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Abstract

Optimal Portfolio Allocation Under Asset

and Surplus VaR Constraints

In this paper we propose an approach to Asset Liability Management of
various institutions, in particular insurance companies, based on a dual VaR
constraint for the asset and the surplus. A key ingredient of this approach
is a flexible modelling of the term structure of interest rates leading to an
explicit formula for the returns of bonds. VaR constraints on the asset and
on the surplus also take tractable forms, and graphical illustrations of the
impact and of the sensitivity of these constraints are easily explicited in terms
of various parameters : share of stocks, duration and convexity of the bonds
on the asset and liability sides, expected return and volatility of the asset...

JEL classification : C10, G11
Keywords : Asset Liability Management, interest rates, Asset VaR con-
straint, Surplus VaR constraint, Optimal Portfolio.



Résumé

Allocation optimale de portefeuille sous

contrainte de VaR d’actif et de surplus

On propose une approche de la gestion Actif-Passif de diverses institu-
tions, en particulier les compagnies d’assurance, fondée sur une double con-
trainte de VaR sur l’actif et le surplus. Un ingrédient important de cette
approche est une modélisation flexible de la structure par terme des taux
d’intérêt aboutissant à une formule explicite des rendements d’obligations.
Les contraintes de VaR sur l’actif et sur le surplus ont aussi des formes
simples, et des illustrations graphiques de l’impact et de la sensibilité de
ces contraintes sont facilement explicitées en fonction de divers paramètres :
part des actions, duration et convexité des obligations du côté actif et passif,
rendement espéré et volatilité de l’actif...

Codes JEL : C10, G11
Mots clés : Gestion Actif-Passif, taux d’intérêt, Var d’actif, Var de surplus,
Portefeuille Optimal.
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Non technical summary

This paper proposes a flexible and tractable modelling of four important
aspects of Asset Liability Management (ALM); i) the trade-off between asset
performance and liability hedging ii) the measures of risks, iii) the shape
and the dynamics of the interest rate curve, iv) the modelling of the coupon
structure of the bonds (on the asset and liability side).

The first point is a key issue in management of many institutions, in
particular insurance companies, and it is becoming even more important
because of the new accounting standards and regulation rules (Basle com-
mittees, Solvency I and II). Building on a series of papers by Leibowitz,
Bader and Kogelman, our approach is based on a joint modelling of the asset
return and of the surplus return.

The second point is also central because it is now well documented that
symmetric measures of risk like variance or standard error (or volatility)
may be misleading when used at the decision stage. So we use the more
appropriate VaR approach based on the measure of extreme risks and which
is now recommended by regulatory authorities.

The third point is obviously crucial since the shape and the dynamics of
the interest rate curve have decisive impacts both on the asset and liability
side. Roughly speaking the modern literature on interest rates is divided in
two streams. The first one uses factor models. In the second stream, the
yied curve is assumed to be as a linear combination of basic functions of the
maturity, the coefficients of the combination being specified as a stochastic
processes. In this paper we adopt this second approach and, in order to have
explicit formulas for the bond returns, we propose to use polynomials as basic
functions of maturity. More precisely the shape of the curve is determined
at each date by a level, a slope and a convexity parameter, the level (and
possibly the slope in the extended version of the model) being a stochastic
process.

Finally the structure of the coupons of the bonds appearing on the asset
and liability sides, is summarized by two parameters (or four parameters in
the extended version) interpreted as the two (or four) first empirical moments
of the maturities (weighted by the actualized coupons). It turns out that, un-
der this approach, and using a very accurate expansion technique, we obtain
an explicit formula for the annual return of coupon bonds. The accuracy
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of this approximation is assessed by simulation and kernel non-parametric
techniques. Moreover, introducing assumptions on the stock returns and on
the correlation of these returns with bond returns, we obtain explicit formu-
las for asset return, liability return, surplus return, and in particular for the
means, the volatilities, the quantiles and the VaR of these random variables.
This allows for a simple and illuminating graphical presentation (in 2 and
3 dimensions) of these quantities. Then the problem of optimal allocation
of the asset under constraints on the asset VaR and the surplus VaR can
be tackled, and, playing with the parameters, a sensitivity analysis of the
admissible and optimal allocations can be easily performed.

The paper is organized as follows. In section 2 we consider the modelling
of the yield curve and of the bond return; in particular we develop a careful
study of the evaluation of the approximation based on simulations and kernel
non-parametric techniques. Section 3 is devoted to asset modelling. Section
4 deals with liability and surplus modelling. Section 5 considers extensions.
Section 6 concludes and two appendices gather the technical proofs.
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Résumé non technique

Cet article propose une modélisation souple et simple de quatre aspects
importants de la gestion Actif-Passif : i) le conflit entre performance de l’actif
et couverture du passif, ii) les mesures du risque, iii) la forme et la dynamique
de la courbe des taux, iv) la modélisation de la structure des coupons (du
côté actif et positif).

