument replacing

f with a measurable and monotone ~f : T ! A that is �-almost-everywhere equal to f;
concluding that ~f(t) = _g2L ~f

g(t) for �-a.e. t 2 T: But Lf = L ~f then implies that for �-a.e.

t 2 T; f(t) = ~f(t) = _g2L ~f
g(t) = _g2Lfg(t) = �f(t):

Lemma A.15. Assume G.1, G.3 and G.4. Suppose that the join operator onA is continuous
and that � : T ! [0; 1] is a monotone and measurable function such that �(��1(c)) = 0 for
every c 2 [0; 1]: De�ne h : [0; 1]�M�M!M by de�ning for every t 2 T;

h(� ; f; g)(t) =

8<:
f(t);
g(t);
f(t) _ g(t);

if �(t) � j1� 2� j and � < 1=2
if �(t) � j1� 2� j and � � 1=2
if �(t) > j1� 2� j

(A.5)

Then h : [0; 1]�M�M!M is continuous.

Proof. Suppose that (� k; fk; gk) ! (� ; f; g) 2 [0; 1] �M�M: By Lemma A.12, there is
a �-measure one subset, D; of T such that fk(t) ! f(t) and gk(t) ! g(t) for every t 2 D:
There are three cases: � = 1=2, � > 1=2 and � < 1=2:

56It can be further shown that, for all t 2 T; �f(t) = _fa 2 A : a � f(t0) for all t0 � t s.t. t0 2 T is a 	
quasi-continuity point of fg: But we will not need this result.
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Suppose that � < 1=2: For each t 2 D such that �(t) < j1� 2� j ; we have �(t) <
j1� 2� kj for all k large enough. Hence, h(� k; fk; gk)(t) = fk(t) for all k large enough,
and so h(� k; fk; gk)(t) = fk(t) ! f(t) = h(� ; f; g)(t): Similarly, for each t 2 D such that
�(t) > j1� 2� j ; h(� k; fk; gk)(t) = fk(t) _ gk(t)! f(t) _ g(t) = h(� ; f; g)(t); where the limit
follows because _ is continuous. Because �(ft 2 T : �(t) = j1� 2� jg) = 0; we have therefore
shown that if � < 1=2; then h(� k; fk; gk)(t)! h(� ; f; g)(t) for � a.e. t 2 T and so, by Lemma
A.12, h(� k; fk; gk)! h(� ; f; g):
Because the case � > 1=2 is similar to � < 1=2; we consider only the remaining case

in which � = 1=2: In this case, j1� 2� kj ! 0: Consequently, for any t 2 T such that
�(t) > 0; we have h(� k; fk; gk)(t) = fk(t) _ gk(t) for k large enough and so h(� k; fk; gk)(t) =
fk(t) _ gk(t) ! f(t) _ g(t) = h(1=2; f; g)(t): Hence, because �(ft 2 T : �(t) = 0g) = 0, we
have shown that h(� k; fk; gk)(t) ! h(1=2; f; g)(t) for � a.e. t 2 T , and so again by Lemma
A.12, h(� k; fk; gk)! h(� ; f; g):

Lemma A.16. Under G.1-G.5, the metric space (M; �) is an absolute retract.

Proof. De�ne h : [0; 1]�M�M!M by h(� ; s; s0)(t) = �s(t)+ (1� �)s0(t) for all t 2 T if
G.5(i) holds, and by (A.5) if G.5(ii) holds, where the monotone function �(�) appearing in
(A.5) is de�ned by (A.2). Note that h maps intoM in case G.5(i) holds because A is convex
(which itself follows because the partial order on A is convex). We claim that, in each case,
h is continuous. Indeed, if G.5(ii) holds, the continuity of h follows from Lemmas A.3 and
A.15. If G.5(i) holds and the sequence (�n; sn; s0n) 2 [0; 1] �M�M converges to (� ; s; s0);
then by Lemma A.12, sn(t)! s(t) and s0n(t)! s0(t) for �-a.e. t 2 T: Hence, because A is a
convex topological space, �nsn(t) + (1� �n)s0n(t)! �s(t) + (1� �)s0(t) for �-a.e. t 2 T: But
then Lemma A.12 implies �nsn + (1� �n)s0n ! �s+ (1� �)s0; as desired.
One consequence of the continuity of h is that for any g 2 M; h(�; �; g) is a contraction

