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Résumé : ce papier met au point, pour une large classe de modèles d�équilibre général dynamiques

stochastiques à anticipations rationnelles, des règles de taux d�intérêt qui non seulement assurent

la détermination locale de l�équilibre ciblé au voisinage de l�état stationnaire ciblé, mais aussi em-

pêchent l�économie de quitter progressivement ce voisinage. Nous montrons que dans la plupart

des modèles ces règles de taux d�intérêt sont nécessairement prospectives (i.e. conditionnent néces-

sairement le taux d�intérêt aux anticipations des agents privés), alors que dans tous les modèles des

règles de taux d�intérêt non prospectives existent qui assurent seulement la détermination locale

de l�équilibre ciblé. Nous examinons également la robustesse de l�e¢ cacité de ces règles au relâ-

chement de di¤érentes hypothèses et montrons en particulier qu�elles peuvent encore être e¢ caces

lorsque la banque centrale a une connaissance imparfaite des paramètres structurels du modèle.

Nous défendons �nalement l�idée que de telles règles pourraient aussi servir de guide utile dans les

ré�exions sur la meilleure réaction de politique monétaire à des bulles détectées de prix d�actifs ou

de taux de change.

Mots-clefs : modèles DSGE, règles de taux d�intérêt, détermination locale, détermination globale,

bulles rationnelles.

Codes JEL : E52, E61.

Abstract: this paper designs, for a broad class of rational-expectations dynamic stochastic general-

equilibrium models, interest-rate rules which not only ensure the local determinacy of the targeted

equilibrium within the neighbourhood of the targeted steady state, but also prevent the economy

from gradually leaving this neighbourhood. We show that in most models these interest-rate rules

are necessarily forward-looking (i.e. make necessarily the interest rate conditional on the private

agents�expectations), while in all models non-forward-looking interest-rate rules exist which ensure

only the local determinacy of the targeted equilibrium. We also discuss the robustness of the

e¤ectiveness of these rules to departures from various assumptions and show in particular that

they can still be e¤ective when the central bank has imperfect knowledge of the model�s structural

parameters. We �nally argue that such rules could also serve as a useful guide in the re�ections on

the best monetary policy reaction to perceived asset-price bubbles or exchange-rate misalignments.

Keywords: DSGE models, interest-rate rules, local determinacy, global determinacy, rational

bubbles.

JEL codes: E52, E61.
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Résumé non technique : les règles de politique monétaire considérées dans la littérature

académique sont le plus souvent des règles de taux d�intérêt satisfaisant le principe dit de Taylor,

selon lequel le taux d�intérêt nominal doit réagir plus que proportionnellement au taux d�in�ation,

ou bien un principe équivalent. De telles règles permettent en théorie à la banque centrale d�éviter

le type de �uctuations macroéconomiques qui, selon certains auteurs, se sont produites aux Etats-

Unis avant 1979. Le revers de la médaille, comme l�ont montré d�autres auteurs, est que ces règles

peuvent laisser les agents privés former des anticipations auto-réalisatrices conduisant l�économie à

la trappe à liquidités par exemple, comme cela a pu se produire au Japon dans les années 1990-2000.

Ce papier met au point des règles de taux d�intérêt qui permettent à la banque centrale d�éviter

tous ces développements indésirables pour une large classe de modèles à anticipations rationnelles.

Nous montrons que ces règles conditionnent nécessairement le taux d�intérêt aux anticipations des

agents privés dans la plupart des modèles, contrairement aux règles considérées dans la littérature,

dans le but de déconnecter la situation économique courante de ces anticipations. Nous montrons

aussi qu�en exerçant un e¤et de levier sur les anticipations des agents privés, ces règles peuvent

encore être e¢ caces dans le cas où la banque centrale a une connaissance imparfaite des valeurs

des paramètres structurels du modèle.

Nous défendons �nalement l�idée que ces règles pourraient aussi servir de guide utile dans les

ré�exions sur la meilleure réaction de politique monétaire à des bulles détectées de prix d�actifs

ou de taux de change. Dans ce contexte, ces règles viseraient à interrompre une bulle en cours de

formation en déconnectant la valeur présente du prix d�actif ou du taux de change des anticipations

des agents privés concernant sa valeur future ou bien, lorsque la banque centrale a une connaissance

imparfaite des valeurs des paramètres structurels du modèle, en exerçant un e¤et de levier sur ces

anticipations.

Non-technical summary: monetary policy rules considered in the academic literature are typ-

ically interest-rate rules satisfying something akin to the so-called Taylor principle, which makes

the nominal interest rate react more than one-to-one to the in�ation rate. Such rules theoretically

enable the central bank to avoid the kind of macroeconomic �uctuations which, according to some

authors, occurred in the U.S. before 1979. The other side of the coin, as shown by some other

authors, is that these rules can let the private agents form self-ful�lling expectations leading the

economy for instance to the liquidity trap, as arguably happened in Japan in the 1990s-2000s.

This paper designs interest-rate rules which enable the central bank to avoid all these undesirable

developments for a broad class of rational-expectations models. We show that these rules necessar-

ily make the interest rate conditional on the private agents�expectations in most models, contrary

to the rules considered in the literature, in order to disconnect the current economic situation from
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these expectations. We also show that by acting as a lever on the private agents�expectations,

these rules can still be e¤ective in the case where the central bank has imperfect knowledge of the

values of the model�s structural parameters.

We �nally argue that these rules could also serve as a useful guide in the re�ections on the best

monetary policy reaction to perceived asset-price bubbles or exchange-rate misalignments. In this

context, these rules would aim at interrupting a blooming bubble by disconnecting the current

value of the asset price or the exchange rate from the private agents�expectations of its future

value or, when the central bank has imperfect knowledge of the values of the model�s structural

parameters, by acting as a lever on these expectations.
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Introduction

By far and large, the most common practice to design monetary policy in rational-expectations

dynamic stochastic general equilibrium models is nowadays to linearize the model at hand in the

neighbourhood of the targeted steady state and to choose an interest-rate rule both consistent with

the targeted local equilibrium and ensuring its local determinacy, i.e. making the locally linearized

system satisfy Blanchard and Kahn�s (1980) condition. Such an interest-rate rule (often, a rule

satisfying the so-called Taylor principle) notably enables the central bank to preclude the kind of

macroeconomic �uctuations which, according to Clarida, Gali and Gertler (2000) and Lubik and

Schorfheide (2004), occurred in the U.S. before 1979. In a series of in�uential papers, Benhabib,

Schmitt-Grohé and Uribe (2001a, 2001b, 2002a, 2002b, 2003) have shown that such interest-rate

rules can however leave the door open to non-local equilibria originating locally. For instance,

they can let the private agents form self-ful�lling expectations making the economy gradually

leave the neighbourhood of the targeted steady state and eventually fall into the neighbourhood

of another steady state interpreted as the liquidity trap, as arguably did the Japanese economy in

the 1990s-2000s.

This paper designs interest-rate rules which in this context not only are consistent with the

targeted local equilibrium and ensure its local determinacy, but also eliminate non-local equilibria

originating locally, and hence preclude all the undesirable developments mentioned above. To that

aim, we consider a broad class of rational-expectations dynamic stochastic in�nite-horizon linear

models, meant to represent the locally linearized reduced form of rational-expectations dynamic

stochastic general equilibrium models. Given this focus on locally linearized systems, we do not

show that non-local equilibria originating locally would exist if the central bank followed an interest-

rate rule di¤erent from those put forward in this paper. But provided that exogenous disturbances

are small enough, a necessary condition for non-local equilibria originating locally to exist is that

the locally linearized system admit at least one unstable eigenvalue, i.e. one eigenvalue of modulus

higher than or equal to one. By removing all unstable eigenvalues from the locally linearized system,

the interest-rate rules put forward in this paper thus ensure the absence of non-local equilibria

originating locally. And they accordingly manage to ensure the existence and uniqueness of a

local equilibrium, i.e. to make the locally linearized system satisfy Blanchard and Kahn�s (1980)

condition, by removing all non-predetermined variables from the locally linearized system. In other

words, they turn the so-called saddle path into what could be called a �necklace path�. We call

them �bubble-free interest-rate rules�because in the corresponding linear system they eliminate

all mean-explosive rational bubbles of the type identi�ed by Blanchard (1979) and followers, unlike

the interest-rate rules commonly considered in the literature.
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Loosely speaking, the way bubble-free interest-rate rules manage to remove all non-predetermined

variables from the locally linearized system is by making the interest rate react to the private agents�

current expectations of future variables, in a way which mimics their relationship in the locally

linearized structural equations (i.e. the locally linearized system without the interest-rate rule), so

as to disconnect current variables from these expectations. We accordingly show that under certain

conditions (likely to be met by most dynamic stochastic general equilibrium models) these interest-

rate rules are necessarily forward-looking, i.e. necessarily make the current interest rate conditional

on the private agents�current expectations of future variables. We also show that for any given local

solution of the locally linearized structural equations, there exists a backward-looking interest-rate

rule consistent with this solution and ensuring its local determinacy. We therefore conclude that

concern for non-local equilibria originating locally provides the missing theoretical justi�cation

for the use of forward-looking interest-rate rules. Bernanke and Woodford (1997) have famously

warned against following forward-looking interest-rate rules without developing structural models

of the economy. We thus go further by arguing for the use of forward-looking interest-rate rules on

the basis of a structural model of the economy.

Since loosely speaking bubble-free interest-rate rules mimic the locally linearized structural

equations, their coe¢ cients are tied to the structural parameters by equality constraints, rather

than by inequality constraints as for the coe¢ cients of interest-rate rules ensuring only local equi-

librium determinacy. We however show that the e¤ectiveness of bubble-free interest-rate rules can

be robust to departures from the assumption that the central bank has perfect knowledge of the

values of the structural parameters. Indeed, these rules then no longer eliminate non-local equilib-

ria originating locally but make them initially more �abrupt� (by using the structural equations

as a lever on the private agents�expectations) and hence arguably less likely to be followed by the

non-coordinated private agents, while still ensuring local equilibrium determinacy. We also examine

or discuss the robustness of the e¤ectiveness of these rules to departures from the assumptions that

the central bank has perfect knowledge of the values of the endogenous variables and exogenous

shocks, that the central bank can credibly commit to locally following an interest-rate rule and

that the private agents form rational expectations.

The monetary policy proposals put forward in the literature to eliminate non-local equilibria

originating locally usually consist in switching from an interest-rate rule ensuring local equilib-

rium determinacy to another rule such as a money growth rate peg (possibly accompanied by a

non-Ricardian �scal policy) when the endogenous variables go outside a speci�ed neighbourhood

of the targeted steady state. We argue in the paper that such two-tier policies may however not

be completely e¤ective in eliminating all non-local equilibria originating locally for various reasons

and therefore that bubble-free interest-rate rules represent a particularly interesting alternative or
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complement to these two-tier policies. To our knowledge, only three papers make other monet-

ary policy proposals enabling the central bank to eliminate non-local equilibria originating locally.

First, Currie and Levine (1993, chap. 4) design �overstable feedback rules�which remove all un-

stable eigenvalues from linear systems without a¤ecting the number of non-predetermined variables.

Applied to locally linearized systems, these rules would eliminate non-local equilibria originating

locally but would fail to ensure local equilibrium determinacy. Second, Adão, Correia and Teles

(2005) design monetary policy rules ensuring global equilibrium determinacy in a simple non-linear

cash-in-advance model. The working mechanism of these rules can be viewed as similar to that of

our bubble-free interest-rate rules, although the two papers di¤er markedly in the presentation of

their respective rules as well as in their analytical frameworks (non-linear but speci�c vs. general

but locally linearized)1 . Third, Antinol�, Azariadis and Bullard (2006) propose in a particular

framework interest-rate rules which eliminate non-local equilibria originating locally but fail to

ensure local equilibrium determinacy, like those designed by Currie and Levine (1993, chap. 4).

Note �nally that bubble-free interest-rate rules make sense only to the extent that the behaviour

of private agents is at least partly forward-looking, since equilibrium (in)determinacy would not be

an issue otherwise. Most, if not all, rational-expectations dynamic stochastic general equilibrium

models based on explicit microeconomic foundations imply such a forward-looking behaviour for

the private agents, which has led Woodford (2003, chap. 1) to view the essence of central banking

as the management of expectations. But such a forward-looking behaviour is even less disputed for

participants in asset markets than for private agents in macroeconomic models. We therefore discuss

the possible applications of bubble-free interest-rate rules to asset-price stabilization by central

banks. When the central bank precisely knows which asset-price value to target, for instance in

the case of an exchange-rate peg, the asset-pricing equation can be linearized in the neighbourhood

of this targeted value and bubble-free interest-rate rules then play essentially the same role as

previously. When the central bank has no idea about which asset-price value to target, that

is to say in most cases, bubble-free interest-rate rules could still serve as a useful guide in the

re�ections on the best monetary policy reaction to perceived asset-price bubbles or exchange-rate

misalignments.

The remaining of the paper is organized as follows. Section 1 presents bubble-free interest-

rate rules in a simple framework. Section 2 designs bubble-free policy feedback rules in a general

framework. Section 3 discusses the robustness of the e¤ectiveness of bubble-free policy feedback

rules to departures from various assumptions. Section 4 discusses the use of bubble-free interest-

rate rules for asset-price stabilization. We then conclude and provide a technical appendix.

1The two works were conducted independently from each other. The �rst versions of the present paper go back
to Loisel (2003, 2004).
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1 Bubble-free interest-rate rules in a simple framework

This section presents bubble-free interest-rate rules in the simple framework of the standard New

Keynesian model.

1.1 Type-A and type-B equilibria

In most rational-expectations dynamic stochastic general equilibrium models, the targeted equilib-

rium (e.g. the globally-social-welfare-maximizing equilibrium) is to be found in the neighbourhood

of a given steady state within which the model can be approximated by a linearized system of

equations. The locally linearized interest-rate rule considered should then ideally eliminate the

following two kinds of equilibria:

� type-A equilibria: non-targeted local equilibria, which exist if and only if the locally linearized

system admits more stable eigenvalues (i.e. eigenvalues of modulus strictly lower than one) than

required by Blanchard and Kahn�s (1980) conditions. For instance, Clarida, Galí and Gertler

(2000) and Lubik and Schorfheide (2004) explain the reduction in U.S. macroeconomic volatility

from the pre- to the post-1979 period by a change in the Fed interest-rate rule in 1979 from a rule

allowing such equilibria to a rule precluding them.

� type-B equilibria: non-local equilibria originating locally, which may exist only if the locally

linearized system admits at least one unstable eigenvalue, i.e. one eigenvalue of modulus higher

than or equal to one. For instance, Woodford (1994b, 2003, chap. 2) shows the existence of

non-local self-ful�lling in�ations and de�ations originating locally, either with probability one or

with probability strictly between zero and one, while Christiano and Rostagno (2001), Alstadheim

and Henderson (2002), Benhabib, Schmitt-Grohé and Uribe (2001a, 2001b, 2002a, 2002b, 2003)

and Benhabib and Eusepi (2005) show the existence of non-local equilibria originating locally and

converging towards a deterministic cycle, a chaotic cycle or a non-targeted steady state interpreted

as the liquidity trap. Benhabib, Schmitt-Grohé and Uribe (2001a, 2002a, 2003) show that such

equilibria exist for empirically plausible parameterizations and are robust to wide parameter per-

turbations, while Benhabib, Schmitt-Grohé and Uribe (2001a, 2002b) argue that such equilibria

can account for Japan�s fall into the liquidity trap in the 1990s and 2000s.

As mentioned in the introduction, in this paper we do not show the existence of type-B equilibria

but focus instead on a necessary condition for their existence when exogenous disturbances are small

enough, namely the presence of at least one unstable eigenvalue in the locally linearized system.

Note however that Benhabib, Schmitt-Grohé and Uribe (2001a, 2002a, 2002b) provide one reason

to suspect the existence of type-B equilibria in many frameworks and in particular in the New

Keynesian model. Indeed, they point out that whenever the interest-rate rule respects the zero
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nominal interest-rate lower bound and makes the interest rate react positively and, at the targeted

steady state, more than one-to-one to the in�ation rate, there typically exist equilibria originating

in the neighbourhood of the targeted steady state and leading to the neighbourhood of a second

steady state at which the in�ation rate is lower than its targeted value and the interest rate reacts

less than one-to-one to the in�ation rate.