Le premier point devient de plus en plus important en raison des règles
prudentielles (Basle Committee, Solvency I and II). Notre approche prolonge
celle de Leibowitz, Bader and Kogelman et s’appuie sur une modélisation
jointe des rendements d’actifs et de surplus.

Le deuxième point est aussi important car il est bien connu que les mesures
de risques symétriques telles que la variance ou l’écart type peuvent être
trompeuses quand elles sont utilisées pour prendre des décisions. On utilise
donc l’approche de la VaR qui est fondée sur une mesure des risques extrêmes
et qui est recommandée par les instances de régulation.

Le troisième point est évidemment crucial car la forme et la dynamique
de la courbe des taux ont des influences décisives à la fois du côté de l’actif et
du positif. La littérature récente sur les taux est divisée en deux courants. Le
premier utilise des modèles à facteurs. Dans le deuxième, la courbe des taux
est supposée être une combinaison à coefficients aléatoires, et dynamiques de
fonctions de la maturité. Dans cet article on adopte la deuxième approche et
afin d’obtenir des formules explicites pour les rendements des obligations on
utilise des fonctions polynomiales de la maturité. Plus précisément la courbe
des taux est déterminée à chaque date par un paramètre de niveau, de pente
et de convexité, le niveau (et la pente dans la version généralisée) étant un
processus stochastique.

Finalement, la structure des coupons, du côté actif et passif, est résumée
par deux paramètres (quatre dans la version généralisée) s’interprétant comme
deux (ou quatre) moments empiriques des maturités pondérées par des coupons
actualisés. En utilisant une technique de développement limité, on obtient
une formule explicite pour le rendement des obligations. Cette approxima-
tion est évaluée par des techniques de Monte Carlo et des méthodes non
paramétriques de noyau. En outre, en introduisant des hypothèses sur les
rendements des actions et sur la corrélation entre ces rendements et les ren-
dements des obligations, on obtient des formules explicites pour les rende-
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ments d’actifs, de passif et de surplus et, en particulier, pour les moyennes,
les volatilités, les quantiles et les VaR de ces variables. Cela permet une
présentation simple et éclairante de ces quantités. Ensuite le problème de
l’allocation optimale sous des contraintes de VaR d’actif et de surplus peut
être abordé et, en faisant varier les divers paramètres, des études de sensi-
bilité des allocations admissibles et optimales peuvent être menées.
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1 INTRODUCTION

This paper proposes a flexible and tractable modelling of four important
aspects of Asset Liability Management (ALM); i) the trade-off between asset
performance and liability hedging ii) the measures of risks, iii) the shape
and the dynamics of the interest rate curve, iv) the modelling of the coupon
structure of the bonds (on the asset and liability side).

The first point is a key issue in management of many institutions, in
particular insurance companies, and it is becoming even more important
because of the new accounting standards and regulation rules (Basle com-
mittees, Solvency I and II) [see Amenc-Martellini-Foulquier-Sender (2006)
for a discussion of the impact of Solvency II ou ALM]. Building on a series of
papers by Leibowitz, Bader and Kogelman [see Leibowitz-Bader-Kogelman
(1996) and the references therein] , our approach is based on a joint modelling
of the asset return and of the surplus return.

The second point is also central because it is now well documented that
symmetric measures of risk like variance or standard error (or volatility)
may be misleading when used at the decision stage. So we use the more
appropriate VaR approach based on the measure of extreme risks and which
is now recommended by regulatory authorities.

The third point is obviously crucial since the shape and the dynamics
of the interest rate have decisive impacts both on the asset and liability
side. Roughly speaking the modern literature on interest rates is divided in
two streams. The first one uses factor models and the pioneering works in
these are those of Vasicek (1977), Cox-Intersoll-Ross (1985) and Duffie-Kan
(1996) [see also Gourieroux-Monfort-Polimenis (2003), Gourieroux-Monfort
(2007) and Monfort-Pegoraro (2007) for more flexible models]. In the second
stream, the yied curve is assumed to be as a linear combination of basic
functions of the maturity, the coefficients of the combination being specified
as a stochastic processes [see e.g. Diebold-Li (2006)]. In this paper we adopt
this second approach and, in order to have explicit formulas for the bond
returns, we propose to use polynomials as basic functions of maturity. More
precisely the shape of the curve is determined at each date by a level, a slope
and a convexity parameter, the level (and possibly the slope in the extended
version of the model) being a stochastic process.