for M so that (M; �) is contractible. Hence, by Borsuk (1966, IV (9.1)) and Dugundji
(1965), it su¢ ces to show that for each f 0 2 M and each neighborhood U of f 0; there is a
neighborhood V of f 0 and contained in U such that the sets V n; n � 1; de�ned inductively
by V 1 = h([0; 1]; V; V ); V n+1 = h([0; 1]; V; V n); are all contained in U:
We shall establish this by way of contradiction. Speci�cally, let us suppose to the contrary

that for some neighborhood U of f 0 2M there is no open set V containing f 0 and contained in
U such that all the V n as de�ned above are contained in U: In particular, for each k = 1; 2; :::;
taking V to be B1=k(f 0); the 1=k ball around f 0, there exists nk such that some gk 2 V nk is
not in U: We derive a contradiction separately for each of the two cases, G.5(i) and G.5(ii).
Case I. Suppose G.5(i) holds. For each n; V n+1 � coV; so that for every k = 1; 2; :::; gk 2

V nk � coB1=k(f 0): Hence, for each k there exist fk1 ; :::; fknk inB1=k(f
0) and nonnegative weights

�k1; :::; �
k
nk
summing to one such that gk =

Pnk
j=1 �

k
jf

k
j =2 U: Hence, gk(t) =

Pnk
j=1 �

k
jf

k
j (t) for

�-a.e. t 2 T and so for all t in some measurable set E having �-measure one. Moreover,
the sequence f 11 ; :::; f

1
n1
; f21 ; :::; f

2
n2
; ::: converges to f 0: Consequently, by Lemma A.12 the

sequence f 11 (t); :::; f
1
n1
(t); f21 (t); :::; f

2
n2
(t); ::: converges to f 0(t) for �-a.e. t 2 T and so for all

t in some measurable set D having �-measure one. But then for each t 2 D \ E and every
convex neighborhood Wt of f 0(t); each of fk1 (t); :::; f

k
nk
(t) is in Wt for all k large enough, and

therefore gk(t) =
Pnk

j=1 �
k
jf

k
j (t) is in Wt for k large enough as well. But this implies, by the

local convexity of A; that gk(t) ! f 0(t) for every t 2 D \ E and hence for �-a.e. t 2 T:
Lemma A.12 then implies that gk ! f 0; contradicting that no gk is in U .
Case II. Suppose G.5(ii) holds. As a matter of notation, for f; g 2 M; write f � g if

f(t) � g(t) for �-a.e. t 2 T . Also, for any sequence of monotone functions f1; f2; :::; inM;
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denote by f1 _ f2 _ ::: the monotone function taking the value limn[f1(t)_ f2(t)_ :::_ fn(t)]
for each t in T: This is well-de�ned by Lemma A.5.
If g 2 V 1; then g = h(� ; f0; f1) for some � 2 [0; 1] and some f0; f1 2 V: Hence, by the

de�nition of h; we have g � f0 _ f1 and either f0 � g or f1 � g: We may choose the indices
so that f0 � g � f0 _ f1: Inductively, it can similarly be seen that if g 2 V n; then there exist
f0; f1; :::; fn 2 V such that

f0 � g � f0 _ ::: _ fn: (A.6)

Hence, for each k = 1; 2; :: , gk 2 V nk and (A.6) imply that there exist fk0 ; :::; fknk 2 V =
B1=k(f

0) such that
fk0 � gk � fk0 _ ::: _ fknk : (A.7)

Consider the sequence f 10 ; :::; f
1
n1
; f20 ; :::; f

2
n2
; ::: . Because fkj is in B1=k(f

0); this sequence
converges to f 0: Let us reindex this sequence as f1; f2; ::: . Hence, fj ! f 0:
Because for every n the set ffn; fn+1; :::g contains the set ffk0 ; :::; fknkg whenever k is large

enough, we have
fk0 _ ::: _ fknk � _j�nfj;

for every n and all large enough k. Combined with (A.7), this implies that

fk0 � gk � _j�nfj (A.8)

for every n and all large enough k.
Now, fk0 ! f 0 as k ! 1: Hence, by Lemma A.12, fk0 (t) ! f 0(t) for �-a.e. t 2 T .