1.2 The New Keynesian model

This subsection presents the reduced form of the New Keynesian model linearized in the neigh-

bourhood of its commonly-considered steady state, interpreted as its targeted steady state. This

reduced form is composed of three equations (the Phillips curve, the IS equation, the interest-rate

rule) for three endogenous variables (the in�ation rate, the output gap, the short-term nominal

interest rate) and two exogenous shocks (the cost-push shock and the natural rate of interest). The

Phillips curve, derived from the �rms�pro�t-maximization problem, is written:

�t = �Et f�t+1g+ �xt + ut, (1)

where �t denotes the in�ation rate and xt the output gap at date t, Et f:g the private agents�

rational-expectation operator conditionally on the information available at date t (which includes

the endogenous variables and the exogenous shocks at dates t�k for k 2 N), while � and � are two

parameters such that 0 < � < 1 and � > 0. This Phillips curve is forward-looking because of the

Calvo-type price-setting assumption, as �rms know that the price they choose today will remain

e¤ective for more than one period on average. The exogenous cost-push shock u of variance Vu > 0

is assumed to follow an autoregressive process of order one: ut = �uut�1 + "ut with 0 � �u < 1,

where "u is a white noise.

The IS equation, derived from the representative household�s utility-maximization problem, is

written:

xt = Et fxt+1g � � (it � Et f�t+1g � rnt ) , (2)

where it denotes the short-term nominal interest rate at date t, while � is a strictly positive

parameter. This IS equation is forward-looking due to the usual intertemporal substitution e¤ect.

The exogenous natural rate of interest rn of variance Vr > 0 is assumed to follow an autoregressive

process of order one: rnt = �rr
n
t�1 + "rt with 0 � �r < 1, where "r is a white noise such that

E
�
"ut "

r
t+k

	
= 0 for all k 2 Z.

The assumed objective of monetary policy is to minimize the following loss function, which is

shown by Woodford (2003, chap. 6) to be linearly and negatively related to the second-order local

approximation of the representative household�s utility function:

Lt = Et

nX+1

k=0
�k
h
(�t+k)

2
+ �x (xt+k � x�)2 + �i (it+k � i�)2

io
, (3)
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where �x > 0, �i > 0, x� � 0 and i� � 0 are related to the model�s structural parameters. In

particular, the existence of a nominal interest-rate stabilization objective is due to the existence

of transaction frictions and/or, more interestingly in our context, to the consideration of the zero

nominal interest-rate lower bound. We �nally make the following technical assumption about the

parameters:

Assumption 1.1: ��2r � (1 + � + ��) �r + 1 6= 0 and polynomial

P (X) � (��i)X2 �
�
�i + ��i + ��i� + ��x�

2
�
X +

�
�i + �x�

2 + �2�2
�
2 R [X]

has no root whose modulus is equal to or lower than one (i.e. 8X 2 C, P (X) = 0 =) jXj > 1).

1.3 Bubble-free interest-rate rules

Suppose for a moment that the central bank sets the short-term nominal interest rate according

to a contemporaneous Taylor rule

it = �+ ���t + �xxt (4)

with (�; ��; �x) 2 R3. The locally linearized system is then made of (1), (2) and (4). As can

be easily seen by putting it into Blanchard and Kahn�s (1980) form, this system has two non-

predetermined variables and two eigenvalues whatever (��; �x) 2 R2. As a consequence, if (��; �x)

is chosen so that these two eigenvalues are unstable, then Blanchard and Kahn�s (1980) condition

is satis�ed, i.e. type-A equilibria are eliminated, but type-B equilibria may exist. Alternatively,

if (��; �x) is chosen so that these two eigenvalues are stable, then the economy jumps out of

the frying pan into the �re as type-B equilibria can no longer exist but type-A equilibria do. In

other words, contemporaneous Taylor rules make type-A and type-B equilibria the two sides of the

same coin. This result naturally holds for any interest-rate rule which is not designed to control the

number of non-predetermined variables of the locally linearized system and explains why Benhabib,

Schmitt-Grohé and Uribe (2001a, 2002a, 2002b, 2003) �nd that type-B equilibria exist precisely

when type-A equilibria are eliminated by a locally �active�interest-rate rule2 .

By contrast, bubble-free interest-rate rules manage to eliminate both type-A and -B equilibria

by removing all non-predetermined variables and all unstable eigenvalues from the locally linearized

2 In Benhabib, Schmitt-Grohé and Uribe�s words: �[i]nterestingly, such [type-B] equilibrium dynamics exist pre-
cisely when the target equilibrium is unique from a local point of view� (2002a, p. 72); �[t]he results suggest that
central banks that maintain an active monetary policy stance near a given in�ation target are more likely to lead
the economy into a de�ationary spiral (...) than central banks that maintain a globally passive monetary stance
such as an interest- or exchange-rate peg� (2001a, p. 43).
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system3 . Such is the case, for instance, of the following kind of interest-rate rules:

it =  +  1Et f��t+1g+  2Et f�xt+1g+  3rnt +  4ut (5)

where � denotes the �rst-di¤erence operator,  � a�,  1 � 1,  2 � 1
� ,  3 � 1 + b� and  4 � c�

for (a�; b�; c�) 2 R3, as shown by the following proposition:

Proposition 1.1: the system made of (1), (2) and (5) taken at dates t to t+ 2 makes (�t; xt; it)

uniquely determined.

Proof : the replacement of it in (2) by the right-hand side of (5) leads to �t = a� + b�r
n
t + c�ut as

the terms in Et f�t+1g, Et fxt+1g and xt cancel each other out. Thus, �t is uniquely determined

as a function of the exogenous shocks ut and rnt . The same reasoning conducted one period

ahead implies that Et f�t+1g is uniquely determined as a function of Et fut+1g and Et
�
rnt+1

	
and

therefore also uniquely determined as a function of ut and rnt . Then, the replacement of Et f�t+1g

and �t in (1) by their expressions as functions of ut and rnt uniquely pins down xt as a function

of ut and rnt . The same reasoning conducted one period ahead implies that Et fxt+1g is uniquely

determined as a function of Et fut+1g and Et
�
rnt+1

	
and therefore also uniquely determined as a

function of ut and rnt . Finally, it is then residually and uniquely determined as a function of ut

and rnt by (2) or (5). �

As clear from this proof, rules (5) manage to remove all non-predetermined variables from the

locally linearized system by making it react to Et f�t+1g, Et fxt+1g and xt, in a way which mimics

the relationship between these four variables in the locally linearized IS equation (2), so as to

disconnect �t from Et f�t+1g, Et fxt+1g and xt in order to pin down �t, and therefore residually

xt and it, uniquely. Given that equation (2) links the expected output-gap variation Et f�xt+1g

to the ex ante real short-term interest rate it � Et f�t+1g with an elasticity �, rules (5) therefore

make it react to Et f�xt+1g with a coe¢ cient 1
� and to Et f�t+1g with a coe¢ cient unity. Finally,

the coe¢ cient of �t is for simplicity chosen to be equal to �1, but any other non-zero value would

�t the bill as well.

Three points are worth noting at this stage. First, by making it react to Et f�t+1g with

a coe¢ cient unity, rules (5) do not satisfy the so-called Taylor principle, which makes it react

strictly more than one-to-one to the current or the expected future in�ation rate. Two distinct

reasons can be put forward to explain this result. The �rst reason is that, in the standard New

Keynesian model considered, the Taylor principle is a necessary condition to eliminate type-A

3 In the terminology of Loisel (2004), �weak local equilibrium determinacy� refers to the case where type-A
equilibria are precluded, while �strong local equilibrium determinacy� refers to the case where both type-A and -B
equilibria are precluded.
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equilibria for speci�c parametric families of interest-rate rules, for instance rules of type it = ��t

or it = �Et f�t+1g with � 2 R, but ceases to be one for slightly more general parametric families

of interest-rate rules, as shown e.g. by Woodford (2003, chap. 4), and is unlikely to be one for

parametric families of interest-rate rules general enough to include rules (5). The second reason

is that the coe¢ cient of Et f�t+1g in rules (5) is chosen so as to remove all non-predetermined

variables from the locally linearized system, which requires that this coe¢ cient be equal to one,

while in rules of type it = �Et f�t+1g for instance, which make the locally linearized system have

two non-predetermined variables and two eigenvalues whatever � 2 R, the coe¢ cient � is chosen

so as to make these two eigenvalues unstable, which requires that the Taylor principle � > 1 be

satis�ed.

Second, there exist an in�nity of bubble-free interest-rate rules implementing the same equilib-

rium as rule (5) for a given (a�; b�; c�) 2 R3. Examples of such rules can be obtained by adding

for instance a term of type ! (�t � �Et f�t+1g � �xt � ut) with ! 2 R, which is actually equal to

zero due to (1), to the right-hand side of (5). In particular, unless (b�; c�) = (�1; 0) rules of type

(5) do not qualify as �direct rules� in the sense of Giannoni and Woodford (2002) and Woodford

(2003, chap. 8) since they make it conditional on the exogenous shocks rnt and ut which are no

target variables, but a bubble-free direct rule implementing the same equilibrium as rule (5) for

a given (a�; b�; c�) 2 R3, provided that b� 6= � � 1, can be obtained by replacing in (5) rnt by
1
� (xt � Et fxt+1g)+ it�Et f�t+1g, as implied by (2), and ut by �t��Et f�t+1g��xt, as implied

by (1), and then solving for it. Because such a direct rule typically has some negative and hence

�counter-intuitive�coe¢ cients under the calibration considered in the next subsection, we however

prefer to focus on rules of type (5).

Third, as bubble-free interest-rate rules are not meant to be e¤ective outside the neighbourhood

of the targeted steady state within which the linear approximation is acceptable, proposition 1.1

implies that they eliminate only those type-B equilibria whose paths would remain in this neigh-

bourhood during two periods. In other words, they prevent the economy from gradually leaving

the neighbourhood of the targeted steady state, not from abruptly leaving this neighbourhood,

where loosely speaking by �gradually�we mean �using one or several eigenvalues whose modulus

is larger than but close enough to one, exactly how close to one depending on the size of the

neighbourhood of the targeted steady state within which the linear approximation is acceptable�.

But this limitation does not prevent these rules from eliminating for instance the type-B equilib-

ria obtained under empirically plausible parameterizations by Benhabib, Schmitt-Grohé and Uribe

(2001a), along which the in�ation rate �uctuates around the targeted steady state for a long period

of time before leaving its neighbourhood, in a way which is not inconsistent with observed in�ation

12



dynamics4 .

1.4 Numerical application

This subsection uses a standard calibration of the New Keynesian model to put some numerical

�esh on the contemporaneous Taylor rules and bubble-free interest-rate rules considered in the

previous subsection. To that aim, let us de�ne the equilibrium under discretion Ed as the sequence

f�t; xt; itgt2Z obtained when at each date t the central bank chooses it so as to minimize (3) subject

to (1) and (2) and the equilibrium under commitment Ec as the sequence f�t; xt; itgt2Z of type

�t = a� + b�r
n
t + c�ut, xt = ax + bxr

n
t + cxut and it = ai + bir

n
t + ciut, (6)

where (a�; b�; c�; ax; bx; cx; ai; bi; ci) 2 R9, minimizing (3) subject to (1) and (2)5 .

Concerning contemporaneous Taylor rules, we obtain the following proposition:

Proposition 1.2: there exist a unique rule of type (4) consistent with Ed and a unique rule of

type (4) consistent with Ec.

Proof : cf appendix A. �

Let �d�, �
d
x (respectively �

c
�, �

c
x) then denote the second and third coe¢ cients of the unique rule of

type (4) consistent with Ed (respectively with Ec) and �d (respectively �c) the lowest modulus of

the two eigenvalues of the system made of (1), (2) and this rule. Under Giannoni and Woodford�s

(2003) calibration:

� � � �r �u �x �i
0; 99 0; 024 6; 25 0; 35 0; 35 0; 048 0; 236

assumption 1.1 is satis�ed and we get:

�d� �dx �d �c� �cx �c

0; 64 1; 27 1; 003 1; 71 2; 23 1; 018

4 In Benhabib, Schmitt-Grohé and Uribe�s (2001a) words: �observed in�ation dynamics are in general quite
smooth, giving little credence to a model in which movements in in�ation at business-cycle frequency are due to
jumps from one steady state to another. (...) Interestingly, along both the saddle connection and the limit cycle, the
in�ation rate �uctuates for long periods of time around the steady-state at which monetary policy is active. Thus,
an econometrician using data generated from a saddle connection equilibrium to estimate the slope of the interest
rate feedback rule may very well conclude that the economy is displaying stationary �uctuations around the active
steady-state, even though the economy is in fact spiraling down a liquidity trap� (p. 43); �the saddle connection is
not inconsistent with the observation that the in�ation rate �uctuates for long periods of time in a region in which
monetary policy is active, as has been argued in the case of the U.S. economy since the Volcker era� (p. 56).

5We limit ourselves to sequences of type (6) because we consider contemporaneous Taylor rules (4). Indeed,
when the system made of (1), (2) and (4) admits a unique local solution f�t; xt; itgt2Z, this unique solution can
be written in the form (6); conversely, for any (a� ; b� ; c� ; ax; bx; cx; ai; bi; ci) 2 R9 such that (6) holds, there exists
(�; �� ; �x) 2 R3 such that (4) holds.
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Since the values obtained for �d and �c are higher than one, these two contemporaneous Taylor

rules ensure local equilibrium determinacy, i.e. eliminate type-A equilibria. But interestingly these

values are strikingly close to one, so that if type-B equilibria exist then along these equilibria the

endogenous variables remain in the neighbourhood of the targeted steady state for a long period

before leaving this neighbourhood, just like in Benhabib, Schmitt-Grohé and Uribe (2001a) as

mentioned above.

Concerning bubble-free interest-rate rules, the proof of proposition 1.1 shows that the unique

solution of the system made of (1), (2) and (5) for t 2 Z is the unique sequence f�t; xt; itgt2Z
which is of type (6) for some given (a�; b�; c�) and satis�es (1) and (2) for t 2 Z. Let us then note

 d1,  
d
2,  

d
3,  

d
4 (respectively  

c
1,  

c
2,  

c
3,  

c
4) the second to �fth coe¢ cients of the unique rule of

type (5) implementing Ed (respectively Ec). Under Giannoni and Woodford�s (2003) calibration

we get:

 d1  d2  d3  d4  c1  c2  c3  c4
1 0; 16 1; 03 1; 52 1 0; 16 1; 02 1; 50

Note that the values taken by  d3 and  
d
4 are very close to those taken by  

c
3 and  

c
4 respectively,

thus making the two rules numerically very close to each other. This result however is simply due

to the fact that Ed and Ec are themselves numerically very close to each other.

1.5 Other monetary policy proposals

As mentioned in the introduction, the existing literature has mainly focused on interest-rate rules

eliminating only type-A equilibria. Except in Woodford�s (1994b) particular model, where an

interest-rate peg rules out both type-A and -B equilibria, the existing literature has proposed

two-tier policies to eliminate type-B equilibria, in the spirit of Obstfeld and Rogo¤�s (1983, 1986)

fractional-backing proposal to rule out speculative hyperin�ations. These two-tier policies, advoc-

ated by Clarida, Galí and Gertler (1999, p. 1701), Christiano and Rostagno (2001), Benhabib,

Schmitt-Grohé and Uribe (2002a, 2002b, 2003), Woodford (2003, chap. 2) and Evans and Honkapo-

hja (2005), consist in switching from an interest-rate rule eliminating type-A equilibria to another

rule such as a money growth rate peg (possibly accompanied by a non-Ricardian �scal policy)

when the endogenous variables go outside a speci�ed neighbourhood of the targeted steady state6 .

These two-tier policies may however not be completely e¤ective in eliminating all type-B equi-

libria for the following three reasons. First, they may be curative, i.e. for instance able to drive the

6The non-monotonic interest-rate rule proposed by Alstadheim and Henderson (2002) � at Benhabib, Schmitt-
Grohé and Uribe�s (2001a, p. 42) suggestion � can also be viewed as such a two-tier policy. The asymmetric interest-
rate rule proposed by the same authors departs from the framework adopted by all the other papers (including this
one) as it makes the model not locally linearisable.
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economy out of the liquidity trap7 , but not necessarily preventive, i.e. able to dissuade the private

agents from leaving the neighbourhood of the targeted steady state in the �rst place8 . Second,

the second-tier rule such as a money growth peg might prove itself an additional source of equi-

librium indeterminacy, as acknowledged by Christiano and Rostagno (2001). Third, as pointed

by Green (2005, pp. 126-127), given their aggressiveness in some circumstances, the credibility

and consequently the e¤ectiveness of these policy devices in eliminating type-B equilibria should

not be taken for granted. Given that they are immune from these three drawbacks, bubble-free

interest-rate rules represent a particularly interesting alternative or complement to these two-tier

policies.