Finally the structure of the coupons of the bonds appearing on the asset
and liability sides, is summarized by two parameters (or four parameters in
the extended version) interpreted as the two (or four) first empirical mo-
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ments of the maturities (weighted by the actualized coupons). In particular,
we introduce the extent parameter, which is the standard error of these ma-
turities (and could be seen as one of the many definitions of the convexity
of a coupon bond). It turns out that, under this approach, and using a very
accurate expansion technique, we obtain an explicit formula for the annual
return of coupon bonds as a function of the parameters of the yield curve
and of the parameters of the coupon structure. The accuracy of this ap-
proximation is assessed by simulation and kernel non-parametric techniques.
Moreover, introducing assumptions on the stock returns and on the correla-
tion of this returns with bond returns, we obtain explicit formulas for asset
return, liability return, surplus return, and in particular for the means, the
volatilities, the quantiles and the VaR of these random variables. This allows
for a simple and illuminating graphical presentation (in 2 and 3 dimensions)
of these quantities. Then the problem of optimal allocation of the asset under
constraints on the asset VaR and the surplus VaR can be tackled, and, play-
ing with the parameters, a sensitivity analysis of the admissible and optimal
allocations can be easily performed.

The paper is organized as follows. In section 2 we consider the modelling
of the yield curve and of the bond return; in particular we develop a careful
study of the evaluation of the approximation based on simulations and kernel
non-parametric techniques. Section 3 is devoted to asset modelling. Section
4 deals with liability and surplus modelling. Section 5 considers extensions.
Section 6 concludes and two appendices gather the technical proofs.

2 Interest rates and return of coupon bonds

2.1 Shape and dynamics of the interest rate curve.

In this paper we assume that the interest rate curve is quadratic. More
precisely the (arithmetic) interest rate at time t of maturity h years is given
by :

R(t, h) = R(t, 1) + α× (h− 1) + β × (h− 1)2 (1)

The parameters α and β are interpreted repectively as a slope and curva-
ture parameter. This modelling is obviously not valid when h goes to infinity,
but it is flexible enough to provide good approximations for the usual values
of h and, moreover, we shall see that it leads to tractable formulas.
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The dynamics of the short rate R(t, 1) is first assumed to be that of a
random walk :

R(t + 1, 1) = R(t, 1) + σεt+1

and, therefore, R(t + 1, h) = R(t, 1) + α(h− 1) + β(h− 1)2 + σεt+1(2)

where εt+1 is N(0, 1) distributed.

In other words, at horizon one (which is the horizon we are interested
in) the random change of the curve is a translation (see section 5 for an
extension).

2.2 Return of coupon bonds, duration and extent.

Let us denote by Ct+h, h = 1, . . . , H the coupons of the bond at dates
t + h, h = 1, . . . , H. The (arithmetic) return of this bond is :

rb =
pt+1

pt

− 1

with pt+1 =
H∑

h=1

Ct+h

[1 + R(t, 1) + α(h− 2) + β(h− 2)2 + σεt+1]h−1

pt =
H∑

h=1

Ct+h

[1 + R(t, 1) + α(h− 1) + β(h− 1)2]h

Using a Taylor expansion it can be shown (see appendix 1) that rb can
be approximated by :

rD,E
b = R(t, 1)+2αD+β(3D2−D+3E2)+ψ

σ2

2
(D2 +D+E2)−Dσεt+1 (3)

where D =

H∑

h=1

C∗
t+h(h− 1)

H∑

h=1

C∗
t+h

(4)
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D2 =

H∑

h=1

C∗
t+h(h− 1)2

H∑

h=1

C∗
t+h

(5)

E2 = D2 −D2 (6)

C∗
t+h =

Ct+h

[1 + R(t, 1) + α(h− 1) + β(h− 1)2]h
(7)

ψ is a correction parameter (we shall take ψ = 0.95, see appendix 1).
D is the duration at t + 1 of the bond and E, called the extent, is a

standard error of the maturity. In particular a zero-coupon bond has an
extend equal to zero. 1

In particular, the mean of rD,E
b is :

mb = R(t, 1) + 2αD + β(3D2 −D + 3E2) + ψ
σ2

2
(D2 + D + E2) (8)

and its standard error, or volatility :

σb = Dσ (9)

In the volatility-mean plan, the pairs (σb,mb), are, for different E, on
parallel parabolas : (for D > 1, or σb > σ, since for D = 1, we have E = 0) :

mb = R(t, 1) +

(
3β + ψ

σ2

2

)
E2 +

(
2α− β + ψ

σ2

2

)
σb

σ
+

(
3β + ψ

σ2

2

)
σ2

b

σ2

(10)
In particular, for a zero-coupon bond, the pairs (σb,mb) are on the parabola :

mb = R(t, 1) +

(
2α− β + ψ

σ2

2

)
σb

σ
+

(
3β + ψ

σ2

2

)
σ2

b

σ2
(11)

The convexity of the parabolas depend on the convexity of the rate curve
and on the variance of the noise.

1E is sometimes called convexity in the literature; however since there are many differ-
ent definitions of the convexity we prefer to introduce this new term.
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2.3 Precision of the approximation

Formula (3.8) is based on an expansion assuming α, β, σ small. So it is
natural to evaluate this approximation for realistic values of α, β, σ.