Consequently, if for �-a.e. t 2 T; _j�nfj(t) ! f 0(t) as n ! 1; then (A.8) and Lemma
A.4 would imply that gk(t) ! f 0(t) for �-a.e. t 2 T . Then, Lemma A.12 would imply that
gk ! f 0 contradicting that no gk is in U; and completing the proof.
It therefore remains only to establish that for � a.e. t 2 T; _j�nfj(t)! f 0(t) as n!1:

But, by Lemma A.18, because A is locally complete this will follow if fj(t) !j f
0(t) for �

a.e. t; which follows from Lemma A.12 because fj ! f 0:

A.4. Locally Complete Metric Semilattices

Lemma A.17. If A is a compact upper-bound-convex subset of Euclidean space and a
semilattice under the coordinatewise partial order, then A is a metric semilattice, i.e., _ is
continuous.

Proof. Suppose that an ! a, bn ! b; a _ b = c; and an _ bn ! d; where all of these points
are in A: We must show that c = d: Because an � an _ bn; taking limits implies a � d:
Similarly, b � d; so that c = a _ b � d: Thus, it remains only to show that c � d:
Let �a = _A denote the largest element of A; which is well de�ned by Lemma A.6. By the

upper-bound-convexity of A; "�a+(1�")c 2 A for every " 2 [0; 1]: Because the coordinatewise
partial order is closed, it su¢ ces to show that "�a + (1� ")c � d for every " > 0 su¢ ciently
small. So, �x " 2 (0; 1) and consider the kth coordinate, ck; of c: If for some n; akn > ck; then
because �ak � akn we have �ak > ck and therefore "�ak + (1� ")ck > ck: Consequently, because
akn !n ak � ck; we have "�ak+(1� ")ck > akn for all n su¢ ciently large. On the other hand,
suppose that akn � ck for all n: Then because �ak � ck we have "�ak + (1� ")ck � akn for all
n: So, in either case "�ak + (1� ")ck � akn for all n su¢ ciently large. Therefore, because k is
arbitrary, "�a+ (1� ")c � an for all n su¢ ciently large. Similarly, "�a+ (1� ")c � bn for all
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n su¢ ciently large. Therefore, because "�a + (1 � ")c 2 A; "�a + (1 � ")c � an _ bn for all n
su¢ ciently large: Taking limits in n gives "�a+ (1� ")c � d:

Lemma A.18. If G.3 holds, then A is locally complete if and only if for every a 2 A and
every sequence an converging to a; limn(_k�nak) = a:

Proof. We �rst demonstrate the �only if�direction. Suppose that A is locally complete,
that U is a neighborhood of a 2 A; and that an ! a: By local completeness, there is a
neighborhood W of a contained in U such that every subset of W has a least upper bound
in U: In particular, because for n large enough fan; an+1; :::g is a subset ofW; the least upper
bound of fan; an+1; :::g; namely _k�nak; is in U for n large enough. Since U was arbitrary,
this implies limn(_k�nak) = a:
We now turn to the �if�direction. Fix any a 2 A; and let B1=n(a) denote the open ball

around a with radius 1=n: For each n; _B1=n(a) is well-de�ned by Lemma A.6. Moreover,
because _B1=n(a) is nonincreasing in n; limn _B1=n(a) exists by Lemma A.5. We �rst argue
that limn _B1=n(a) = a: For each n; construct as in the proof of Lemma A.6 a sequence
fan;mg of points in B1=n(a) such that limm(an;1 _ ::: _ an;m) = _B1=n(a): We may therefore
choose mn su¢ ciently large so that the distance between an;1_ :::_an;mn and _B1=n(a) is less
than 1=n: Consider now the sequence fa1;1; :::; a1;m1 ; a2;1; :::; a2;m2 ; a3;1; :::; a3;m3 ; :::g: Because
an;m is in B1=n(a); this sequence converges to a: Consequently, by hypothesis,

lim
n
(an;1 _ ::: _ an;mn _ a(n+1);1 _ ::: _ a(n+1);m(n+1)

_ :::) = a:

But because every ak;j in the join in parentheses on the left-hand side above (denote this
join by bn) is in B1=n(a); we have

an;1 _ ::: _ an;mn � bn � _B1=n(a):

Therefore, because for every n the distance between an;1 _ ::: _ an;mn and _B1=n(a) is less
than 1=n; Lemma A.4 implies that limn _B1=n(a) = limn bn: But since limn bn = a; we have
limn _B1=n(a) = a. Next, for each n; let Sn be an arbitrary nonempty subset of B1=n(a); and
choose any sn 2 Sn: Then sn � _Sn � _B1=n(a): Because sn 2 B1=n(a); Lemma A.4 implies
that limn _Sn = a: Consequently, for every neighborhood U of a; there exists n large enough
such that _S (well-de�ned by Lemma A.6) is in U for every subset S of B1=n(a): Since a was
arbitrary, A is locally complete.