Note �nally that these two-tier policies may not be completely e¤ective in eliminating all type-

B equilibria for a fourth reason: as acknowledged by Benhabib, Schmitt-Grohé and Uribe (2002a,

2002b) indeed, they cannot eliminate equilibrium paths converging towards a deterministic or

chaotic cycle within the speci�ed neighbourhood of the targeted steady state. But in such cases,

however small this neighbourhood necessarily includes the neighbourhood of the targeted steady

state within which the linear approximation of the model is acceptable (since such cycling dynamics

require non-linearity), so that the neighbourhood of the targeted steady state within which bubble-

free interest-rate rules are meant to be e¤ective may then well be too small for them to be practically

useful anyway.

2 Bubble-free policy feedback rules in a general framework

This section designs bubble-free policy feedback rules for a broad class of rational-expectations

dynamic stochastic in�nite-horizon linear models, meant to represent the locally linearized re-

duced form of rational-expectations dynamic stochastic general equilibrium models, and shows

that bubble-free interest-rate rules are necessarily forward-looking in most of these models, con-

trary to interest-rate rules ensuring only local equilibrium determinacy.

2.1 A general framework

The economy is made of one policy-maker and many private agents (whether in�nitely-lived or

in overlapping generations). Time is discrete, indexed by t 2 Z. Let N 2 N�9 . The model is

composed of N + 1 time-invariant linear equations (N structural equations, which describe the

7Their e¤ectiveness in driving the economy out of the liquidity trap should however not be taken for granted,
as stressed by Bernanke, Reinhart and Sack (2004, p. 5) who conclude that the best policy still remains to avoid
reaching the zero lower bound on the short-term nominal interest rate.

8One counter-example is provided by Christiano and Rostagno (2001) who present a model where such a two-tier
policy solution acts preventively, i.e. nips type-B equilibria in the bud.

9 In the following, we sometimes use for convenience notations which implicitly assume that N � 2. In such cases
the reader should easily infer the notation rigorously adapted to the case N = 1 (e.g. replacing

PN
i=2 f:g by 0).
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private agents�behaviour, and one policy feedback rule) for N + 1 endogenous variables (N non-

control variables making up N -dimension vector Yt and one control variable or policy instrument

zt) and N exogenous shocks (making up N -dimension vector �t). Let L denote the lag operator and

Et f:g the private agents� rational-expectation operator conditionally on
�
Yt�k; zt�k; �t�k

	
k�0.

The N structural equations are written as follows:

Et fA (L)Yt +B (L) ztg+C (L) �t = 0 (7)

with A (L)
(N�N)

�
Xna

k=�ma
AkL

k, B (L)
(N�1)

�
Xnb

k=�mb
BkL

k and C (L)
(N�N)

�
Xnc

k=0
CkL

k,

where
�
ma;mb; na; nb; nc

�
2 N5, all Ak, Bk and Ck have real numbers as elements and all the

eigenvalues of C (L) are of modulus strictly lower than one. Each exogenous shock is assumed to

follow a centered stationary autoregressive process of �nite order10 :

D (L) �t = "t with D (L)
(N�N)

�

266664
D1 (L) 0 : : : 0

0
. . .

. . .
...

...
. . .

. . . 0
0 : : : 0 DN (L)

377775
and Di (L) �

Pnd

k=0 di;kL
k for 1 � i � N , where nd 2 N, all di;k are real numbers, D (0) is

invertible, all the eigenvalues of D (L) are of modulus strictly lower than one and "t is a N -

dimension white noise vector.

For all i 2 f1; :::; Ng, let ei denote the N -element vector whose ith element is equal to one and

whose other elements are equal to zero. Let IA denote the set of i 2 f1; :::; Ng such that e0iA (L) 6= 0

and IB the set of i 2 f1; :::; Ng such that e0iB (L) 6= 0. Letma
i � �min [k 2 f�ma; :::; nag , e0iAk 6= 0]

for i 2 IA and mb
i � �min

�
k 2

�
�mb; :::; nb

	
, e0iBk 6= 0

�
for i 2 IB . Finally, let us note

bA (L) �
264 e01L

ma1

...
e0NL

maN

375A (L) .
We make the following two assumptions:

Assumption 2.1: (i) IA = f1; :::; Ng; (ii) 8i 2 f1; :::; Ng, ma
i � 0; (iii) bA (0) is invertible.

Assumption 2.2: (i) 1 2 IB; (ii) mb
1 � 0; (iii) 8i 2 IB r f1g, ma

i �mb
i > max

�
0;ma

1 �mb
1

�
.

Assumptions 2.1 and 2.2 may seem restrictive at �rst sight, but appendix B shows that any system

of type (7) such that the policy instrument appears in at least one of the structural equations

10This assumption is not restrictive in the sense that if each element of �t followed instead a centered stationary
�nite-order ARMA process, then C (L) �t could easily be rewritten in the form C (L) �

t
with C (L) �

Pnc

k=0CkL
k,

where nc 2 N, all Ck are N �N matrices with real numbers as elements, all the eigenvalues of C (L) are of modulus
strictly lower than one and each element of �

t
follows a centered stationary autoregressive process of �nite order.

16



and that the structural equations are non-redundant implies that holds another system of type (7)

satisfying assumptions 2.1 and 2.2.

Three points are worth being made at this stage. First, in monetary policy applications the

policy-maker will naturally be the central bank and the policy instrument typically the short-term

nominal interest rate. Second, speci�cation (7) is general enough to encompass the locally linearized

structural equations of most rational-expectations dynamic stochastic general equilibrium models,

including e.g. the New Keynesian model considered in the previous section (for which N = 2,

ma
1 = ma

2 = 1 and mb
1 = 0) as well as such well-known medium-sized models as Smets and

Wouters�(2003). Naturally, this linear approximation is valid only locally, which requires notably

that "t have a bounded distribution. Third, our focus on models with only one control variable

(which can feature as a lagged, a current and/or an expected future variable in only one or in

several structural equations) and no limit condition is without any loss in generality. Indeed, when

several control variables, the policy-maker can always exogenize all but one, and the existence of

limit conditions would only reduce the set of solutions to the model�s structural equations.

Finally, we consider the set of policy rules expressing the current instrument zt as a �nite

time-invariant linear combination of past and current endogenous variables and exogenous shocks

as well as current expectations of future endogenous variables, i.e. the set of policy rules which

can be written as follows for t 2 Z:

Et fF (L)Ytg+G (L) zt +H (L) �t = 0 (8)

with F (L)
(1�N)

�
Xnf

k=�mf
FkL

k, G (L) �
Xng

k=0
gkL

k and H (L)
(1�N)

�
Xnh

k=0
HkL

k,

where
�
mf ; nf ; ng; nh

�
2 N4, all gk are real numbers, g0 6= 0 and all Fk, Hk have real numbers as

elements.

2.2 Bubble-free policy feedback rules

If 9i 2 f1; :::; Ng,ma
i > 0 and if the policy rule (8) is arbitrarily chosen (e.g. if zt is set exogenously),

then the linear model made of (7) and (8) typically leaves the door open to a large variety of

sunspot equilibria and/or rational mean-explosive bubbles of the type identi�ed by Blanchard

(1979), Blanchard and Watson (1982), Evans (1991) and Froot and Obstfeld (1991). The initial

development of these bubbles may correspond to the initial development of type-B equilibria in

the dynamic stochastic general equilibrium model considered whose locally linearized reduced form
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corresponds to this linear model. Now consider a policy feedback rule of the following form:

e01

h
Et

n
Lm

b
1 [A (L)Yt +B (L) zt]

o
+ Lm

b
1C (L) �t +O (L)D (L) �t

i
+
XN

i=2
e0iL

mb1+
Pi
j=2m

a
j

h
A (L)Yt +B (L) zt +C (L) �t + L

�maiO (L)D (L) �t

i
+Lm

b
1+
PN
i=2m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0, (9)

with O (L)
(N�N)

�

266664
Pmb1�1
k=0 O1;kL

kPma2�1
k=0 O2;kL

k

...PmaN�1
k=0 ON;kL

k

377775 , P (L)(1�N)
�
Xnp

k=0
PkL

k such that 

(N�N)

�

26664
P0

e02
bA (0)
...

e0N
bA (0)

37775
is invertible, Q (L) �

Xnq

k=max[0;ma1�mb1+1]
qkL

k and R (L)
(1�N)

�
Xnr

k=0
RkL

k,

where (mp; nq; nr) 2 N3, all qk are real numbers and all Oi;k, Pk, Rk have real numbers as

elements. We adopt the convention
Pv
i=u f:g = 0 for u > v. Rules of type (9) belong to the class

of rules (8) and qualify as �instrument rules�since their zt-coe¢ cient e01B�mb1 di¤ers from zero.

We �rst show that rules of type (9) are bubble-free in the sense that they implement a unique

equilibrium:

Proposition 2.1 (determinacy): the system made of (7) and (9) taken at dates t to t +

max
�
ma
1 ;m

b
1

�
+
PN
i=2m

a
i makes Yt and zt uniquely determined.

Proof : cf appendix C. � As made clear in appendix C, rules of type (9) achieve the existence

and uniqueness of the solution (or equivalently the global determinacy of the equilibrium in this

linear framework) by disconnecting the current variables from their expected future values. More

precisely, the forward-looking part of rules of type (9) is designed to insulate the current variables

from the most forward-looking part of the �rst structural equation e01(7) if m
a
1 > mb

1, while their

backward-looking part is designed to insulate the current variables from the forward-looking part

of the other structural equations e0k(7) for all k 2 f2; :::; Ng such that ma
k > 0. This explains why

the time needed by these rules to be e¤ective, speci�ed in the proposition, is a function of the

length of the forward-looking part of the structural equations.

We then show that any given VARMA solution of the model�s structural equations (not in-

volving white noises other than those featuring in the structural equations) can be uniquely selected

by a suitably chosen bubble-free policy feedback rule of type (9):

Proposition 2.2 (controllability): for any sequence fYt; ztgt2Z which satis�es (7) and can be

written in a VARMA form �
Yt

zt

�
= S (L)

�
Yt

zt

�
+T (L) "t (10)
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with S (L)
((N+1)�(N+1))

�
Xns

k=1
SkL

k and T (L)
((N+1)�N)

�
Xnt

k=0
TkL

k

where ns 2 N�, nt 2 N and all Sk and Tk have real numbers as elements, there exist O (L), P (L),

Q (L) and R (L) such that fYt; ztgt2Z is the unique solution of (7) and (9) for t 2 Z.

Proof : cf appendix D. � Technically speaking, the role of P (L) and Q (L) is to make the system
made of (7) and (9) have the same eigenvalues as I�S (L), where I denotes the (N + 1)� (N + 1)

identity matrix, so that its unique solution fYt; ztgt2Z is such that [I� S (L)]
�
Yt zt

�0
is equal

to a �nite-order matrix polynomial in L applied to "t; and the role of O (L) and R (L) is to ensure

that this �nite-order matrix polynomial in L is T (L).

Given that in most rational-expectations dynamic stochastic general equilibrium models the tar-

geted equilibrium (e.g. the globally-social-welfare-maximizing equilibrium) is to be found in the

neighbourhood of a given steady state and can typically be linearized in a form (10), propositions

2.1 and 2.2 imply that in most rational-expectations dynamic stochastic general equilibrium models

there exists a linear interest-rate rule to be followed locally which enables the central bank both

to select the targeted local equilibrium to the exclusion of all other local equilibria and to prevent

the economy from gradually leaving the neighbourhood of the corresponding steady state, where

by �gradually�we mean �in more than max
�
ma
1 ;m

b
1

�
+
PN
i=2m

a
i periods�.

2.3 Forward- vs. backward-looking rules

This subsection establishes two propositions about the link between the forward- or backward-

looking nature of the policy feedback rule considered and its ability to ensure equilibrium determ-

inacy or, in a more demanding way, to select uniquely a given stationary equilibrium. To that aim,

let �i (X) 2 R [X] for i 2 f1; :::; N + 1g denote the determinant of the N � N matrix obtained

by removing its ith column from N � (N + 1) matrix Xmax[na;nb] � A �X�1� B
�
X�1� �, let

D (X) 2 R [X] denote the greatest common divisor, de�ned up to a non-zero multiplicative scalar,

of all non-zero �i (X) for i 2 f1; :::; N + 1g, and let us make the following assumption:

Assumption 2.3: all the roots of D (X) have their modulus strictly lower than one.

Let us also de�ne the concept of �-bubble-free rules, which will prove useful in the remaining of

the paper:

De�nition (�-bubble-free rules): a rule of type (8) is said to be �-bubble-free (for a given

� � 1) when the system made of (7) and this rule admits one unique stationary solution and has

no eigenvalue whose modulus is between 1 and �.
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In particular, rules of type (9) are thus +1-bubble-free when they implement a stationary solution.

A policy feedback rule is said to be forward-looking when it makes the policy variable con-

ditional in particular on the private agents�current expectations of future endogenous variables,

and backward-looking when it makes the policy variable conditional only on current and/or past

endogenous and/or exogenous variables. In practice, a central bank can extract the private agents�

expectations from various sources, such as surveys and prices of �nancial instruments. If the cent-

ral bank�s forecasts are conditional on the private agents� expectations, then the former should

coincide with the latter and therefore the terms �forward-looking� and �forecast-based� can be

used interchangeably to qualify an interest-rate rule.

A great deal of attention has been paid in the literature to the issue of whether the interest-

rate rule should be forward-looking in order to eliminate type-A and/or type-B equilibria. On the

one hand, Woodford (1994a) and Carlstrom and Fuerst (2000, 2001, 2002, 2005) show that some

forward-looking rules lead to type-A equilibria, contrary to some current- or backward-looking

rules. Similarly, Bernanke and Woodford (1997) show that some forward-looking rules lead to

type-A equilibria. On the other hand, Benhabib, Schmitt-Grohé and Uribe (2003) show that some

backward-looking rules lead to type-B equilibria, while De Fiore and Liu (2005) show that the

backward-looking rules eliminating type-A equilibria in Carlstrom and Fuerst�s (2000, 2001, 2002)

closed-economy models do not eliminate them in an open-economy model11 .

As suggested by De Fiore and Liu�s (2005) results, the conclusions reached by this literature

are however very sensitive to the speci�c structural equations considered as well as to the usually

low-dimensional parametric family of rules considered12 . Indeed, the ability of simple backward-,

current- or forward-looking interest-rate rules to preclude type-A equilibria does crucially depend

on the structural equations considered, as shown by Benhabib, Schmitt-Grohé and Uribe (2001b),

Weder (2006) and Zanetti (2006), as well as on the parametric family of backward-, current- or

forward-looking rules considered for the standard New Keynesian model examined in section 1, as

shown by Woodford (2003, chap. 4) and Lubik and Marzo (2007).

By contrast, our general setting both for the structural equations and for the interest-rate rule

enables us to reach more general conclusions. Given the form of rules (9), one of these conclusions is

that all type-A and -B equilibria can be eliminated by some interest-rate rules which are forward-
11Besides the rational expectations literature, the adaptive learning literature has also taken part in the forward-

looking vs. backward-looking interest-rate-rules debate. On the one hand, Evans and Honkapohja (2003, 2006) �nd
that some forward-looking rules make the globally optimal local equilibrium learnable, contrary to the fundamentals-
based and hence backward-looking rule consistent with this equilibrium. Similarly, Bullard and Mitra (2002) �nd
that some forward-looking rules make the globally optimal local equilibrium learnable in the absence of type-A
equilibria, contrary to some backward-looking rules. On the other hand, Evans and McGough (2005b) �nd that
some forward-looking rules lead to learnable type-A equilibria, and Eusepi (2005) shows that some forward-looking
rules precluding type-A equilibria lead to learnable type-B equilibria, while some backward-looking rules preclude
both learnable type-A equilibria and learnable type-B equilibria.
12One notable exception is Giannoni and Woodford (2002) and Woodford (2003, chap. 8), who design �robustly

optimal� interest-rate rules precluding type-A equilibria in a general linear-quadratic framework.
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looking if ma
1 > mb

1. Note that the condition m
a
1 > mb

1 is typically met if the model includes

an Euler equation, which is arguably the case for most rational-expectations dynamic stochastic

general-equilibrium models. Proposition 2.3 goes further by showing that actually if ma
1 > mb

1

then all +1-bubble-free interest-rate rules of type (8) with �nite coe¢ cients (i.e. all bubble-free

interest-rate rules of type (8) with �nite coe¢ cients implementing a stationary equilibrium) are

forward-looking:

Proposition 2.3: if ma
1 > mb

1 then no rule of type (8) which is backward-looking ( i.e. such that

mf = 0) and has all its coe¢ cients �nite (when g0 is normalized to one) can be +1-bubble-free.