We consider a humped rate curve similar to those observed recently, cor-
responding to R(t, 1) = 4.10−2, α = 2.10−3 et β = −10−4 (see figure 1) and
we take σ = 10−2.

For a given bond we can compute the exact probability density function
(pdf) of the return using simulations and nonparametric kernel estimation
methods (the bandwidth is chosen according to Silverman’s rule). We can,
in particular, compute the mean and the standard error (volatility) of this
exact distribution and compare them with the values given by formula (8)
and (9). We can also compute the skewness and the kurtosis and compare
them with the values corresponding to a normal distribution, namely 0 and 3.

In the following table we give the result of this study for various zero-
coupon bonds with maturity between 2 and 21, i.e. with durations D (at
t + 1) between 1 and 20.
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D exact m mb exact vol σb skewness kurtosis
1 0,0440 0,0439 0,0100 0,0100 0,04 2,96
2 0,0476 0,0472 0,0201 0,0200 0,10 3,02
3 0,0503 0,0502 0,0304 0,0300 0,11 3,02
4 0,0524 0,0525 0,0402 0,0400 0,14 3,02
5 0,0546 0,0544 0,0503 0,0500 0,17 3,04
8 0,0579 0,0570 0,0810 0,0800 0,24 3,04
10 0,0564 0,0562 0,1016 0,1000 0,35 3,18
12 0,0532 0,0534 0,1202 0,1200 0,36 3,29
15 0,0459 0,0454 0,1511 0,1500 0,46 3,38
18 0,0339 0,0329 0,1809 0,1800 0,53 3,45
20 0,0221 0,0219 0,1988 0,2000 0,59 3,62

We see that the approximations of the means and of the volatilities are
very good. The skewness and the kurtosis slightly increase with the maturity;
in other words, when the maturity increases, we observe a slightly increasing
positive asymmetry and also a slightly increasing thickness of the tails.

Figures 2 and 3 show the exact and approximated pdf for bonds with
short and long duration. The short term bond has identical coupons at t+2
and t + 3(D = 1.48, E = 0.5) and the long term bond has identical coupons
at t + 2 and t + 5(D = 8.8, E = 10.9). For the short bond the exact and
approximated means are both equal to 0.045 and the exact and approximated
volatilities are both equal to 0.015 (skewness 0.089, kurtosis 3.03). For the
long bond we obtain 0.028 and 0.027 for the means, and 0.086 and 0.088 for
the volatilities (skewness 0.73, kurtosis 4.05).
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3 Modelling the asset

3.1 Return of the asset, mean, volatility, quantiles

We assume that the asset is a portfolio of stocks and bonds. We denote by
w the share of stocks (and 1− w the share of bonds). We denote by D and
E, the duration and the extent of the bond component of the portfolio. We
assume that the return re (e like equity) of the stocks is gaussian, with mean
me and volatility σe and that its correlation with rD,E

b is denoted by ρ; note
that this correlation is the opposite of the correlation between re and εt+1

and, therefore, does not depend on D and E. The return of the asset is :

ra = wre + (1− w)rD,E
b (12)

and the distribution of ra is N(ma, σa) with :

ma = wme+(1−w)

[
R(t, 1) + 2αD + β(3D2 −D + 3E2) + ψ

σ2

2
(D2 + D + E2)

]

(13)

σ2
a = w2σ2

e + (1− w)2D2σ2 + 2w(1− w)σeρσD (14)

For instance, we give the surfaces ma(w,D) and σa(w, D), E fixed (see
figures 4 and 5) for the numerical values :
R(t, 1) = 4.10−2, α = 2.10−3, β = −10−4, σ = 10−2, E = 5,me = 8.10−2, σe =
12.10−2, ρ = 0, 3.
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We can also consider the 5% quantile qa of ra defined by :

P (ra < qa) = 5.10−2 (15)

Since equation (15) can also be written :

P
(

ra −ma

σa

<
qa −ma

σa

)
= 5.10−2

we have :
qa −ma

σa

= Φ(0.05) = −1.65

(Φ being the cumulative distribution function (cdf) of N(0, 1)) and therefore :

qa = ma − 1, 65σa (16)

Figure 6 shows the surface qa(w,D), for E fixed and figure 7 gives contours
of this surface.
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3.2 VaR constraint on the asset

Denoting by At the value of the asset at t, the VaR of risk level 5% is defined
by :

P (At+1 − At < −V aRa) = 0.05 (17)

or

P (At − At+1 < V aRa) = 0.95 (18)

In other words the VaR is such that the loss At − At+1, between t and
t+1, is smaller than the VaR with probability 0.95, and therefore larger than
the VaR with probability 0.05.