Lemma A.19. Every compact Euclidean metric semilattice is locally complete.

Proof. Suppose that an ! a with every an and a in the semilattice, which we assume
to be a subset of RK . By Lemma A.18, it su¢ ces to show that limn(_k�nak) = a: By
Lemma A.5, limn(_k�nak) exists and is equal to limn limm(an _ ::: _ am) since an _ ::: _ am
is nondecreasing in m; and limm(an _ ::: _ am) is nonincreasing in n: For each dimension
k = 1; :::; K; let akn;m denote the �rst among an; an+1; :::; am with the largest kth coordinate.
Hence, an_ :::_am = a1n;m_ :::_aKn;m; where the right-hand side consists of K terms. Because
an ! a, limm a

k
n;m exists for each k and n; and limn limm a

k
n;m = a for each k: Consequently,

limn limm(an_:::_am) = limn limm(a
1
n;m_:::_aKn;m) = (limn limm a

1
n;m)_:::_(limn limm a

K
n;m) =

a _ ::: _ a = a, as desired.

Lemma A.20. If G.4 holds and for all a 2 A; every neighborhood of a contains a0 such that
b0 � a0 for all b0 close enough to a; then A is locally complete.
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Proof. Suppose that an ! a: By Lemma A.18, it su¢ ces to show that limn(_k�nak) = a:
For every n and m; am � am _ am+1 _ :::_ am+n, and so taking the limit �rst as n!1 and
then as m!1 gives a � limm _k�mak; where the limit in n exists by Lemma A.5 because
the sequence is monotone. Hence, it su¢ ces to show that limm _k�mak � a.
Let U be a neighborhood of a and let a0 be chosen as in the statement of the lemma.

Then, because am ! a; am � a0 for all m large enough. Consequently, for m large enough
and for all n, am _ am+1 _ ::: _ am+n � a0: Taking the limit �rst in n and then in m yields
limm _k�mak � a0: Because for every neighborhood U of a this holds for some a0 in U;
limm _k�mak � a; as desired.

A.5. Assumption G.3

Say that two points in a partially ordered metric space are strictly ordered if they are con-
tained in disjoint open sets and every member of one set is greater or equal to every member
of the other. The following lemma provides a su¢ cient condition for G.3 to hold when T
happens to be a separable metric space.

Lemma A.21. Suppose that (T; T ; �;�) is a partially ordered probability space, that T is
a separable metric space and that T contains the open sets. Then G.3 holds if every atomless
set having positive �-measure contains two strictly ordered points.

Proof. Let T 0 be the union of a countable dense subset of T and the countable set of atoms
of �; and suppose that D 2 T has positive �-measure. We must show that t1 � t0 � t2 for
some t1; t2 2 D and some t0 2 T 0:
If D contains an atom, t0; of �; then we may set t1 = t2 = t0 and we are done. Hence,

we may assume that D is atomless.
Without loss, we may assume that �(D\U) > 0 for every open set U whose intersection

with D is nonempty.57 Because �(D) > 0; there exist t01; t2 2 D and open sets U 01 containing
t01 and U2 containing t2 such that every member of U

0
1 is greater or equal to every member

of U2; which we shall write as U 01 � U2:
Because D \ U 01 is nonempty �it contains t01 ��(D \ U 01) > 0. Consequently, there exist

t1; t
00
1 2 D \ U 01 and open sets U1 containing t1 and U 001 containing t001 such that U1 � U 001 :

Hence, U1 \ U 01 � U 001 \ U 01 � U2: Therefore, because the open set U 001 \ U 01 is nonempty �it
contains t001 �it contains some t

0 in the dense set T 0: Hence, t1 � t0 � t2; because t1 2 U1\U 01
and t2 2 U2: Noting that t1 and t2 are members of D completes the proof.