Proof : cf appendix E. �

Proposition 2.4 moreover shows that there always exists a backward-looking interest-rate rule of

type (8) precluding the main kind of equilibrium indeterminacy which the existing literature is

concerned with, namely local equilibrium indeterminacy (i.e. type-A equilibria):

Proposition 2.4: for any stationary VARMA process of type (10) consistent with (7), there exists

a rule of type (8) which is backward-looking ( i.e. such that mf = 0), ensures local equilibrium

determinacy and makes the locally unique equilibrium selected coincide with this VARMA process.

Proof : cf appendix F. � Technically speaking, appendix F uses the generalized identity of Bezout
to choose F (L) and G (L) such that the system admits a unique local solution13 and has the same

stable eigenvalues as the targeted stationary VARMA process; the Euclidian division to choose

F (L) such that mf = 0; and Cramer�s rule to residually choose H (L) such that the unique local

solution coincides with the targeted stationary VARMA process.

Thus, propositions 2.3 and 2.4 together imply that the desirability of eliminating type-B in addi-

tion to type-A equilibria provides the �rst theoretical justi�cation solely related to equilibrium-

indeterminacy concerns so far put forward in the literature for the use of forward-looking interest-

rate rules.

Another, closely related branch of the literature has paid attention to the issue of to which

extent the interest-rate rule should be forward-looking in order to eliminate type-A equilibria.

Batini and Pearlman (2002), Batini, Levine and Pearlman (2004), Batini, Justiniano, Levine and

Pearlman (2006) and Leitemo (2006) consider interest-rate rules of type it = �+�it�1+Et f�t+�g

with (�; �; ) 2 R3 and � 2 N, where it and �t respectively denote the short-term nominal interest

13 If needed, proposition 2.4 could naturally be easily generalized (by choosing Z (X) without any root of modulus
between 1 and � in appendix F) to show the existence, for any given stationary equilibrium, of backward-looking
and �-bubble-free (instead of 1-bubble-free) rules of type (8) consistent with this equilibrium.
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rate and the in�ation rate at date t, and �nd that the more forward-looking the interest-rate rule or

equivalently the more distant the forecast horizon (i.e. the higher �), the higher the risks of type-

A equilibria or macroeconomic instability � the latter arising when the locally linearized system

admits more unstable eigenvalues than required by Blanchard and Kahn�s (1980) conditions14 . This

result can be easily explained as follows: the choice of a more forward-looking interest-rate rule (i.e.

of a higher �) is most likely to increase the number of eigenvalues and non-predetermined variables

of the locally linearized system and hence the risk that no (�; ) exists such that Blanchard and

Kahn�s (1980) conditions are satis�ed. By contrast, the Calvo-type interest-rate rules put forward

by Levine, McAdam and Pearlman (2006), of the kind it = � + �it�1 + Et

nP+1
k=0 '

k�t+k

o
with (�; �; ) 2 R3 and ' 2 ]0; 1[, manage to be in�nitely forward-looking while making the

locally linearized system have a �nite, and possibly even reduced, number of eigenvalues and non-

predetermined variables. This property of theirs might well explain why these rules are apparently

quite successful, as documented by Levine, McAdam and Pearlman (2006), in eliminating type-A

equilibria.

Note also that in most models without monetary policy transmission lags (i.e. models with the

typical Euler equation featuring the current nominal interest rate), where only short-horizon ex-

pected future endogenous variables appear in the forward-looking part of the structural equations,

our requirement that rules should eliminate type-A and -B equilibria and Giannoni and Woodford�s

(2003) requirement that rules should eliminate type-A equilibria and be �robustly optimal�both

imply, though for di¤erent reasons, that the rule should typically be based on only a-few-period

forecasts.

3 Robustness of bubble-free policy feedback rules

This section discusses the robustness of bubble-free policy feedback rules to departures from three

assumptions in turn: i) that the policy-maker has perfect knowledge of the data and the structural

parameters; ii) that the policy-maker can credibly commit to following a given policy feedback

rule; and iii) that the private agents form rational expectations.

3.1 Policy-maker�s imperfect knowledge

This subsection examines the sensitivity of propositions 2.1 and 2.2 to the assumption that the

policy-maker has perfect knowledge of the data and the model�s structural parameters, understood

here as the parameters featuring in the structural equations (7). The case where the policy-maker

has perfect knowledge of the structural parameters but imperfect knowledge of the data is easily

14Levin, Wieland and Williams (2003) reach a similar conclusion while considering a slightly more general family
of interest-rate rules.
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dealt with:

Proposition 2.5: if the policy-maker wants to follow a rule of type (9) implementing a given

targeted stationary equilibrium but measures at each date t all the endogenous variables Yt�k for

k � 0, zt�k for k � 0, Et fYt+kg for k � 1 and all the exogenous shocks "t�k for k � 0 with

some exogenous additive measurement errors, each of them randomly drawn from a continuous

probability distribution supported on a bounded interval including zero, and accordingly follows the

corresponding rule of type (9) based on these measured variables and shocks, then: (i) the system

made of (7) and this rule admits one unique solution; (ii) as the length of all the distribution-

supporting intervals tends towards zero ( i.e. as all the measured variables and shocks converge

towards the true variables and shocks), this solution converges towards the targeted equilibrium.

Proof : cf appendix G. � In short, in case of exogenous additive data-measurement errors pro-

position 2.1 still holds and proposition 2.2 holds asymptotically, i.e. as the size of the errors tends

towards zero.

The case where the policy-maker has perfect knowledge of the data but imperfect knowledge of

the values of the structural parameters is a little bit more challenging � as well as more interesting,

since the coe¢ cients of bubble-free interest-rate rules are tied to the structural parameters by

equality constraints, rather than by inequality constraints as for the coe¢ cients of interest-rate

rules ensuring only local equilibrium determinacy, as exempli�ed by the well-known Taylor principle

or by Rotemberg and Woodford�s (1999) �superinertia principle�(generalized by Woodford, 2003,

chap. 8). Given our focus on equilibrium determinacy and controllability, we model the policy-

maker�s imperfect information on the values of the structural parameters in a structured way, in

the form of misspeci�ed dynamics, and not in the form of a non-parametric set of additive model

perturbations à la Hansen and Sargent15 . Let us �rst make the following (admittedly ad hoc but

in our view intuitive) assumption:

Assumption 2.4: if the policy-maker follows a �-bubble-free rule, then as � �! +1 the probab-

ility that the private agents coordinate on a divergent path tends towards zero.

We are then ready to state the following proposition:

Proposition 2.6: if the policy-maker wants to follow a rule of type (9) implementing a given

targeted stationary equilibrium but measures all the parameters of the structural equations with

some exogenous additive measurement errors, each of them randomly drawn from a continuous

15Onatski and Williams (2003) show indeed that policy feedback rules robust à la Hansen and Sargent can for
instance lead to unstable dynamics.
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probability distribution supported on a bounded interval including zero, and accordingly follows the

corresponding rule of type (9) based on these measured parameters, then, as the length of all the

distribution-supporting intervals tends towards zero ( i.e. as all the measured parameters converge

towards the true parameters): (i) the system made of (7) and this rule admits one unique local

solution with probability one; (ii) the probability that the private agents coordinate on this solution

tends towards one; (iii) this solution converges towards the targeted equilibrium.

Proof : cf appendix H. � In other words, if the policy-maker�s knowledge of the structural para-
meters is su¢ ciently accurate, then rules of type (9) based on the measured parameters are 1-

bubble-free. Moreover, as the policy-maker�s knowledge of the structural parameters becomes

perfect, rules of type (9) based on the measured parameters are �-bubble-free with � �! +1,

that is to say that they make diverging paths very steeply sloping and hence (from assumption

2.4) type-B equilibria very unlikely. As made clear in appendix H, these rules manage to be �-

bubble-free with � �! +1 while keeping their coe¢ cients �nite by using the structural equations

as a lever on the private agents�expectations. Finally, the unique equilibrium implemented with

probability one gets arbitrarily close to the intended equilibrium as the size of the measurement

errors on the parameters of the structural equations tends towards zero.

Hence, both propositions 2.1 and 2.2 hold asymptotically with probability one, at the limit of a

convergence process which could take place if the policy-maker gradually learned the true values

of the structural parameters and accordingly adjusted its policy feedback rule. Thus, the equality

constraints tying the coe¢ cients of rules (9) to the structural parameters (making the policy-maker

manoeuvre on a Wicksellian-type razor�s edge) prove not as restrictive as they may seem at �rst

sight.

Note �nally that bubble-free interest-rate rules may also be useful when the central bank has

imperfect knowledge of the values of the structural parameters and for one reason or another

only local equilibria matter, i.e. non-local equilibria can be safely disregarded. Indeed, in such

cases the robustness-concerned central bank may want to adopt an interest-rate rule ensuring local

equilibrium determinacy for all admissible parameter values. Conventional interest-rate rules can

then �t the bill typically only if some of their coe¢ cients are large enough (in absolute value), that

is to say only if they are su¢ ciently aggressive out-of-equilibrium, which may bring about some

undesirable side e¤ects listed in the next subsection. Bubble-free interest-rate rules seem better

placed to ensure local equilibrium determinacy for all admissible parameter values without such

out-of-equilibrium aggressiveness16 .
16This claim is drawn from proposition 2.6. We vainly attempted to illustrate this point in a simple way with

contemporaneous Taylor rules using Giannoni�s (2002) robustness concept and calibration of the New Keynesian
model under uncertainty.
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3.2 Policy-maker�s inability to commit

If the central bank cannot credibly commit to following a given interest-rate rule, then, in addition

to the type-A and -B equilibria described in subsection 1.1, a third kind of unintended equilibria

may arise, which the existing literature has so far ignored:

� type-C equilibria: non-targeted local equilibria, or non-local equilibria originating locally, which

may exist only if the locally linearized system admits at least one unstable eigenvalue. Indeed,

the interest-rate rule might well change (possibly before the linear approximation of the structural

equations becomes invalid) along a divergent path because the stability-concerned central bank

would �nd it both possible and desirable. More precisely, if a divergent path starts to develop

in the neighbourhood of the targeted steady state, then the central bank will sooner or later

change its interest-rate rule in order to keep the variables within this neighbourhood or to bring

them back into this neighbourhood. Though initially divergent, the resulting path � given the

triggered interest-rate-rule adjustment � remains bounded (and possibly even local), hence does

not violate the transversality condition typically imposed by the original non-linear model with

in�nitely-lived utility-maximizing private agents and therefore quali�es as an equilibrium of this

model. This �stabilization of last resort�raises a moral hazard problem, as private agents, rightly

expecting this reaction from the central bank, can settle on an initially diverging path even though

this path would not be an equilibrium if the central bank were compelled to stick to its interest-

rate rule � in other words, type-C equilibria can exist even when type-B equilibria do not17 . Such

�boom-and-bust equilibria�may be of practical importance as they could prima facie contribute

to explain why most post-war U.S. recessions have been due, according to a widespread point of

view18 , to a monetary policy tightening putting an end to a period of increasing in�ation rate.

These type-C equilibria could be illustrated in a simple way within our general framework.

Indeed, suppose for instance that ma
1 > mb

1 and that the central bank�s interest-rate-rule choice is

arbitrarily limited to the set of backward-looking interest-rate rules. If the central bank initially

chooses a backward-looking interest-rate rule ensuring local equilibrium determinacy (along the

lines of proposition 2.4), then the economy can embark on a divergent path (as implied by pro-

17A parallel could be drawn between this escape-clause approach to interest-rate rules and the escape-clause
approach to �xed exchange rate systems (i.e. the second-generation models of currency crises). Another related
literature, led by Davig and Leeper (2005), examines the consequences of exogenous (as opposed to endogenous)
changes in the interest-rate rule on equilibrium determinacy.
18This point of view is related by Bernanke (2003) in the following way: �The Fed understood in principle that

stabilizing in�ation and in�ation expectations was important, but � knowing that a slowdown in spending and
output (of a magnitude di¢ cult to guess) would be an unwelcome side e¤ect � it was extremely reluctant to tighten
monetary policy enough to do the job. The resulting compromise has been appropriately described as �go-stop�
policy. First, over-expansion led to in�ation, the �go�phase. Then, periodically, when in�ation became bad enough,
the Fed would tighten policy (the �stop�phase), only to loosen again when the resulting slowdown in the economy
began to manifest itself. The net result of this policy pattern was to exacerbate greatly the instability of both
in�ation and unemployment, while making little progress towards restoring price stability or re-anchoring in�ation
expectations.�
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position 2.3). And if the economy does embark on a diverging path, then the central bank may

well decide to switch to a backward-looking interest-rate rule precluding divergent paths, at the

expense of the possible occurrence of type-A equilibria, in order to keep the variables within the

neighbourhood of the targeted steady state (the existence of such rules19 following from appendix

F amended by a choice of Z (X) whose roots are all of modulus strictly lower than one).

Admittedly, bubble-free interest-rate rules do not enable a central bank which cannot credibly

commit to following them to eliminate type-A, -B and -C equilibria. We however argue that bubble-

free interest-rate rules have two properties which might make them more credible and hence more

e¤ective than conventional interest-rate rules under the no-commitment assumption. First, bubble-

free interest-rate rules are fast-acting in-equilibrium in the sense that they are e¤ective provided

that at each date the private agents expect them to be followed at the current and the next

max
�
ma
1 ;m

b
1

�
+
PN
i=2m

a
i dates, as indicated in proposition 2.1. By contrast, if 9i 2 f1; :::; Ng,

ma
i > 0 then the e¤ectiveness of the rules considered in the existing literature (i.e. their ability to

select uniquely the targeted equilibrium or in other words to eliminate type-A, -B and -C equilibria)

typically rests on the existence of a limit condition and on the assumption that the private agents

believe them to be followed permanently, which is a more demanding condition.

Second, bubble-free interest-rate rules are non-aggressive out-of-equilibrium in the sense that

by using the structural equations as a lever on the private agents�expectations (as made clear in

the previous subsection), these rules manage to be +1-bubble-free with �nite coe¢ cients, thus

limiting the out-of-equilibrium sensitivity of the policy instrument to the endogenous variables

and in particular to the private agents�expectations. By contast, if 9i 2 f1; :::; Ng, ma
i > 0 then

some coe¢ cients of the rules typically considered in the existing literature tend towards in�nity

when these rules are required to be �-bubble-free with � �! +1 (i.e. to push the modulus

of the unstable eigenvalues of the dynamic system towards in�nity) in order to reduce to zero

the probability that the private agents coordinate on a divergent path20 , thus undermining the

credibility of these rules by making them costly to follow out-of-equilibrium. The out-of-equilibrium

non-aggressive nature of bubble-free interest-rate rules may also enhance their credibility for three

additional reasons: �rst, because a non-agressive rule avoids magnifying the e¤ect of real-time

data measurement errors (whose size can be particularly large for the output gap) on the economy;

second, because a non-aggressive rule leaves more scope to act before the zero lower bound is

reached by saving some interest-rate ammunition; third, because a non-aggressive rule avoids

endangering �nancial stability21 .

19These rules correspond to Currie and Levine�s (1993, chap. 4) "overstable feedback rules".
20This is formally shown by proposition 2.3 for the class of backward-looking rules when ma

1 > m
b
1.

21These three reasons are mentioned by Bernanke (2004): �the noisier the economic data, the less aggressive
policymakers should be (...). Less variable short-term rates reduce the risk that the policy rate will hit the zero
lower bound on interest rates; they may also reduce stress in the �nancial system�.
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3.3 Private agents�non-rational expectations

One way to relax the rational-expectations assumption is to suppose instead that the private

agents form myopic rational expectations, i.e. rational expectations up to a given �nite horizon.

Interestingly, this alternative assumption may make the economy more bubble-prone22 , at least

under conventional interest-rate rules. But bubble-free interest-rate rules could then well remain

e¤ective in eliminating both type-A and -B equilibria, given their in-equilibrium fast-acting nature

(pointed out in the previous subsection).