Since ra =
At+1 − At

At

we have :

P
(
ra < −V aRa

At

)
= 0.05

and, therefore :
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V aRa = −qaAt (19)

If we impose that V aRa is smaller than va(V aRa < va), this is equivalent
to :

P (At − At+1 < va) > 0.95 (20)

or :

qa > − va

At

= ua (21)

So, for E given, the pairs (w, D) satisfying constraint (21) are those cor-
responding to a point of the surface, given in figure 6, above ua, or to the
points of figure 7 inside the contour corresponding to ua.

3.3 An example

Let us assume that we take ua = −4.10−2 for the lower bound of qa. In other
words we impose that the V aRa of risk level 5% is smaller than 4% of the
asset, or, equivalently that the loss in the asset is smaller 4% of the initial
asset with probability larger than 95%. This constraint can be visualized in
the volatility-mean plan by the region above the line :

ma − 1.65σa = −0.04 (22)

and in the plan (D, w), for E fixed, this constraint becomes :

wme + (1− w)

[
R(t, 1) + 2αD + β(3D2 −D + 3E2 + ψ

σ2

2
(D2 + D + E2)

]
(23)

> 1.65[w2σ2
e + (1− w)2D2σ2 + 2w(1− w)σeρσD − 0, 04

Figure 8 shows two regions of this kind. The region inside the solid line
corresponds to E = 0, and the region inside the dotted line corresponds to
E = 5.

The extent E = 5 is more constraining because of the shape of the rate
curve (negative beta) penalizing the return of long term bonds.
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4 Modelling the liability and the surplus

4.1 Surplus return, immunized portfolio, mean, volatil-
ity, quantiles.

The liability Lt is assimilated to a short position on a coupon bond (see
section 5 for an extension). Denoting by DL et EL its duration and its
extent, the return of the liability is :

rL = rDL,EL
b = R(t, 1)+2αDL+β(3D2

L−DL+3E2
L)+ψ

σ2

2
(D2

L+DL+E2
L)−DLεt+1

(24)
The surplus at t is :

St = At − Lt (25)

Taking the same definition of the return of the surplus as in Leibowitz-
Bader-Kogelman (1996), we have :
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rs =
St+1 − St

Lt

(26)

Denoting by Ft =
At

Lt

initial funding ratio we get :

St+1 − St = At+1 − At − Lt+1 + Lt

= Atra − LtrL

= Lt(Ftra − rL) (27)

and :

rs = Ftra − rL (28)

We obtain that rs follows a gaussian distribution with mean ms and
volatility σs defined by :

ms = Ftma −mL

= Ft

{
wme + (1− w)

[
R(t, 1) + 2αD + β(3D2 −D + 3E2) + ψ

σ2

2
(D2 + D + E2)

]}

− [R(t, 1) + 2αDL + β(3D2
L −DL + 3E2

L) + ψ
σ2

2
(D2

L + DL + E2
L)] (29)

σ2
s = F 2

t

[
w2σ2

e + (1− w)2D2σ2 + 2w(1− w)σeρσD
]

+ D2
Lσ2 − 2FtDLσ[wσeρ + (1− w)Dσ] (30)
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In particular, considering the case where the asset is made only of bonds
(w = 0), we get :

σ2
s = (FtD −DL)2σ2 (31)

so σs = (FtD −DL)σ, if D ≥ DL

Ft

σs = −(FtD −DL)σ, if D <
DL

Ft

The volatility of the surplus return is piecewise linear and is equal to zero

for D =
DL

Ft

. It vanishes for an ”immunized” portfolio corresponding to a

coupon bond with duration
DL

Ft

. The surplus is then non random and equal

to :

(Ft−1)R(t, 1)+3β

(
D2

L

Ft

−D2
L + FtE

2 − E2
L

)
+ψ

σ2

2

(
D2

L

Ft

−D2
L + FtE

2 − E2
L

)

(32)
This value is equal to zero if Ft = 1 and E = EL. Figures 9, 10 show

the surfaces ms(w, D) and ss(w,D) with E fixed, for the numerical values,
R(t, 1) = 4.10−2, α = 8.10−3, β = −10−4, σ = 10−2, E = 5,me = 8.10−2, σe =
12.10−2, ρ = 0.3, DL = 10, EL = 5, Ft = 1.1.

We observe a ”valley” shape for the volatility of the surplus return with
a section at w = 0 made of two half-lines intersecting at the immunized
portfolio.
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It is also interesting to consider the 5% quantile of the surplus return
defined by :

21



qs = ms − 1.65σs (33)

Figures 11 and 12 respectively show the surface qs(w,D), with E fixed
and the contours of this surface.

Figure 11 exhibits an ”inverted” shape, compared to that of the volatility.
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4.2 VaR constraint on the surplus

The surplus VaR of risk level 5% is defined by :

P (St+1 − St < −V aRs) = 0.05

or P
(

St+1 − St

Lt

< −V aRs

Lt

)
= 0.05

hence : qs = −V aRs

Lt

(34)

or : V aRs = −Ltqs

Therefore, a constraint V aRs < vs is equivalent to :

qs > − vs

Lt

= us (35)

In particular if vs = St the condition becomes qs > 1−Ft and means that
P (St+1 < 0) < 0.05.