A.6. Proofs from Section 5

Proof of Corollary 5.2. Consider the uniform-price auction but where unit-bids can be
any nonnegative real number. Because marginal values are between zero and one, without
loss we may restrict attention to unit-bids in [0; 1]: The resulting game is discontinuous.
Remark 3.1 of Reny (1999) establishes that if this game is better-reply secure, then the limit
of a convergent sequence of pure strategy "-equilibria, as " tends to zero, is a pure strategy
equilibrium. Hence, in view of Lemma A.13, it su¢ ces to show that the auction game is

57Otherwise, replace D with D \ V c; where V is the largest open set whose intersection with D has �-
measure zero. To see that V is well-de�ned, let fUig be a countable base of open sets: Then V is the union
of all the Ui satisfying �(Ui \D) = 0:
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better-reply secure (when players employ monotone pure strategies) and that it possesses,
for every " > 0; an "-equilibrium in monotone pure strategies.
An argument analogous to that given in the �rst paragraph on p. 1046 of Reny (1999)

shows that the uniform-price auction game with unit-bid space [0; 1] is better-reply secure
when bidders employ monotone pure strategies. Fix " > 0: By Proposition 5.1, for each
k = 1; 2; :::; there is a monotone pure strategy equilibrium, bk; of the uniform-price auction
when unit-bids are restricted to the �nite set f0; 1=k; 2=k; :::; k=kg: It su¢ ces to show that
for all k su¢ ciently large, bk is an "-equilibrium of the game in which unit-bids can be chosen
from [0; 1]:
Fix player i: Let D denote the set of nonincreasing bid vectors in [0; 1]m: It su¢ ces to

show that for all k su¢ ciently large and all monotone pure strategies b : Ti ! D for player
i; there is a monotone pure strategy b0 : Ti ! D \ f0; 1=k; 2=k; :::; k=kgm that yields player
i utility within " of b(�) uniformly in the others�strategies. By weak dominance, it su¢ ces
to consider monotone pure strategies b : Ti ! D for player i such that each unit-bid, bj(ti);
is in [0; tij] for every ti = (ti1; :::; tim) 2 Ti: So, let b(�) be such a monotone pure strategy
and let b0 : Ti ! D \ f0; 1=k; 2=k; :::; k=kgm be such that for every ti 2 Ti; b

0
j(ti) is the

smallest member of f0; 1=k; :::; k=kg greater or equal to bj(ti): Hence, b0(�) is monotone and
b01(ti) � ::: � b0m(ti) every ti 2 Ti; so that b0(�) is a feasible monotone pure strategy. If bidder
i employs b0(�) instead of b(�); then regardless of his type and for any strategies the others
might employ and for each j = 1; :::;m; bidder i will win a jth unit whenever b(�) would
have won a jth unit although the price might be higher because his bid vector is higher, and
he may win a jth unit when b(�) would not have. The increase in the price caused by the at
most 1=k increase in each of his unit-bids can be no greater than 1=k; and because bj(ti) � tij
for every ti 2 Ti; the ex-post surplus lost on each additional unit won from employing b0(�)
instead of b(�) can be no greater than 1=k: Hence, the total ex-post loss in surplus as a result
of the strategy change can be no greater than 2m=k; which can be made arbitrarily small for
k su¢ ciently large, regardless of the others�strategies. Hence, i�s expected utility loss from
employing b0(�) instead of b(�) is, for k large enough, less than "; and this holds uniformly in
the others�strategies.

Proof of Corollary 5.5. Analogous to the proof of Corollary 5.2 above.

Proof of Lemma 5.3. Fix monotone pure strategies for all players but i: For the remainder
of this proof, we omit most subscripts i to keep the notation manageable. Let v(b; t) denote
bidder i�s expected payo¤ from employing the bid vector b = (b1; :::; bm) when his type vector
is t = (t1; :::; tm): Then, letting Pk(bk) denote the probability that bidder i wins at least k
units �which depends only on his kth unit-bid bk �we have, where 1k is an m-vector of k
ones followed by m� k zeros,

v(b; t) = u(0) +

mX
k=1

Pk(bk) (u((t� b) � 1k)� u((t� b) � 1k�1))

=
1

r

mX
k=1

er(b1+:::+bk�1)Pk(bk)
�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1);

where u(x) = 1�e�rx
r

is bidder i�s utility function with constant absolute risk aversion para-
meter r � 0; where it is understood that u(x) = x when r = 0: Note that the dependence of
r on i has been suppressed.
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From now on we shall proceed as if r > 0 because all of the formulae employed here have
well-de�ned limits as r tends to zero that correspond to the risk neutral case u(x) = x:
Letting wk(bk; t) = 1

r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1); we may write,

v(b; t) =

mX
k=1

er(b1+:::+bk�1)wk(bk; t):

As shown in (5.2) from subsection 5.1 (and setting �p = p = 0 there), for each k = 2; :::;m;

u(t1 + :::+ tk)� u(t1 + :::+ tk�1) =
1

r
(1� e�rtk)e�r(t1+:::+tk�1); (A.9)

is nondecreasing in t according to the partial order �i de�ned in (5.1). Henceforth, we shall
employ the partial order �i on i�s type space. We next demonstrate the following facts.