Another way to relax the rational-expectations assumption is to suppose instead that the private

agents form rational expectations only when the central bank follows a simple interest-rate rule.

This alternative assumption would make bubble-free interest-rate rules ine¤ective, because too

complex, in case of a large number of forward-looking structural equations. In this case, we would

advocate simple �-bubble-free rules. More precisely, one rule with desirable operating properties

would then be the (or one of the several) �-bubble-free rule(s) with the highest � in the set of

simple rules consistent with the targeted equilibrium, if this set is not empty. Compared to the

rules typically advocated by the existing literature, this rule would have the advantage of reducing

(even though not completely eliminating) the possibility of type-B equilibria.

More generally, the central bank would then face a trade-o¤ between choosing a simple rule and

choosing a �-bubble-free rule with a high �, in addition to the trade-o¤ usually considered in the

existing literature between choosing a simple rule and choosing a rule consistent with the targeted

equilibrium. The contribution of this paper to such cases is to show that a �-bubble-free rule

with an arbitrarily large � can be obtained as the simplicity requirement is gradually loosened. Of

course, a similar trade-o¤ applies when the central bank has an imperfect knowledge of the values

of the structural parameters or considers several competing structurally di¤erent models of the

economy23 , except that for su¢ ciently high �s no rule � however complex � can then be found

which would be �-bubble-free for all admissible parameter values or for all admissible models.

Naturally, the case for simple �-bubble-free rules rests on the implicit (and in our view rather in-

tuitive) assumption that private agents are less likely to coordinate on diverging rational-expectations

equilibrium paths along which endogenous variables grow at a rate higher than �, than on diverging

rational-expectations equilibrium paths along which endogenous variables grow at a rate lower than

�. The relevance of this assumption could be examined through the lens of the adaptive learning

literature. Type-A equilibria have been shown to be learnable by Honkapohja and Mitra (2004)

22This point is made e.g. by Tirole (1982). In Froot and Obstfeld�s (1991, pp. 1193-1994) words: �the theoretical
conditions required to rule out rational bubbles assume substantial, perhaps unrealistic, in�nite-horizon foresight
on the part of economic agents�.
23Among the many papers considering several competing structurally di¤erent models of the economy, Levin,

Wieland and Williams�(2003) can be mentioned for its special attention to type-A equilibria.
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and Evans and McGough (2005a, 2005b). Type-B equilibria (in the form of paths converging to-

wards the liquidity trap or a cycle) have been shown to be learnable by Bullard and Cho (2005),

Evans and Honkapohja (2005) and Eusepi (2005). To our knowledge however, whether steeply

sloping divergent paths are less easily learnable than gently sloping ones remains to be seen.

Note �nally that �-bubble-free rules might also be useful when the private agents use �judge-

ment� in their adaptive learning process. In this case indeed, as shown by Bullard, Evans and

Honkapohja (2005), non-targeted �exuberance equilibria� can exist under commonly considered

interest-rate rules when the system satis�es Blanchard and Kahn�s (1980) conditions but admits

one or several unstable eigenvalues of modulus relatively close to one. Bullard, Evans and Honka-

pohja (2005) show that these equilibria can be eliminated by aggressive enough interest-rate rules.

This aggressiveness can however have undesirable side e¤ects, as argued in the previous subsection.

Given that they move all the system�s unstable eigenvalues away from one, �-bubble-free interest-

rate rules might then manage to eliminate these exuberance equilibria without any aggressiveness.

4 Bubble-free interest-rate rules for asset-price stabilization

This section discusses the possible applications of bubble-free interest-rate rules to asset-price

stabilization by central banks. To that aim, let us consider the typical asset-pricing equation,

written

�Et fpt+1g � pt = it (11)

in its simplest linearized form, where pt is the asset price, it the short-term nominal interest rate

and � a real-number parameter such that 0 < � � 1. If it is set exogenously, then equation (11)

leaves the door open to a large variety of rational mean-explosive bubbles of the type identi�ed

by Blanchard (1979), Blanchard and Watson (1982), Evans (1991) and Froot and Obstfeld (1991).

These bubbles are likely to be socially undesirable as their formation entails a non-optimal alloc-

ation of ressources and their bursting may endanger �nancial stability. This provides a rationale

for policy action to reduce as much as possible, and ideally completely eliminate, their occurrence.

The conventional view, expressed e.g. by Bernanke (2002), is that monetary policy should

not react to a perceived asset-price bubble for two reasons: �rst, because to identify correctly

an asset-price bubble is di¢ cult, and second, because monetary policy cannot stop an asset-price

bubble without causing great damage on the economy. In essence, the second argument is that

there is no proportional link between interest rates and asset prices and in particular that asset-

price bubbles hardly respond to a modest interest-rate rise and can only be stopped brutally by a

interest-rate rise sharp enough to have a large negative impact on the economy24 . This argument

24 In Bernanke�s (2002) words: �an underlying premise of the lean-against-the-bubble strategists [...] is that the
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can be interpreted very simply in the light of equation (11) in the following way. Suppose that

an asset-price bubble is in progress and consider an unexpected temporary exogenous rise in the

short-term nominal interest-rate it. This rise will decrease pt as intended if it leaves Et fpt+1g

unchanged or if it decreases Et fpt+1g. But it may also leave pt unchanged or even increase pt
if it increases Et fpt+1g. The elasticity of pt to it thus depends on that of Et fpt+1g. A similar

reasoning leads to the same conclusion when the exogenous rise in it is expected and/or permanent.

Now consider an endogenous rise in the short-term nominal interest-rate it of the form it = kpt

with k > 0. Whether temporary or permanent, this rule makes equation (11) at date t become

�Et fpt+1g � (1 + k) pt = 0 so that the bubble may then keep on going faster than ever25 . If

(as seems intuitive) the probability that the private agents coordinate on a bubble path depends

negatively on the bubble�s expected growth rate, then the larger k the more likely the bursting of

the bubble. All these considerations are consistent with the argument presented above.

Now consider the following interest-rate rule:

it = �p�t + �Et fpt+1g (12)

where the exogenous targeted sequence fp�t gt2Z is known to the private agents. This rule eliminates

rational bubbles by explicitly tying it to Et fpt+1g in a way which mimics their relationship in (11)

so as to insulate pt from Et fpt+1g and ensure pt = p�t for t 2 Z. In other words, by disconnecting

the elasticity of pt to it from that of Et fpt+1g, this rule establishes a �xed proportional link

between it and pt.

In such a context, these rules are primarily meant to be curative in the �rst place, that is

to say that they aim at de�ating an existing bubble26 . Moreover, they theoretically enable the

response of incipient bubbles to monetary policy is more or less proportional to the policy action. In other words, [...]
a small increase in the federal funds rate must lead to some correspondingly modest decline in the likelihood or size
of a bubble. But such a smooth response is not well supported by either theoretical or empirical research on asset
price dynamics. [Footnote: Alan Blinder has likened bubble-popping strategies to sticking a needle in a balloon; one
cannot count on letting out the air slowly or in a �nely calibrated amount.] If a bubble [...] is actually in progress,
then investors are presumably expecting outsized returns: 10, 15, 20 percent or more annually. Is it plausible
that an increase of 1

2
percentage point in short-term interest rates, unaccompanied by any signi�cant slowdown in

the broader economy, will induce speculators to think twice about their equity investments? All we can conclude
with much con�dence is that the rate hike will tend to weaken the macroeconomic fundamentals through the usual
channels, while the asset bubble, if there is one, may well proceed unchecked. Although neither I nor anyone else
knows for sure, my suspicion is that bubbles can normally be arrested only by an increase in interest rates sharp
enough to materially slow the whole economy. In short, we cannot practice "safe popping," at least not with the
blunt tool of monetary policy.� In Greenspan�s (2002) words: �the key policy question is: if low-cost, incremental
policy tightening appears incapable of de�ating bubbles, do other options exist that can at least e¤ectively limit the
size of bubbles without doing substantial damage in the process? To date, we have not been able to identify such
policies, though perhaps we or others may do so in the future�.
25This point is similar to that made by Benhabib, Schmitt-Grohé and Uribe (2002b) about the role of monetary

policy in equilibrium paths leading to the liquidity trap: �[a]long such equilibrium paths, the central bank, following
the prescription of the Taylor rule, continuously eases in an attempt to reverse the persistent decline in in�ation. But
these e¤orts are in vain, and indeed counterproductive, for they introduce further downward pressure on in�ation�
(p. 546).
26The rigorous way to consider blooming mean-explosive bubbles (instead of nascent mean-explosive bubbles as in

the previous sections) would be to use the original non-linear asset-pricing equation, instead of its linearized version
(11) to which we stick for simplicity, but the message would basically remain the same.
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central bank to control how gradually to de�ate the bubble by choosing the sequence fp�t gt2Z
accordingly. In so doing they avoid a further growth and a sharper decline of the bubble, while

having the advantage over hypothetical directly preventive solutions to be used in circumstances

where bubbles are more easily identi�able. However, if private agents expect the central bank to

resort to such a curative solution, then they may be deterred from coordinating on a bubble in the

�rst place and the solution may therefore in e¤ect be preventive as well. Indeed, rational bubbles

cannot occur when � < 1 if the monetary policy intervention ensures that the asset price never

goes beyond a given threshold value.

Of course, we are not saying that bubbles can be surgically removed in a routine operation:

bubble-free interest-rate rules should not be taken literally. In particular, the e¤ectiveness of rule

(12) depends on the relevance of equation (11) which can be derived only under unrealistic sym-

plifying assumptions. More generally, bubble-free interest-rate rules are meant to be e¤ective only

if the central bank has correctly detected the presence of a rational bubble in real time and knows

the structural equation describing the behaviour of the private agents accurately enough. Given

that these two conditions are likely not to be met in practice, resorting to such rules would almost

surely trigger unintended volatile market reactions. We nonetheless think that these rules can serve

as a useful guide in the re�ections on the best monetary policy reaction to perceived asset-price

bubbles.

Such considerations could be illustrated with two particular asset prices, namely the stock price

and the exchange rate. Indeed, the simplest structural equation governing stock-price dynamics

under the assumption of constant exogenous dividends can be written after Campbell and Shiller

(1988) in the linearized form (11) with � < 1, where pt denotes the logarithm of the ratio price

over dividend (up to an additive constant) at date t. In this context, the central bank could infer

Et fpt+1g from the futures�price. Note interestingly that a large part of the existing literature, led

by Bernanke and Gertler (1999, 2001), models stock-price bubbles as exogenous stochastic processes

on which monetary policy has therefore no impact27 . By contrast, the rational-bubbles framework

which we consider (where stock-price bubbles correspond to non-fundamental solutions of the

dynamic stock-price equation under rational expectations) leaves the door open to a monetary

policy e¤ect on these bubbles � without resorting to an ad hoc direct channel between the monetary

policy instrument on the one hand and the growth rate and/or the probability of bursting of stock-

price bubbles on the other hand, as does another branch of the literature.

Similarly, the simplest structural equation governing exchange-rate dynamics under the assump-

tions of perfect asset substitutability, capital mobility and risk neutrality, namely the uncovered

27 In Bernanke and Gertler�s (2001, p. 257) words, �[a] de�ciency of the literature to date is that the nonfunda-
mental component of stock prices has generally been treated as exogenous.�
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interest-rate parity (UIP), can be written in the linearized form (11) where pt then denotes the

logarithm of the nominal exchange rate and it the di¤erence between the domestic and the foreign

short-term nominal interest rates at date t. As reviewed by Sarno and Taylor (2002, chap. 2) for

instance, the UIP is usually rejected by the data (the so-called forward bias puzzle) but there is

some empirical evidence that the covered interest-rate parity (which replaces Et fpt+1g by the log-

arithm of the one-period forward rate, i.e. the rate agreed at date t for an exchange of currencies at

date t+1) holds. Hence the UIP�s lack of empirical validity needs not undermine the e¤ectiveness

of rule (12) provided that the central bank (quite naturally) uses the one-period forward rate as a

proxy for Et fpt+1g.

Note that in a fully-�edged dynamic rational-expectations general-equilibrium model, the cur-

rent nominal exchange rate would typically be uniquely pinned down by a long-term condition

such as the purchasing power parity, so that no bubble could emerge. As previously discussed,

bubbles can however emerge under the alternative assumption of myopic rational expectations

which may arguably be more relevant and in particular better re�ect the popular notion of mar-

ket �short-termism�. It may even be the case that by clearly presenting them with an arbitrage,

the mere announcement of rule (12) by the central bank may induce the private agents who do

not usually form rational expectations at all (however myopic), like the noise traders or positive

feedback traders considered in the corresponding literature, to form rational expectations.

Bubble-free interest-rate rule (12) could be used under a �exible exchange rate regime to bring

back the nominal exchange rate from a bubble value to a value more in line with the fundament-

als. This rule would then theoretically enable the central bank to move the nominal exchange

rate smoothly along a gradual sequence fp�t gt2Z so as to avoid e.g. the sudden collapse of an

initially overvalued currency. Bubble-free interest-rate rule (12) could also be used preventively

to maintain a (sustainable, i.e. fundamentals-consistent) exchange-rate peg. To our knowledge,

the only interest-rate rules for an exchange-rate peg to be found in the literature are proposed

by Benigno, Benigno and Ghironi (2000) and Benigno and Benigno (2004) in the linearized form

it = k (pt � p�) with k > 0, where p� is the targeted (constant) nominal exchange rate, possibly

together with a fractional backing mechanism à la Obstfeld and Rogo¤ (1983, 1986) should the

nominal exchange rate embark on a divergent path. The e¤ectiveness of these rules depends on

the assumption that the private agents expect them to be followed until the implementation of

the fractional backing mechanism, that is to say during a typically long period if k is small. But

alternatively if k is large, then these rules are aggressive out-of-equilibrium. By contrast, rule (12)

has the advantage of escaping this trade-o¤ between being fast-acting in-equilibrium and being

non-aggressive out-of-equilibrium.
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Conclusion

This paper aims at giving a new insight into the design of interest-rate rules. The literature has so

far focused on interest-rate rules � typically rules satisfying the Taylor principle � precluding unin-

tended �uctuations around the targeted steady state (�type-A equilibria�). As �rst acknowledged

by Benhabib, Schmitt-Grohé and Uribe (2001a, 2001b, 2002a, 2002b, 2003), such rules however

do not prevent the economy from embarking on a path gradually leaving the neighbourhood of

the targeted steady state and leading for instance to the liquidity trap (�type-B equilibria�). An

interest-rate-rule change along such a downwards or upwards path can preclude these undesirable

outcomes but may raise a moral hazard problem leading for instance to booms and busts (�type-C

equilibria�).

We argue that under such rules local equilibrium determinacy and global equilibrium inde-

terminacy are the two sides of the same coin. Instead, we propose bubble-free interest-rate rules

which both preclude unintended �uctuations in the neighbourhood of the targeted steady state and

prevent the economy from gradually leaving this neighbourhood. These rules do so by removing

all divergent paths from the locally linearized model (if the central bank has perfect knowledge of

the values of the structural parameters) or making these divergent paths more abrupt and hence

arguably less likely to be followed by the non-coordinated private agents (if the central bank has

imperfect knowledge of the values of the structural parameters).

We design these bubble-free interest-rate rules for a broad class of rational-expectations dy-

namic stochastic in�nite-horizon linear models, which encompasses the locally linearized reduced

form of many existing rational-expectations dynamic stochastic general equilibrium models. We

show that these rules can implement any given VARMA solution of the model�s locally linearized

structural equations. We take part in the forward-looking vs. backward-looking interest-rate rules

for equilibrium determinacy debate by showing that in most models bubble-free interest-rate rules

are necessarily forward-looking, while in all models there exists a backward-looking rule ensuring

local equilibrium determinacy (whatever this equilibrium).

We also argue that given their in-equilibrium fast-acting and out-of-equilibrium non-aggressive

nature (as they use the structural equations as a lever on the private agents�expectations), these

rules: i) are likely to have better stabilization properties than conventional rules when for robust-

ness concerns local equilibrium determinacy is required for all admissible values of the structural

parameters; ii) are likely to be more credible and hence more e¤ective than conventional rules

in the absence of a commitment technology; iii) are still e¤ective when the private agents form

myopic rational expectations, while on the contrary conventional rules are then more problematic.

We �nally put forward these rules as a useful guide in the re�ections on the best monetary policy
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reaction to perceived asset-price bubbles or exchange-rate misalignments.