4.3 Example

We consider the same numerical values as in 4.1 and we take vs = 0. The
quantile of the surplus return must satisfy qs > 1− Ft = −0.1.

This condition can also be written :

ms − 1.65σs > −0.1 (36)

or

Ft{wme + (1− w)[R(t, 1) + 2αD + β(3D2 −D + 3E2) + ψ
σ2

2
(D2 + D + E2)]}

−[R(t, 1) + 2αDL + β(3D2
L −DL + 3E2

L) + ψ
σ2

2
(D2

L + DL + E2
L)]

−1.65{Ft[w
2σ2

e + (1− w)2D2σ2 + 2w(1− w)σeρσD]

+D2
Lσ2 − 2FtDLσ[wσeρ + (1− w)Dσ]}1/2 > −0.1(37)

Figure (13) illustrates this constraint and the asset VaR constraint in the
plan (D, w), with E fixed. The surplus V aR constraint is satisfied inside the
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solid curve and the asset VaR constraint is satisfied inside the dotted curve.
Both constraints are satisfied in the intersection of the two regions. The
point of this intersection corresponding to a maximal w has the following
characteristics :

w = 0.37, D = 4.75, ma = 0.059, σa = 0.060

These V aR regions can be transposed in the volatility-mean plan using
formulas (13) and (14). In figure (14) the region satisfying the asset V aR
constraint is above the dotted line, and the region satisfying the surplus
V aR constraint is inside the solid curves. The latter is delimited below by
the parabola of the bonds with a given extent (E = 5). We have also shown
on this figure the portfolios containing only stocks and cash (solid line);
in this example such portfolios cannot satisfy simultaneously the two V aR
constraints. We find again ma = 0.058 and σa = 0.059 at the intersection of
the dotted line and of the upper solid curve.
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Figure 15 is similar to the previous one, with E = 0. We see that, in this
case the solid line stock- cash portfolios crosses the region satisfying the V aR
constraints. Moreover, the optimal admissible portfolio, in terms of average
return, is better than the previous one, it corresponds to : w = 0.41, D =
4.8,ma = 0.065, σa = 0.063. We obtain a gain of 0.6% in terms of average
return by taking E = 0, that is by choosing a zero coupon bond as the bound
of the asset. Moreover the optimal zero coupon has a duration of 4.8 much
smaller than the duration of the liability DL = 10. This is a consequence of
the concavity of the rate curve. An alternative interpretation is obtained in
the plan duration stock percentage ( see figure 16) : we see that E = 0 is
less constraining than E = 5 in terms of asset V aR as well as in terms of
surplus V aR.
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5 Extensions

5.1 Taking into account distorsions of the term struc-
ture curve

Among the possible extensions preserving the tractability of the model, one
of the more promising is the generalization of the dynamics of the term
structure of interest rates. Indeed we could extend (1) to :

R(t, h) = [1 + γ̃(h− 1)]R(t, 1) + α̃(h− 1) + β(h− 1)2 (38)

and, keep the same dynamics for the short rate R(t, 1) :

R(t + 1, 1) = R(t, 1) + σεt+1, εt+1 ∼ N(0, 1)

R(t, h) and R(t + 1, h) can be written [with α = α̃ + γ̃R(t, 1) depending
on t, γ = σ, δ = σγ̃].

R(t, h) = R(t, 1) + α(h− 1) + β(h− 1)2 (39)

R(t + 1, h) = R(t, 1) + α(h− 1) + β(h− 1)2 + [γ + δ(h− 1)]εt+1 (40)

In this model, a shock on εt+1 will have different impacts on R(t + 1, h)
for different maturities.

The formulas of this article are easily generalized to this new model re-
placing (3) by :

rb = R(t, 1) +(2α− β)D + 3βD2 + ψ(γ − δ)2 D
2

+ψ(γ2 − δ2)D2

2
+ ψδ

(
γ − δ

2

)
D3 + ψ δ2

2
D4

− [(γ − δ) + δD2] εt+1

(41)

D3 and D4 being the third and fourth order empirical moments of the ma-
turity of the bond appearing in the asset (see appendix 1).

5.2 Taking into account liabilities linked with the stock
market

Up to now the liability has been considered as a short position on a coupon
bond taking into account the interest rate risk. In some contexts it is also
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useful to introduce a component of the liability return which is linked to the
stock market. We can propose the model :

rL,t+1 = λ + µrDL,EL
b,t+1 + νre,t+1 + ωξt+1 (42)

where ξt+1 ∼ N(0, 1) independent of rDL,EL
b,t+1 and re,t+1.