(i) wk(bk; t) is nondecreasing in t; and

(ii) wk(�bk; t)� wk(bk; t) is nondecreasing in t for all �bk � bk;

To see (i), write,

wk(bk; t) =
1

r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1)

=
1

r
Pk(bk)

�
1� e�rtk

�
e�r(t1+:::+tk�1)

+
1

r
Pk(bk)

�
erbk � 1

� �
�e�r(t1+:::+tk)

�
:

The �rst term in the sum is nondecreasing in t according to �i by (A.9) and the second
term, being nondecreasing in the coordinatewise partial order is, a fortiori, nondecreasing in
t according to �i.
Turning to (ii), if Pk(bk) = 0 then wk(bk; t) = 0 and (ii) follows from (i). So, assume

Pk(bk) > 0: Then,

wk(�bk; t)� wk(bk; t) =
1

r
Pk(�bk)

�
1� e�r(tk��bk)

�
e�r(t1+:::+tk�1)

�1
r
Pk(bk)

�
1� e�r(tk�bk)

�
e�r(t1+:::+tk�1)

=

�
Pk(�bk)

Pk(bk)
� 1
�
wk(bk; t)

+
1

r
Pk(�bk)

�
er
�bk � erbk

� �
�e�r(t1+:::+tk)

�
:

The �rst term in the sum is nondecreasing in t according to �i by (i) and the second term,
being nondecreasing in the coordinatewise partial order is, a fortiori, nondecreasing in t
according to �i. This proves (ii).
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Suppose now that the vector of bids b is optimal for bidder i when his type vector is t;
and that b0 is optimal when his type is t0 �i t:We must argue that b_ b0 is optimal when his
type is t0: If bk � b0k for all k; then b _ b0 = b0 and we are done. Hence, we may assume that
there is a maximal set of consecutive coordinates of b that are strictly greater than those of
b0: That is, there exist coordinates j and l with j � l such that bk > b0k for k = j; :::; l and
bj�1 � b0j�1 and bl+1 � b0l+1; where the �rst of the last two inequalities is ignored if j = 1
and the second is ignored if l = m.
Let b̂ be the bid vector obtained from b by replacing its coordinates j through l with the

coordinates j through l of b0: Because b is optimal at t and b̂ is nonincreasing and therefore
feasible, v(b; t)� v(b̂; t) is nonnegative. Dividing v(b; t)� v(b̂; t) by er(b1+:::+bj); this implies

0 � wj(bj; t)� wj(b0j; t) +
lX

k=j+1

er(bj+:::+bk�1) (wk(bk; t)� wk(b0k; t))

+
�
er(bj+:::+bl) � er(b0j+:::+b0l)

� �
wl+1(bl+1; t) + e

rbl+1wl+2(bl+2; t) + :::+ e
r(bl+1+:::+bm�1)wm(bm; t)

�
Consequently, for t0 �i t; (i) and (ii) imply,

0 � wj(bj; t
0)� wj(b0j; t0) +

lX
k=j+1

er(bj+:::+bk�1) (wk(bk; t
0)� wk(b0k; t0))

(A.10)

+
�
er(bj+:::+bl) � er(b0j+:::+b0l)

� �
wl+1(bl+1; t

0) + erbl+1wl+2(bl+2; t
0) + :::+ er(bl+1+:::+bm�1)wm(bm; t

0)
�

Focusing on the second term in square brackets in (A.10), we claim that

wl+1(bl+1; t
0) + erbl+1wl+2(bl+2; t

0) + :::+ er(bl+1+:::+bm�1)wm(bm; t
0)

� wl+1(b
0
l+1; t

0) + erb
0
l+1wl+2(b

0
l+2; t

0) + :::+ er(b
0
l+1+:::+b

0
m�1)wm(b

0
m; t

0) (A.11)