This work could be extended in many interesting ways. In particular, a proper treatment

of the credibility of interest-rate rules, showing how the in-equilibrium fast-acting nature and

out-of-equilibrium non-agressive nature of a given rule enhance its credibility, would be welcome.

Similarly, a proper treatment of the learnability of divergent paths, showing that gently sloping

divergent paths are more easily learnable than steeply sloping ones, would opportunely strengthen

the case for �-bubble-free rules. Finally, it would be worth examining whether the results obtained

can be further generalized to models which account for monetary policy transmission delays by

introducing not past interest rates � as we do to some extent � but the private agents�past ex-

pectations of current interest rates in the structural equations, such as Rotemberg and Woodford�s

(1999) and Giannoni and Woodford�s (2003)28 .
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Appendix

For any system of equations (S), let L(S) and Et f(S)g denote the systems obtained by applying

respectively operators L and Et on both the left-hand side and the right-hand side of each equation

of (S). Similarly, for any N -equation system (S), let e0i(S) denote the i
th equation of (S).

A Proof of proposition 1.2

Let us �rst determine Ed. Under discretion, at each date t the central bank chooses it so as

to minimize (3) subject to (1) and (2). Because of the purely forward-looking nature of the
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model, today�s choice of it does not depend on yesterday�s choices of it�k for k � 1. Similarly,

tomorrow�s choices of it+k for k � 1 will not depend on today�s choice of it. This implies that

neither tomorrow�s other variables �t+k and xt+k for k � 1 will depend on today�s choice of it,

because of the purely forward-looking nature of the model again, hence neither will today�s private

agents�rational expectations Etf�t+kg, Etfxt+kg and Etfit+kg for k � 1, so that the central bank

considers these expectations as given when choosing it at date t. As a consequence, the central bank

chooses it so as to minimize (�t)
2
+ �x (xt � x�)2+ �i (it � i�)2+ kL subject to �t = �xt+ k� and

xt = ��it+ kx, considering kL, k� and kx as given. The �rst-order condition of this minimization

problem is

it = i� � �x�

�i
x� +

��

�i
�t +

�x�

�i
xt. (13)

Using (13) to replace it in (2), and then (1) and the expectation at date t of (1) taken at date t+1

to replace xt and Et fxt+1g in the resulting equation, we get

��iEt f�t+2g �
�
�i + ��i + ��i� + ��x�

2
�
Et f�t+1g+

�
�i + �x�

2 + �2�2
�
�t

= �� (�x�x
� � �ii�) + ��i�rnt +

�
�i (1� �u) + �x�2

�
ut. (14)

The expectation at date t of (14) taken at dates t + k for k � 0 leads to a recurrence equation.

Given assumption 1.1, this recurrence equation has a unique local solution:

Et f�t+kg =
�� (�x�x

� � �ii�)
P (1) +

��i�

P (�r)
�krr

n
t +

�i (1� �u) + �x�2
P (�u)

�kuut for k � 0

and in particular �t =
�� (�x�x

� � �ii�)
P (1) +

��i�

P (�r)
rnt +

�i (1� �u) + �x�2
P (�u)

ut (15)

with P (1) 6= 0, P (�r) 6= 0 and P (�u) 6= 0 because of assumption 1.1. Equations (1) and (13) then

lead to

xt =
� (1� �) (�x�x� � �ii�)

P (1) +
�i� (1� ��r)
P (�r)

rnt +
� (�i�u � ��)
P (�u)

ut (16)

and it =
�� (�x�x

� � �ii�)
P (1) +

�2
�
�2 + �x (1� ��r)

�
P (�r)

rnt +
� [�+ (�x� � �) �u]

P (�u)
ut. (17)

Considered as a rule, (13) is of type (4) and consistent by construction with the implementation

of Ed characterized by (15), (16) and (17) for t 2 Z. Now let us de�ne

�d �

264 1 0 0
��(�x�x

���ii�)
P(1)

��i�
P(�r)

�i(1��u)+�x�2
P(�u)

�(1��)(�x�x���ii�)
P(1)

�i�(1���r)
P(�r)

�(�i�u���)
P(�u)
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so that

�
1 �t xt

�0
= �d

�
1 rnt ut

�0
at Ed. Computations lead to���d�� = ��i�

P (�r)P (�u)
�
P (1) + ��x�2 (1� �r) + ��i� (1� �u) + �i (1� ��r) (1� �u)

�
.
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Assumption 1.1 and P (0) > 0 together imply that P (1) > 0, so that we obtain
���d�� 6= 0. Then,���d�� 6= 0 and the fact that 1, rnt and ut form a base together imply that 1, �t and xt form also

a base at Ed. As a consequence, any rule of type (4) other than (13) is not consistent with the

implementation of Ed.

Let us then determine Ec. Given that 1, rnt and ut form a base, equations (1), (2) and (6)

enable us to express ax, bx, cx, ai, bi and ci as functions of a�, b� and c� only:8<:
ax =

1��
� a�

bx =
1���r
� b�

cx =
1���u
� c� � 1

�

and

8<:
ai = a�
bi = �A(�r)�� b� + 1

ci = �A(�u)�� c� +
1��u
��

(18)

where A (X) � �X2 � (1 + � + ��)X + 1. We then use (6) and (18) to express (3) as a function

of a�, b� and c� only. The minimization of this function determines a�, b� and c�:

a� = �
(1� �)�xx� + ��ii�

�2 + (1� �)2 �x + �2�i
, b� =

��i�A (�r)
B (�r)

and c� =
�x�

2 (1� ��u) + �i (1� �u)A (�u)
B (�u)

where B (X) � �i [A (X)]2 + �x�2 (1� �X)2 + �2�2 6= 0 for all X 2 R, while ax, bx, cx, ai, bi and

ci are residually determined by (18). Now let us de�ne

�c �

24 1 0 0
a� b� c�
ax bx cx
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so that

�
1 �t xt

�0
= �c

�
1 rnt ut

�0
at Ec. Using (18) we get

j�cj = a�
�
[� (�r � �u) b� � 1] .

Assumption 1.1 ensures A (�r) 6= 0 and therefore a� 6= 0, so that j�cj 6= 0 if and only if

� (�r � �u) b� � 1 6= 0. Computations lead then to

[� (�r � �u) b� � 1]B (�u) = ��2�2 � �x�2 (1� ��u) (1� ��r) + �iA (�u) C (�u; �r) (19)

where C (X1; X2) � ��X1 � (1�X1) (1� �X2). If A (�u) C (�u; �r) � 0 then [� (�r � �u) b� � 1]

B (�u) < 0. Alternatively, if A (�u) C (�u; �r) > 0 then two cases can be distinguished. In the case

A (�u) < 0 and C (�u; �r) < 0, we use P (�u) > 0 (as implied by assumption 1.1 and P (0) > 0) to

get

[� (�r � �u) b� � 1]B (�u) < ���2�2�r + �iA (�u) �u (1� ��r + ��) < 0

from (19). In the case A (�u) > 0 and C (�u; �r) > 0, we use P (�r) > 0 (as implied by assumption

1.1 and P (0) > 0) and C (�u; �r) > 0 to get

[� (�r � �u) b� � 1]B (�u) < ���2�2�u +
�iD (�u; �r)
1� �u
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from (19), where D (X1; X2) � �� (1� �X1) (X1 �X2)+(1�X1)A (X1) C (X1; X2). In this case,

given that D (X1; X2) is linear in X2, that �u < �r < 1 (as implied by A (�u) > 0 and C (�u; �r) >

0), that D (�u; �u) < 0 (since C (�u; �u) = �A (�u) < 0) and that

D (�u; 1) = � (1� �u)
h
�2�2�2u + ��

h
(1� �u)

2
+ �2u (1� ��u)

i
+ (1� �) (1� �u)

2
(1� ��u)

i
< 0,

we obtain D (�u; �r) < 0 and hence [� (�r � �u) b� � 1]B (�u) < 0. Thus, in all cases we have

[� (�r � �u) b� � 1]B (�u) < 0, which implies � (�r � �u) b� � 1 6= 0 and therefore j�cj 6= 0. Then,

j�cj 6= 0 and the fact that 1, rnt and ut form a base together imply that 1, �t and xt form also a

base at Ec. As a consequence, any rule of type (4) other than

it =
�
ai bi ci

�
(�c)

�1

24 1
�t
xt

35
is not consistent with the implementation of Ec.

B On assumptions 2.1 and 2.2

Consider the following two assumptions, which state that the structural equations are non-redundant

and that the policy instrument appears in at least one of the structural equations:

Assumption 2.1�: 8 (�1; :::; �N ) 2 RN , if there exist (k1; :::; kN ) 2 N�N and
�
i;j ; �i;j

�
2 R� � N

for i 2 f1; :::; Ng and j 2 f1; :::; kig such that (i) 8i 2 f1; :::; Ng, 8 (j; j0) 2 f1; :::; kig2, �i;j =

�i;j0 =) j = j0, (ii)
PN
i=1 �ie

0
i

Pki
j=1 i;jL

��i;jA (L) = 0, then (�1; :::; �N ) = (0; :::; 0).

Assumption 2.2�: IB 6= ?.

This appendix shows the following proposition:

Proposition 2.7: any system of type (7) satisfying assumptions 2.1�and 2.2� implies that holds

another system of type (7) satisfying assumptions 2.1 and 2.2.

Proof : consider a system S of type (7) satisfying assumptions 2.1�and 2.2�. This system can be

rewritten in the following six steps, where for simplicity we keep the same notations at each step.

Step 1: note that assumption 2.1�ensures that S satis�es assumption 2.1.i.

Step 2: if bA (0) is invertible then S satis�es assumption 2.1.iii. Otherwise, if bA (0) is not invertible
then there exists (�1; :::; �N ) 2 RN such that

PN
i=1 �ie

0
i
bA (0) = 0 and (�1; :::; �N ) 6= (0; :::; 0).

Note bI the set of i 2 f1; :::; Ng such that �i 6= 0 and consider
bi 2 argmax

i2bI (ma
i ) .
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Replace e0bi (S) by PN
i=1 �iEt

n
Lm

a
i�m

abi e0i (S)
o
. Compared to the previous system, the resulting

system has the same na and ma
i for i 2 f1; :::; Ngr

nbio and a strictly lower mabi (whose existence
is secured by assumption 2.1�). Repeat this (sub)step again and again as long as bA (0) is not
invertible. At each (sub)step there exists i 2 f1; :::; Ng such that ma

i is strictly decreased. Given

that 8i 2 f1; :::; Ng, ma
i � na, this process must end at some point. Assumption 2.1�ensures thatbA (0) is invertible at the end of this process, that is to say that the �nal system satis�es assumption

2.1.iii.

Step 3: re-order the equations such that 1 2 IB , so that assumption 2.2.i is satis�ed, and 8i 2

IB r f1g, ma
i �mb

i � ma
1 �mb

1.

Step 4: 8i 2 IB r f1g such that ma
i �mb

i = ma
1 �mb

1, replace e
0
i (S) by

e0iB�mbiEt

n
Lmin[0;m

b
1�m

b
i ]e01 (S)

o
� e01B�mb1Et

n
Lmin[0;m

b
i�m

b
1]e0i (S)

o
. (20)

Steps 2 and 3 ensure that the resulting system satis�es 8i 2 IB r f1g, ma
i �mb

i > ma
1 �mb

1.

Step 5: if ma
1 � mb

1 � 0 then 8i 2 IB r f1g, ma
i � mb

i > 0. Otherwise, if ma
1 � mb

1 < 0 then

8i 2 IB r f1g such that ma
i �mb

i � 0, replace e0i (S) by (20). Given step 4, this operation lowers

mb
i without a¤ecting m

a
i . Repeat this (sub)step again and again as long as 9i 2 IB r f1g such

that ma
i �mb

i � 0. The resulting system satis�es 8i 2 IB r f1g, ma
i �mb

i > 0 and therefore, given

step 4, assumption 2.2.iii.

Step 6: replace e01 (S) by Et
n
Lmin[0;m

a
1 ;m

b
1]e01 (S)

o
and e0i (S) by Et

�
Lmin[0;m

a
i ]e0i (S)

	
for i 2

f2; :::; Ng so as to satisfy assumptions 2.1.ii and 2.2.ii.

By construction, the system obtained at the end of this six-step process is of type (7) and satis�es

assumptions 2.1 and 2.2. �

If the initial system and the �nal system are equivalent to each other, then propositions 2.1 to

2.6 still hold when assumptions 2.1 and 2.2 are replaced by assumptions 2.1�and 2.2�, so that the

consideration of assumptions 2.1 and 2.2 in the main text, instead of assumptions 2.1�and 2.2�, is

without any loss in generality.

Otherwise, since the initial system implies the �nal system, any solution of the former is also a

solution of the latter. As they can select uniquely any solution of the �nal system (propositions 2.1

and 2.2), bubble-free rules can therefore also select uniquely any solution of the initial system, so

that propositions 2.1 and 2.2 still hold when assumptions 2.1 and 2.2 are replaced by assumptions

2.1�and 2.2�. So do proposition 2.4, as can be easily shown by adjusting the number of roots of

Z (X) whose modulus is higher than or equal to one in appendix F if the �nal system together with

a backward-looking policy feedback rule has more non-predetermined variables than the initial

system together with a backward-looking policy feedback rule, and proposition 2.5. However,

propositions 2.3 and 2.6 then no longer hold.
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C Proof of proposition 2.1

The substraction of e01(7) from Et

n
L�m

b
1(9)

o
leads to equation (

�!
1 ):

XN

i=2
e0iL

Pi
j=2m

a
j

h
A (L)Yt +B (L) zt +C (L) �t + L

�maiO (L)D (L) �t

i
+ L

PN
i=2m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0. (

�!
1 )

Similarly, 8k 2 f2; :::; Ng, equation (�!k ) can be derived from equation (
���!
k � 1) by substracting

e0k(7) from Et

n
L�m

a
k(
���!
k � 1)

o
:

XN

i=k+1
e0iL

Pi
j=k+1m

a
j

h
A (L)Yt +B (L) zt +C (L) �t + L

�maiO (L)D (L) �t

i
+ L

PN
i=k+1m

a
i [P (L)Yt +Q (L) zt +R (L)D (L) �t] = 0 (

�!
k )

and in particular

P (L)Yt +Q (L) zt +R (L)D (L) �t = 0. (
�!
N )

8k 2 f2; :::; Ng, the substraction of Lmak(�!k ) from (
���!
k � 1) leads to equation ( �k ):

e0k

h
Lm

a
k [A (L)Yt +B (L) zt +C (L) �t] +O (L)D (L) �t

i
= 0. (

 �
k )

Equations
�!
N and

 �
k for k 2 f2; :::; Ng together can be re-written as follows:

U (L)Yt +V (L) zt +W (L) �t = 0 (21)

with U (L)
(N�N)

=

26664
P (L)

e02
bA (L)
...

e0N
bA (L)

37775�Xnu

k=0
UkL

k, V (L)
(N�1)

=

26664
Q (L)

e02L
ma2B (L)
...

e0NL
maNB (L)

37775�Xnv

k=max[0;ma1�mb1+1]
VkL

k

due to assumption 2.2.iii andW (L)
(N�N)

=

26664
R (L)D (L)

e02
�
Lm

a
2C (L) +O (L)D (L)

�
...

e0N
�
Lm

a
NC (L) +O (L)D (L)

�
37775�Xnw

k=0
WkL

k,

where (nu; nv; nw) 2 N3 and all Uk, Vk, Wk have real numbers as elements. Since U (0) = 
 is

invertible, (21) can be used to express Yt as a function of Yt�1�k, zt�max[0;ma1�mb1+1]�k and �t�k

for k � 0 and t 2 Z. If ma
1 � mb

1, this expression can be used sequentially to replace Et fYt+jg for

j 2
�
0; :::;ma

1 �mb
1

	
in (9) and thus get zt as a function of Yt�1�k, zt�1�k and �t�k for k � 0.