Note that (44) can be written equivalently by introducing the return of an
observable zero-coupon instead of rDL,EL

b,t+1 which may be not observable if DL

and EL have to be estimated . Let us consider for instance of a zero-coupon
bond with maturity 2 :

rz,t+1 = R(t, 1) + 2(α + β) + ψσ2 − σεt+1 (43)

This return is linked to rDL,EL
b,t+1 since :

rDL,EL
b,t+1 = R(t, 1)+(2α−β)DL+3β(D2

L+E2
L)+ψ

σ2

2
(D2

L+DL+E2
L)−σDLεt+1

(44)
Eliminating εt+1 we get an equation of the form :

rL,t+1 = λ + µa[R(t, 1), DL, EL] + µDLrz,t+1 + νre,t+1 + ωξt+1 (45)

Equation (47) contains in its right hand side a function of parameters and
observable variables, perturbated by a noise. Therefore it can participate to
the estimation of λ, µ, ν, ω, EL, DL.

The special case of the previous sections is obtained for λ = ν = ω = 0
and µ = 1.

The previous results can be extended to this new framework (see appendix
2).

Note that equation (44) contains two important special cases :

- the case ”noisy bond” : λ = −νme, µ = 1
- the case ”noisy portfolio” : λ = 0, µ + ν = 1

6 Conclusion

The model proposed in this paper is flexible and tractable. It provides a
simple framework for analyzing analytically or graphically the problem of
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optimal asset allocation under asset and surplus constraints. Since it is con-
veniently parameterized many sensitivity analyses could be easily performed.
Moreover, the model is modular, in the sense that it would be possible to add
satellite models formalizing other environments, like international environ-
ments (by modelling exchange rates, foreign stock markets and yield curves)
or benchmark environments (by introducing VaR constraints on differential
returns).
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APPENDIX 1

Return of a coupon bond

rb =
pt+1

pt

− 1 =
pt+1 − pt

pt

with pt+1 =
H∑

h=1

Ct+h

[1 + R(t + 1, h− 1)]h−1

pt =
H∑

h=1

Ct+h

[1 + R(t, h)]h

Neglecting the possible change of α, β, γ, δ between t and t + 1 we get :

R(t, h) = R(t, 1) + α(h− 1) + β(h− 1)

R(t + 1, h) = R(t, 1) + α(h− 1) + β(h− 1)2 + [γ + δ(h− 1)]εt+1

So rb can be written :

rb =
1

pt

H∑

h=1

Ct+h

[1 + R(t, 1) + α(h− 1) + β(h− 1)2]h−1
(Ah −Bh)

with Ah =
1

[
1 + R(t, 1) + α(h− 2) + β(h− 2)2 + [γ + δ(h− 2)]εt+1

1 + R(t, 1) + α(h− 1) + β(h− 1)2

]h−1

Bh =
1

1 + 2R(t, 1) + α(h− 1) + β(h− 1)2

Ah can be written :

Ah =
1

[
1 +

[γ + δ(h− 2)]εt+1 − α + β[(h− 2)2 − (h− 1)2]
1 + R(t, 1) + α(h− 1) + β(h− 1)2

]h−1
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Considering a first order expansion around α = β = γ = δ = 0, and taking into
account the second order term the random component [γ + δ(h− 2)] εt+1 we get :

Ah ' 1 − (h− 1{[γ + δ(h− 2)]εt+1 − α− β(2h− 3)}
1 + R(t, 1) + α(h− 1) + β(h− 1)2

+
h(h− 1)[γ + δ(h− 2)]2

2[(1 + R(t, 1) + α(h− 1) + β(h− 1)2]2

We approximate [1+R(t, 1)+α(h−1)+β(h−1)2]2 by ψ−1[1+R(t, 1)+α(h−1)+β(h−
1)2], and we choose ψ such that (1+x)2 ' 1+2x = ψ−1(1+x), that is ψ = 1+x

1+2x ' 1−x,
or ψ = 0.95 with x = 0.05.

We get :

Ah ' 1 +
(h− 1){[−γ − δ(h− 2)]εt+1 + α + β(2h− 3)}+ ψh(h− 1)/2.[γ + δ(h− 2)]2

1 + R(t, 1) + α(h− 1) + β(h− 1)2

and :

Ah−Bh =
R(t, 1)− (h− 1)[γ − δ(h− 2)]εt+1 + 2α(h− 1) + β[(h− 1)2 + (h− 1)(2h− 3)] + ψh(h− 1)/2[(γ + δ(h− 2)]2

1 + R(t, 1) + α(h− 1) + β(h− 1)2
and using the notation h? = h− 1

Ah−Bh =
R(t, 1)− h?[γ + δ(h? − 1)]εt+1 + 2αh? + β[h?2 + h?(2h? − 1)] + ψ

(
h?+1

2

)
h?[γ + δ(h? − 1)]2

1 + R(t, 1) + αh? + βh?2

The term 1
2 (h? + 1)h?[γ + δ(h? − 1)]2 can be written :

1
2 (h? + h?2)(γ2 + 2γδ(h? − 1) + δ2(h? − 1)2)

= 1
2 (h? + h?2)[(γ − δ)2 + 2γδh? + δ2h?2 − 2δ2h?]