To see this, note that because bl+1 � b0l+1; the bid vector b
00 obtained from b0 by replacing

its coordinates l + 1 through m with the coordinates l + 1 through m of b is a feasible
(i.e., nonincreasing) bid vector. Consequently, because b0 is optimal at t0 we must have
0 � v(b0; t0) � v(b00; t0): But this di¤erence in utilities is precisely the di¤erence between
the right-hand and left-hand sides of (A.11) multiplied by er(b1+:::+bl); thereby establishing
(A.11).
Thus, we may conclude, after making use of (A.11) in (A.10) that,

0 � wj(bj; t
0)� wj(b0j; t0) +

lX
k=j+1

er(bj+:::+bk�1) (wk(bk; t
0)� wk(b0k; t0))

+
�
er(bj+:::+bl) � er(b0j+:::+b0l)

� h
wl+1(b

0
l+1; t

0) + erb
0
l+1wl+2(b

0
l+2; t

0) + :::+ er(b
0
l+1+:::+b

0
m�1)wm(b

0
m; t

0)
i

=
v(~b; t0)� v(b0; t0)
er(b

0
1+:::+b

0
j�1)

;

44



where ~b is the nonincreasing and therefore feasible bid vector obtained from b0 by replacing
its coordinates j through l with the coordinates j through l of b: Hence, ~b is optimal at t0

because v(~b; t0) � v(b0; t0) and b0 is optimal at t0.
Thus, we have shown that whenever j; :::; l is a maximal set of consecutive coordinates

such that bk > b0k for all k = j; :::; l; replacing in b
0 the unit-bids b0j; :::; b

0
l with the coordinate-

by-coordinate larger unit bids bj; :::; bl results in a bid vector that is optimal at t0: Applying
this result �nitely often leads to the conclusion that b _ b0 is optimal at t0; as desired.

Lemma A.22. Consider the price competition game from subsection 5.3. Under the partial
orders on types �i de�ned there for each �rm i, each �rm possesses a monotone pure strategy
best reply when the other �rms employ monotone pure strategies.

Proof. Suppose that all �rms j 6= i employ monotone pure strategies according to �j
de�ned in subsection 5.3. Therefore, in particular, pj(cj; xj) is nondecreasing in cj for each
xj; and (5.6) applies. For the remainder of this proof, we omit most subscripts i to keep the
notation manageable.
Because �rm i�s interim payo¤ function is continuous in his price for each of his types

and because his action space, [0; 1]; is totally ordered and compact, �rm i possesses a largest
best reply, p̂(c; x); for each of his types (c; x) 2 [0; 1]2: We will show that p̂(�) is monotone
according to �i :
Let �t = (�c; �x); t = (c; x) in [0; 1]2 be two types of �rm i; and suppose that �t �i t:

Hence, �c � c and �x � x = �(�c � c) for some � 2 [0; �i]: Let �p = p̂(�c; �x); p = p̂(c; x); and
t� = (1� �)t+ ��t for � 2 [0; 1]: We wish to show that �p � p:
By the fundamental theorem of calculus,

vi(p; t
�)� vi(p0; t�) =

Z p

p0

@vi(p; t
�)

@p
dp;

so that

@
�
vi(p; t

�)� vi(p0; t�)
�

@�
=

Z p

p0

@2vi(p; t
�)

@�@p
dp

=

Z p

p0

�
@2vi(p; t

�)

@c@p
(�c� c) + @

2vi(p; t
�)

@x@p
(�x� x)

�
dp

= (�c� c)
Z p

p0

�
@2vi(p; t

�)

@c@p
+ �

@2vi(p; t
�)

@x@p

�
dp

� 0;

where the inequality follows by (5.6) if p � p0 � �c: Therefore, vi(p; �t) � vi(p0; �t) � vi(p; t) �
vi(p

0; t) � 0; where the �rst inequality follows because t0 = t; t1 = �t; and the second because
p is a best reply at t: Therefore, we have shown the following: If p � �c; then

vi(p; �t)� vi(p0; �t) � 0; for all p0 2 [�c; p]:

Hence, if p � �c; then p̂(�t) = �p � p = p̂(t) because p̂(�t) is the largest best reply at
�t and because no best reply at �t = (�c; �x) is below �c: On the other hand, if p < �c; then
�p = p̂(�t) � �c > p = p̂(t); where the �rst inequality again follows because no best reply at �t
is below �c. We conclude that �p � p; as desired.
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