Alternatively, if ma
1 < mb

1 then (9) directly expresses zt as a function of Yt�1�k, zt�1�k and �t�k

for k � 0. In both cases, the system made of this equation for zt and equation (21) for Yt is

therefore backward-looking and non-degenerate and hence makes Yt and zt predetermined.
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D Proof of proposition 2.2

Suppose that (7) and (10) hold for t 2 Z. Then there exists e01O (L) such that

Et

n
Lm

b
1e01 [A (L)Yt +B (L) zt]

o
+ Lm

b
1e01C (L) �t + e

0
1O (L)D (L) �t = 0

(result 1) and e0iO (L) for all i 2 f2; :::; Ng such that e0i (21) holds (result 2). Moreover, if ma
1 � mb

1

then max
�
0;ma

1 �mb
1 + 1

�
2 f0; 1g and hence there exists a linear combination of the �rst N lines

of (10) which can be written in the formP (L)Yt+Q (L) zt+R (L) "t = 0. Alternatively, ifma
1 > mb

1

then max
�
0;ma

1 �mb
1 + 1

�
� 2, the (N + 1)

th line of (10) can be used sequentially to remove zt�k

for k 2
�
1; :::;ma

1 �mb
1

	
from the �rst N lines of (10) and there exists a linear combination of the

resulting N equations which can be written in the form P (L)Yt+Q (L) zt+R (L) "t = 0. In both

cases, the invertibility of 
 is made possible by assumption 2.1.iii. Hence, whether ma
1 � mb

1 or

ma
1 > mb

1, there exist P (L), Q (L) and R (L) such that e
0
1 (21) holds (result 3). Results 1, 2 and 3

together imply that there exist O (L), P (L), Q (L) and R (L) such that (9) holds for t 2 Z. From

proposition 2.1 we then conclude that for any VARMA of type (10) consistent with (7) there exist

O (L), P (L), Q (L) and R (L) such that this VARMA is the unique solution of (7) and (9).

E Proof of proposition 2.3

Suppose ma
1 > mb

1 and consider a rule of type (8) which is backward-looking (i.e. such that

mf = 0). Given assumptions 2.1 and 2.2, the system made of (7) and this rule has at least one

non-predetermined variable and therefore must admit at least one eigenvalue of in�nite modulus

for the rule considered to be +1-bubble-free. Now this system�s non-zero eigenvalues are those of

the corresponding perfect-foresight deterministic system

	 (L)

�
Yt

zt

�
= 0 where 	 (L)

((N+1)�(N+1))
�
Xn 

k=0
	kL

k with 	0 =

26664
0bA (0) ...
0

F0 g0

37775 ,
n 2 N, all 	k have real numbers as elements and the zero elements in the last column of 	0

come from assumptions ma
1 > mb

1 and 2.2.iii. Assumption 2.1.iii and the normalization g0 = 1

(made without any loss in generality since g0 6= 0) make 	0 invertible, so that according to a

standard matricial result of time series analysis (cf. e.g. Hamilton, 1994, chap. 10, prop. 10.1)

this system�s eigenvalues are the roots of polynomial � (X) �
���Xn 	

�
X�1���� 2 R [X]. The

coe¢ cient j	0j =
��� bA (0)��� g0 = ��� bA (0)��� of X(N+1)n in � (X) is non-zero and independent of the

rule�s coe¢ cients. In order to make � (X) admit at least one root whose modulus tends towards

in�nity, the rule must therefore make the absolute value of at least one of the coe¢ cients of Xk

for k 2
�
0; :::; (N + 1)n � 1

	
tend towards in�nity, which implies that the absolute value of at

least one of the rule�s coe¢ cients must tend towards in�nity.
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F Proof of proposition 2.4

If ma
1 � mb

1 then bubble-free rules (9) are backward-looking and ensure the local determinacy of

any given stationary VARMA process of type (10). The remaining of the proof therefore deals

with the case where ma
1 > mb

1. We proceed in �ve steps: �rst, we show that any system of type (7)

together with a backward-looking rule of type (8) can be written in Blanchard and Kahn�s (1980)

form; second, we construct some particular F (L) and G (L); third, we show that mf = 0, so that

whatever H (L) the corresponding rule (8) is backward-looking; fourth, we show that Blanchard

and Kahn�s (1980) condition is satis�ed, so that whatever H (L) this rule ensures local equilibrium

determinacy; �fth, we show that a suitable choice of H (L) makes the locally unique equilibrium

selected coincide with the targeted stationary VARMA process.

Step 1: consider a system (S) of type (7) and a backward-looking rule (R) of type (8). Let us

rewrite (S) step by step and keep for simplicity the same notation (S) at each step. Re-order the

lines of (S) so that ma
1 � ::: � ma

N . Let K 2 f1; :::; Ng and fi1; :::; iKg 2 f1; :::; Ng
K be such that

ma
1 = ::: = ma

i1
> ma

i1+1
= ::: = ma

i2
> ::: > ma

iK�1+1
= ::: = ma

iK
= ma

N . Re-order the elements of

Yt and accordingly the columns of A (L) so that 8i 2 f1; :::; N � 1g, the (N � i)� (N � i) matrix

noted Mi obtained by removing the �rst i lines and the �rst i columns from bA (0) is invertible,
this re-ordering being made possible by the invertibility of bA (0). Replace e0i (S) by

e0i
bA (0)�1Et

266664
1 0 � � � 0

0 Lm
a
2�m

a
1

. . .
...

...
. . .

. . . 0
0 � � � 0 Lm

a
N�m

a
1

377775 (S)

for i 2 f1; :::; i1g. If K = 1 then replace sequentially Et
n
zt+mai1�k

o
for k 2

�
1; :::;ma

i1

	
(if they

appear) in (S) by their expressions in Et
n
Lk�m

a
i1 (R)

o
. The resulting system (S) is equivalent

to the original one and together with (R) can easily be written in Blanchard and Kahn�s (1980)

form with i1m
a
i1
=
XN

i=1
ma
i non-predetermined variables. Otherwise (i.e. if K � 2), let us

set k = 1. Replace Et
n
zt+mai1�k

o
(if it appears) in e0i (S) for i 2 f1; :::; i1g by its expression in

Et

n
Lk�m

a
i1 (R)

o
. Then, replace Et

n
e0iYt+mai1

�k

o
for i 2 fi1 + 1; :::; Ng (if they appear) in e0i (S)

for i 2 f1; :::; i1g by their expression in

M�1
i

266664
0 0 � � � 0 Lm

a
i1+1

�mai1+k 0 � � � 0

0
. . .

. . .
... 0

. . .
. . .

...
...

. . .
. . . 0

...
. . .

. . . 0

0 � � � 0 0 0 � � � 0 Lm
a
N�m

a
i1
+k

377775 (S) .

If ma
i1
> ma

i2
+ 1 then repeat these last two steps sequentially for k 2

�
2; :::;ma

i1
�ma

i2

	
. Proceed

in a similar way as previously to transform e0i (S) for i 2 fi1 + 1; :::; i2g, then (if K � 3) e0i (S)
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for i 2 fi2 + 1; :::; i3g and so on up to e0i (S) for i 2 fiK�1 + 1; :::; iKg. The �nal system (S) is

equivalent to the initial one and together with (R) can easily be written in Blanchard and Kahn�s

(1980) form with
XK

j=1
ijm

a
ij
=
XN

i=1
ma
i non-predetermined variables. We have thus shown that

any system of type (7) together with a backward-looking rule of type (8) could be written in a

Blanchard and Kahn�s (1980) form with a number m�
XN

i=1
ma
i of non-predetermined variables.

Note �nally that this number m of non-predetermined variables does not depend on the particular

backward-looking rule of type (8) considered.

Step 2: the generalized identity of Bezout implies that there exists (U1 (X) ; :::;UN+1 (X)) 2

R [X]N+1 such that XN+1

i=1
Ui (X)�i (X) = D (X) . (22)

Let �(X) 2 R [X] denote the polynomial, de�ned up to a non-zero multiplicative scalar, which

has the same roots (whose modulus is strictly lower than one) with the same multiplicity as

the eigenvalues of the system I � S (L) corresponding to the autoregressive part of the targeted

stationary VARMA process (10). Let Z (X) 2 R [X] be a given polynomial which: i) has exactly

m roots (taking into account their multiplicity) whose modulus is higher than or equal to one;

and ii) is such that �(X) is a divisor of Z (X)D (X). Let n 2 N be such that n � 2d�N+1
�

dD + max
i2f1;:::;N+1g

(dUi) � dZ , where for any H (X) 2 R [X], dH denotes the degree of H (X).

Let Q (X) 2 R [X] and R (X) 2 R [X] be respectively the quotient and the remainder of the

Euclidian division of XnZ (X) by �N+1 (X), i.e. the unique polynomials such that XnZ (X) =

�N+1 (X)Q (X) + R (X) with dR < d�N+1
. Multiplying the left-hand side and the right-hand

side of (22) by R (X), we obtain

R (X)
XN+1

i=1
Ui (X)�i (X) = R (X)D (X)

and thereforeXN

i=1
[R (X)Ui (X)]�i (X) + [R (X)UN+1 (X) +Q (X)D (X)]�N+1 (X) = XnZ (X)D (X) .

Let us note Fi (X) � R (X)Ui (X) for i 2 f1; :::; Ng and G (X) � R (X)UN+1 (X)+Q (X)D (X).

The choice of F (L) ei = (�1)N+1�i LdGFi
�
L�1

�
for i 2 f1; :::; Ng and G (L) = LdGG

�
L�1

�
is

admissible as it satis�es the requirements G (X) 2 R [X] and g0 6= 0.

Step 3: we have 8><>:
n � 2d�N+1

� dD + max
i2f1;:::;N+1g

(dUi)� dZ
n = d�N+1

+ dQ � dZ
d�N+1

> dR

=) dQ + dD > dR + max
i2f1;:::;N+1g

(dUi)

=) dG = dQ + dD > max
i2f1;:::;Ng

(dFi)
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so that the F (L) constructed at step 2 is such that 8i 2 f1; :::; Ng, F (X) ei 2 R [X], in other words

mf = 0, i.e. any rule (8) with the F (L) and G (L) constructed at step 2 is backward-looking.

Step 4: the non-zero eigenvalues of the system made of (7) and any rule (8) with the F (L) and

G (L) constructed at step 2 are those of the corresponding perfect-foresight deterministic system

	 (L)

�
Yt

zt

�
= 0 where 	 (L)

((N+1)�(N+1))
�
Xn 

k=0
	kL

k =

26664
Lm

a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

F (L) G (L)

37775 ,
n 2 N and all 	k have real numbers as elements. Given that ma

1 > mb
1, assumptions 2.1.iii, 2.2.iii

and g0 6= 0 make

	0 =

26664
0bA (0) ...
0

F (0) g0

37775
invertible, so that according to a standard matricial result of time series analysis (cf. e.g. Hamilton,

1994, chap. 10, prop. 10.1) this system�s eigenvalues are the roots of polynomial
���Xn 	

�
X�1���� 2

R [X], where j:j denotes the determinant operator. As a consequence, the system�s non-zero eigen-

values are the non-zero roots ofXN

i=1

h
(�1)N+1�iF

�
X�1� eii�i (X) + �G �X�1���N+1 (X)

and hence, by construction of F (L) and G (L), the non-zero roots of Z (X)D (X). Given assump-

tion 2.3 and by de�nition of Z (X), there are exactly m non-zero roots of Z (X)D (X) whose

moduli are higher than or equal to one. Given steps 1 and 3, this implies that Blanchard and

Kahn�s condition (1980) is satis�ed, that is to say that any rule (8) with the F (L) and G (L)

constructed at step 2 ensures local equilibrium determinacy.

Step 5: if the targeted stationary VARMA process (10) holds for t 2 Z, then: i) there exists a

unique � (L)
(1�N)

�
P+1
k=0�kL

k, where all �k have real numbers as elements, such that

F (L)Yt +G (L) zt +� (L) "t = 0 (23)

where F (L) and G (L) are the ones constructed at step 2; and ii) there exists a unique

� (L)
(N�N)

�

266664
Pma1�1
k=0 �1;kL

kPma2�1
k=0 �2;kL

k

...PmaN�1
k=0 �N;kL

k

377775 ,
where all �i;k have real numbers as elements, such that264 Lm

a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

375� Yt

zt

�
+

264 Lm
a
1e01C (L)
...

Lm
a
Ne0NC (L)

375 �t +� (L) "t = 0. (24)
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For any p 2 N� and z (X) 2 R [X], let us note dp [z (L)] the p�p matrix whose diagonal elements

are all equal to z (L) and whose non-diagonal elements are all equal to 0. Multiplying (23) by

D (L) �
YN

i=1
Di (L) and (24) by dN [D (L)] leads to

D (L)F (L)Yt +D (L)G (L) zt +D (L)� (L) "t = 0 and (25)

dN [D (L)]

264 Lm
a
1e01B (L)bA (L) ...

Lm
a
Ne0NB (L)

375� Yt

zt

�
+

264 Lm
a
1e01C (L)
...

Lm
a
Ne0NC (L)

375
26666664

YN

i=2
Di (L) 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0
YN�1

i=1
Di (L)

37777775 "t + dN [D (L)]� (L) "t = 0, (26)

since as a multiple of the N � N identity matrix, dN [D (L)] is such that dN [D (L)]K (L) =

K (L)dN [D (L)] for any N � N matrix K (L) whose elements are polynomials in L with real-

number-valued coe¢ cients. The system made of (25) and (26) is backward-looking (sincema
1 > mb

1)

and non-degenerate (since D (0) = jD (0)j 6= 0 and j	0j 6= 0). Cramer�s rule then implies that there

exist (n1; :::; nN+1) 2 NN+1 with ni � d�i for i 2 f1; :::; N + 1g and �1 (L)
((N+1)�N)

�
Pn�1

k=0�1;kL
k,

where n�1 2 N and all �1;k have real numbers as elements, such that this system can be rewritten

dN+1
�
D (L)LdZ+dDZ

�
L�1

�
D
�
L�1

�� � Yt

zt

�
=

�1 (L) "t + dN+1 [D (L)]

264 Ln1�1
�
L�1

�
� (L) "t

...
LnN+1�N+1

�
L�1

�
� (L) "t

375 (27)

given step 4. But Cramer�s rule also implies that there exists �2 (L)
((N+1)�N)

�
Pn�2

k=0�2;kL
k, where

n�2 2 N and all �2;k have real numbers as elements, such that the targeted stationary VARMA

process (10) can be rewritten

dN+1
�
Ld��

�
L�1

�� � Yt

zt

�
= �2 (L) "t,

which implies

dN+1
�
D (L)LdZ+dDZ

�
L�1

�
D
�
L�1

�� � Yt

zt

�
= dN+1

"
D (L)

LdZ+dDZ
�
L�1

�
D
�
L�1

�
Ld��(L�1)

#
�2 (L) "t

(28)

where
XdZ+dDZ(X�1)D(X�1)

Xd��(X�1)
2 R [X] by de�nition of Z (X). Given that �N+1 (X) 6= 0 due to

assumption 2.1.iii, the identi�cation of (27) with (28) shows that 9n� 2 N, 8k > n�, �k = 0.

The choice of H (L) = � (L)D (L) is therefore admissible. We have thus shown that for any
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given stationary VARMA process (10) consistent with (7) there exist F (L), G (L) and H (L), with

mf = 0, such that this stationary VARMA process is the locally unique solution of (7) and (8).

G Proof of proposition 2.5

As straightforward from appendix C, rules of type (9) based on the measured variables and shocks

still ensure the existence and uniqueness of the equilibrium. Besides, assumption 2.3 implies the

following extension of proposition 2.2: whatever the targeted stationary VARMA process of type

(10) consistent with (7), i.e. whatever the targeted VARMA process of type (10) satisfying (7) and

such that all the eigenvalues of the systems I � S (L) and T (L) are of modulus strictly lower

than one, there exist O (L), P (L), Q (L) and R (L) such that this VARMA process is the unique

solution of (7) and (9) and such that the system�
P (L) Q (L)
A (L) B (L)

�
has all its eigenvalues of modulus strictly lower than one, as can be easily shown along the lines

of appendix F. In turn, this extension of proposition 2.2 and appendix D straightforwardly imply

together that as the size of data measurement errors tends towards zero, the unique equilibrium

implemented by the rule of type (9) based on the measured variables and shocks converges towards

the stationary equilibrium implemented by the corresponding rule based on the true variables and

shocks29 .

H Proof of proposition 2.6

Let us �rst de�ne the metric d which we use to characterize convergence processes by 
X1 (L)
(N1�N2)

; X2 (L)
(N1�N2)

!
�
�Xnx

k=�mx
X1;kL

k;
Xnx

k=�mx
X2;kL

k

�
7! d (X1 (L) ;X2 (L)) = max

�mx�k�nx

�
max

1�i�N1

�
max

1�j�N2

��e01;i (X1;k �X2;k) e2;j
���� ,

where (mx; nx) 2 N2, (N1; N2) 2 N�2, all X1;k, X2;k have real numbers as elements and for

h 2 f0; 1g and l 2 f1; :::; Nhg eh;l is the Nh-element vector whose lth element is equal to one
29Note that assumption 2.3 is not only su¢ cient, but also necessary for this extension of proposition 2.2 to hold.