= h?

2 (γ − δ)2 + h?2
(

(γ−δ)2

2 + γδ − δ2
)

+ h?3
(
γδ − δ2 + δ2

2

)

+ h?4
(

δ2

2

)

= h?

2 (γ − δ)2 + h?2

2 (γ2 − δ2) + h?3δ
(
γ − δ

2

)
+ h?4 δ2

2

Therefore :

rb = R(t, 1) −[(γ − δ)D + δD2]εt+1 + (2α− β)D + 3βD2

+ψ(γ − δ)2 D
2 + ψ(γ2 − δ2)D2

2 + ψδ
(
γ − δ

2

)
D3 + ψ δ2

2 D4
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with D =

H∑

h=1

(h− 1)C∗t+h

H∑

h=1

C∗t+h

Dj =

H∑

h=1

(h− 1)jC∗t+h

H∑

h=1

C∗t+h

j = 2, 3, 4

C∗t+h =
Ct+h

[1 + R(t, 1) + α(h− 1) + β(h− 1)2]

E2 = D2 −D2

Formula (3) is obtained by taking δ = 0, γ = σ.
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APPENDIX 2

Taking into account a stock component in the liability return

The return of the liability is :

rL,t+1 = λ + µrDL,EL

b,t+1 + νre,t+1 + ωξt+1 (46)

where ξt+1 ∼ N(0, 1) is independent of rDL,EL

b,t+1 and re,t+1

We use formula (3) for the bond return.
The return of the zero-coupon bond with maturity 2 (D = 1, E = 0) is :

rz,t+1 = R(t, 1) + 2(α + β) + ψσ2 − σεt+1 (47)

εt+1 ∼ N(0, 1).

Moreover :

rDL,EL

b,t+1 = R(t, 1) + (2α− β)DL + 3β(D2
L + E2

L) + ψ
σ2

2
(D2

L + DL + E2
L)− σDLεt+1 (48)

Eliminating εt+1 between (49) and (50) we get :

rDL,EL

b,t+1 = R(t, 1) + (2α− β)DL + 3β(D2
L + E2

L) + ψ σ2

2 (D2
L + DL + E2

L)

+ DL[rz,t+1 −R(t, 1)− 2(α + β)− ψσ2]

and using (48) :

rL,t+1 = λ + µa[R(t, 1), DL, EL] + µDLrz,t+1 + νre,t+1 + ωξt+1 (49)

with :

a[R(t, 1), DL, EL] = R(t, 1) + (2α− β)DL + 3β(D2
L + E2

L) + ψ σ2

2 (D2
L + DL + E2

L)
− DL[R(t, 1) + 2(α + β) + ψσ2]

Using the variability of α, β, γ, δ, equation (51) allows, in theory, to estimate λ, µ, ν, ω, DL, EL.
An exogenous estimation of DL, et EL may be also useful. We can also impose that rp,t+1

has the same mean as rDL,EL

t,t+1 ,∀t, and equation (48) becomes (”noisy” bond case) :

rL,t+1 = rDL,EL

b,t+1 + ν(re,t+1 −me,t) + ωξt+1 (50)

and only depends on two parameters ν and ω.
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We can also impose λ = 0, µ + ν = 1 (”noisy” portfolio case).

Formulas (29) and (30) giving ms and σ2
s must be modified. Let us first compute the

mean mL and the variance σ2
L of the liability return. We have :

mL = λ + µ[R(t, 1) + (2α− β)DL + 3β(D2
L + E2

L) + ψ σ2

2 (D2
L + DL + E2

L) + νme

σ2
L = ω2 + µ2σ2D2

L + ν2σ2
e + 2µνDLρσσe

(ρ is the correlation between re,t+1 and rb,t+1 or the opposite of the correlation between
re,t+1 and εt+1)

Moreover, since rs,t+1 = Ftra,t+1 − rL,t+1

and ra,t+1 = wre,t+1 + (1− w)rD,E
b,t+1

the mean and the variance of rs,t+1 are :

ms = Ft

{
wme + (1− w)[R(t, 1) + (2α− β)D + 3β(D2 + E2) + ψ σ2

2 (D2
L + DL + E2

L)]
}

− mp

σ2
s = F 2

t

{
w2σ2

e + (1− w)2σ2D2 + 2w(1− w)ρσeσD
}

+ σ2
L − 2Ft {wσLe + (1− w)σLb}

where σLe is the covariance between rL,t+1 and re,t+1 that is :

σLe = µρσeDLσ + νσ2

and where σLb is the covariance between rL,t+1 and rD,E
b,t+1 that is :

µσ2DLD + νρσeDσ

The surplus V aR constraint is :

ms − 1, 65σs > us
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