Similarly, this extension of proposition 2.2 is not only su¢ cient, but also necessary for the unique equilibrium
implemented by the rule of type (9) based on the measured variables and shocks to converge towards the given
stationary equilibrium implemented by the corresponding rule based on the true variables and shocks as the size
of data measurement errors tends towards zero. Indeed, given that the probability distributions of the exogenous
additive measurement errors are assumed to be continuous, the probability that all roots of D (X) are active
eigenvalues of the system made of (7) and the rule of type (9) based on the measured variables and shocks is equal
to one, where by �active eigenvalue�we mean an eigenvalue associated with a non-zero coe¢ cient in the analytical
expression of the system�s solution. If at least one of the roots of D (X) were of modulus higher than one, then
with probability one the system�s unique solution would be divergent and hence in�nitely distant from the targeted
stationary equilibrium. We therefore conlude that assumption 2.3 is not only su¢ cient, but also necessary for
proposition 2.5 to hold.
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and whose other elements are equal to zero. Suppose that the policy-maker wrongly believes the

structural equations to be

Et

neA (L)Yt + eB (L) zto+ eC (L) �t = 0
with eD (L) �t = "t, though without being mistaken on the values of mb

1 and m
a
i for 1 � i � N 30 ,

and accordingly follows the policy feedback rule ( eR) corresponding to (9) where A (L), B (L),
C (L) and D (L) are respectively replaced by eA (L), eB (L), eC (L) and eD (L). Noting

" � max
h
d
�eA (L) ;A (L)� ; d�eB (L) ;B (L)� ; d�eC (L) ;C (L)� ; d�eD (L) ;D (L)�i ,

we proceed in three steps: �rst, we show that the system made of (7) and ( eR) can be written in
Blanchard and Kahn�s (1980) form with probability one; second, we show that for " su¢ ciently

close to zero Blanchard and Kahn�s (1980) condition is satis�ed, so that there is one unique local

solution, and that as " �! 0 the moduli of the system�s unstable eigenvalues tend towards in�nity;

third, we show that as " �! 0 this unique local solution converges towards the unique solution of

(7) and (9).

Step 1: consider a given system (S) of type (7). Replace Et
n
zt+mb1

o
in e01 (S) by its expression

in Et
n
L�m

b
1( eR)o; if ma

1 < mb
1, in which case ( eR) is backward-looking, then replace sequentially

Et

n
zt+mb1�k

o
for k 2

�
1; :::;mb

1 �ma
1

	
(if they appear) in the resulting equation by their expres-

sions in Et
n
Lk�m

b
1( eR)o; note ( eE) the resulting equation. Consider

(eS) �
8>>><>>>:

( eE)
e02 (S)
...

e0N (S)

and beA (L) �
264 e01L

ma1

...
e0NL

maN

375 eA (L)
where eA (L) is de�ned by writing (eS) in the form Et

neA (L)Yt + eB (L) zto+ eC (L) �t = 031 . Given
that the probability distributions of the exogenous additive measurement errors are assumed to be

continuous, the probability that beA (0) is invertible is equal to one. In the remaining of the proof
we therefore assume that beA (0) is invertible. Rewrite (eS) in a similar way as in step 1 of appendix
F, with (eS), eA (L), beA (0) and ( eR) playing the roles of (S), A (L), bA (0) and (R) respectively. If
ma
1 � mb

1 then this rewriting enables us to put the system made of (eS) and ( eR) in Blanchard and
Kahn�s (1980) form since ( eR) is backward-looking and since ma

i > mb
i for i 2 IB r f1g due to

assumption 2.2.iii. Alternatively, if ma
1 > mb

1 then this rewriting also enables us to put the system

made of (eS) and ( eR) in Blanchard and Kahn�s (1980) form, even though ( eR) is forward-looking,
becausema

i �mb
i > ma

1�mb
1 for i 2 IBrf1g due to assumption 2.2.iii and because the only variable

30As should become clear by the end of the proof, the case where the policy-maker is also mistaken on the values
of mb

1 and m
a
i for 1 � i � N can be easily dealt with in the same way but at the expense of expositional clarity.

31 eA (L), eB (L) and eC (L) should not be confused with eA (L), eB (L) and eC (L).
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of type Et fzt+kg with k 2 N appearing in the system made of the rewritten system (eS) and ( eR) is
zt in ( eR). In both cases the number of non-predetermined variables is equal to m�XN

i=1
ma
i = 0.

Since the system made of (S) and ( eR) is equivalent to the system made of (eS) and ( eR), we have
thus shown that with probability one, the system made of (S) and ( eR) can be written in Blanchard
and Kahn�s (1980) form with m non-predetermined variables.

Step 2: for any system or equation (x), let (x) denote the perfect-foresight deterministic form of

(x). The same reasoning as the one conducted at the beginning of appendix C, this time starting

from ( eE) instead of (�!1 ) and using ( eR) instead of (R), leads to an equation (f�!N ), corresponding to
equation (

�!
N ) in appendix C, such that (

f�!
N ) is of the form

eP (L)Yt + eQ (L) zt = 0 with eP (L)
(1�N)

�
Xnep

k=�m
ePkLk and eQ (L)�Xneq

k=�m+1+max[ma1�mb1, 0]
eqkLk,

where
�
nep; neq� 2 N2, all ePk have real numbers as elements, all eqk are real numbers, eP�m = e01 beA (0)

and (eP (L) ; eQ (L)) �! (P (L) ; Q (L)) as " �! 0. The non-zero eigenvalues of the system made of

(S) and ( eR) are those of the system made of
�
S
�
and ( eR) which in turn are those of the system

made of
�
S
�
and (

f�!
N ). The latter system can be rewritten

e�1 (L) � Yt

zt

�
= 0 with e�1 (L) �

26666664
LmeP (L) Lm eQ (L)

e01L
max[ma1 ;m

b
1]A (L) e01L

max[ma1 ;m
b
1]B (L)

e02L
ma2A (L) e02L

ma2B (L)
...

...
e0NL

maNA (L) e0NL
maNB (L)

37777775�
Xne1

k=0
e�1;kLk

where ne1 2 N and all e�1;k have real numbers as elements. Let us de�ne

J1
(N�(N+1))

�

266664
1 0 0 � � � 0

0 0 1
. . .

...
...

. . .
. . .

. . . 0
0 � � � 0 0 1

377775 , J2
((N+1)�N)

�

26666664

1 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0
0 � � � 0 1
0 � � � � � � 0

37777775 ,

J3
((N+1)�1)

�

26664
0
...
0
1

37775 and J4
(N�(N+1))

�

266664
0 1 0 � � � 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 � � � 0 0 1

377775 .

If ma
1 � mb

1 then replace sequentially Yt�k for k 2
�
0; :::;ma

1 �mb
1

	
in the second line ofe�1 (L) � Yt zt

�0
= 0 by its expression in (J1e�1;0J2)�1J1e�1 (L)Lk � Yt zt

�0
= 0, given

that jJ1e�1;0J2j = jbeA (0) j 6= 0, and note e�2 (L) � Yt zt
�0
= 0 the resulting system, withe�2 (L)�Pne2

k=0
e�2;kLk where ne2 2 N and all e�2;k have real numbers as elements (e�2 (L) = e�1 (L)

if ma
1 < mb

1). Given that J1e�1;kJ3 = 0 for k 2 �0; :::;max �ma
1 �mb

1; 0
�	
due to assumption 2.2.iii,
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we have

e�2;0 =
266666664

e01
beA (0) 0
0 e01B�mb1

e02
beA (0) 0
...

...

e0N
beA (0) 0

377777775
.

Since beA (0) is invertible, e�2;0 is invertible as well so that according to a standard matricial result
of time series analysis (cf. e.g. Hamilton, 1994, chap. 10, prop. 10.1) the non-zero eigenvalues ofe�2 (L), which are those of e�1 (L), are the roots of polynomial eE (X) � ���Xne2 e�2 �X�1���� 2 R [X].
Now eE (X) = eE1 (X) + eE2 (X) where

eE1 (X) �
����� Xne2�mP�1

k=�m
ePkX�k Xne2�mP�1

k=�m eqkX�k

J4X
ne2 e�2 �X�1�

�����
and eE2 (X) �

����� Xne2�mPnep
k=0

ePkX�k Xne2�mPneq
k=0 eqkX�k

J4X
ne2 e�2 �X�1�

����� .
If m = 0 then eE1 (X) = 0. Otherwise the degree of eE1 (X) is equal to ne2 (N + 1) since the

coe¢ cient of Xne2 (N+1) in eE1 (X) is ���e�2;0��� 6= 0. For " su¢ ciently close to 0, the degree of eE2 (X)
is equal to ne2 (N + 1)�m since the coe¢ cient of Xne2 (N+1)�m in eE2 (X) is������������

eP0 eq0
0 e01B�mb1

e02
bA (0) 0
...

...
e0N
bA (0) 0

������������
�! (�1)N+1 e01B�mb1 j
j 6= 0 as " �! 0.

Let us note ex1, ..., exne2 (N+1) the roots of eE (X), ranked �rst by increasing modulus (i.e. jex1j �
::: �

���exne2 (N+1)���) and second by increasing complex argument (i.e. if 9i 2 �1; :::; ne2 (N + 1)� 1
	
,

jexij = jexi+1j, then ' (exi) � ' (exi+1), where ' : C �! [0; 2�[ denotes the complex argument

function). Similarly, let us note x1, ..., xn the non-zero eigenvalues of system�
P (L) Q (L)
A (L) B (L)

�
ranked �rst by increasing modulus and second by increasing complex argument, which are all

of modulus strictly lower than one due to assumption 2.3 as pointed out in appendix G. SinceeE1 (X) �! 0 as " �! 0, we have�ex1; :::; exne2 (N+1)�m� �! (0; :::; 0; x1; :::; xn) as " �! 0

and 8k 2 f0; :::;m� 1g ,
���exne2 (N+1)�k��� �! +1 as " �! 0,
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which implies: i) given step 1, that the system made of (S) and ( eR) satis�es Blanchard and Kahn�s
(1980) condition and therefore admits a unique convergent solution for " su¢ ciently close to zero;

ii) given assumption 2.4, that the probability that the private agents coordinate on this solution

tends towards one as " �! 0.

Step 3: let us note �
Yt

zt

�
= J (L) "t, with J (L)

((N+1)�N)
�
X+1

k=0
JkL

k, (29)

where all Jk have real numbers as elements, the unique solution of the system made of (S) and

(R). Let us similarly note�
Yt

zt

�
= eJ (L) "t, with eJ (L)

((N+1)�N)
�
X+1

k=0
eJkLk, (30)

where all eJk have real numbers as elements, this unique convergent solution of the system made of

(S) and ( eR) for " su¢ ciently close to zero. This last step of the proof shows that eJ (L) �! J (L)

as " �! 0.

Substep 3.1: let us write equations (
�!
k ) for k 2 f1; :::; Ng, obtained in appendix C, in the form

�!
U (L)Yt +

�!
V (L) zt +

�!
W (L) �t = 0

with
�!
U (L)
(N�N)

�
Xn

�!u

k=0

�!
UkL

k,
�!
V (L)
(N�1)

�
Xn

�!v

k=max[0;ma1�mb1+1]

�!
VkL

k and
�!
W (L)
(N�N)

�
Xn

�!w

k=0

�!
WkL

k,

where
�
n
�!u ; n

�!v ; n
�!w
�
2 N3 and all �!Uk,

�!
Vk,

�!
Wk have real numbers as elements. For all (i; j) 2

f1; :::; Ng2 such that i � j, let �i;j be de�ned by �i;j = 1 if 8k 2 fi; :::; jg, ma
k = 0 and �i;j = 0

otherwise. We then have

�!
U (0) =

26666664

�2;N 1 �2;2 � � � �2;N�1
... 0 1

. . .
...

...
...

. . .
. . . �N�1;N�1

�N;N 0 � � � 0 1
1 0 � � � � � � 0

37777775U (0) ,

so that since U (0) = 
 is invertible,
�!
U (0) is invertible as well. In this case, the same reasoning

as the one conducted at the end of appendix C, this time using
�!
U (L),

�!
V (L) and

�!
W (L) instead

of U (L), V (L) andW (L), leads to a system of the form

Et

�
�1 (L)

�
Yt

zt

�
+�2 (L) �t

�
= 0 (31)

with �1 (L)
(N+1)�(N+1)

�
Xn�1

k=0
�1;kL

k and �2 (L)
(N+1)�N

�
Xn�2

k=0
�2;kL

k,
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where
�
n�1 ; n�2

�
2 N2, all �1;k, �2;k have real numbers as elements, �1;0 is invertible and all

eigenvalues of �1 (L) are of modulus strictly lower than one. Since (31) is equivalent to the system

made of (S) and (R), (29) is the unique solution of (31).

Similarly, let us follow the same reasoning as the one conducted at the beginning of appendix

C, this time starting from ( eE) instead of (�!1 ) and using ( eR) instead of (R), to get equations
(
f�!
2 ) to (

f�!
N ) corresponding to equations (

�!
2 ) to (

�!
N ) in appendix C. Equations ( eE) and (f�!k ) for

k 2 f2; :::; Ng can then be re-written in the form

Et

�f�!
U (L)Yt +

f�!
V (L) zt +

f�!
W (L) �t

�
= 0

with
f�!
U (L)
(N�N)

�
Xn

f�!u
k=�mf�!u

f�!
UkL

k,
f�!
V (L)
(N�1)

�
Xn

f�!v
k=�mf�!v

f�!
VkL

k and
f�!
W (L)
(N�N)

�
Xn

f�!w
k=�mf�!w

f�!
WkL

k,

where (m
e�!u ;m e�!v ;m e�!w ; n e�!u ; n e�!v ; n e�!w ) 2 N6, all f�!Uk,

f�!
Vk,

f�!
Wk have real numbers as elements and

(
f�!
U (L) ;

f�!
V (L) ;

f�!
W (L)) �! (

�!
U (L) ;

�!
V (L) ;

�!
W (L)) as " �! 0. Given that

f�!
U (0) �! �!U (0) as

" �! 0,
f�!
U (0) is invertible for " su¢ ciently small, so that the same reasoning as the one conducted

at the end of appendix C leads to a system of the form

Et

�e�1 (L) � Yt

zt

�
+ e�2 (L) �t� = 0 (32)

with e�1 (L)
(N+1)�(N+1)

�
Xn

e�1
k=�me�1 e�1;kLk and e�2 (L)

(N+1)�N
�
Xn

e�2
k=�me�2 e�2;kLk,

where
�
m
e�1 ;me�2 ; ne�1 ; ne�2� 2 N4, all e�1;k, e�2;k have real numbers as elements and (e�1 (L) ; e�2 (L)) �!

(�1 (L) ;�2 (L)) as " �! 0. Since (32) is implied by the system made of (S) and ( eR), (30) is one
solution of (32).

Substep 3.2: let us consider a given sequence of
�eA (L) ; eB (L) ; eC (L) ; eD (L)� converging towards

(A (L) ;B (L) ;C (L) ;D (L)). This sequence corresponds to a unique sequence of " converging

towards zero and a unique sequence of eJ (L). If eJ0 did not converge towards J0 along this sequence
of eJ (L), then there would exist a strictly positive real number �0 and an extracted sequence of�eA (L) ; eB (L) ; eC (L) ; eD (L)� such that eJ0 � J0 � �0 for every element of the corresponding

extracted sequence of eJ (L), where k:k denotes a given norm on matrices. From (31) and (32) it

is easy to see, but tedious to show formally, that for any element of this extracted sequence of�eA (L) ; eB (L) ; eC (L) ; eD (L)� su¢ ciently close to (A (L) ;B (L) ;C (L) ;D (L)) there would then
exist a strictly increasing sequence extracted from the sequence

�eJk�
k2N

corresponding to this

element, which is impossible given that eJk �! 0 as k �! +1, so that we conclude that eJ0 �!
J0 along the sequence of eJ (L) considered. By the same reasoning we obtain that 8k 2 N, if�eJ0; :::; eJk� �! (J0; :::;Jk) along the sequence of eJ (L) considered then eJk+1 �! Jk+1 along
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this sequence. By recurrence on k 2 N we therefore conclude that 8k 2 N, eJk �! Jk along

this sequence. Given that there exists (p; q) 2 N2 such that every element of the sequence ofeJ (L) considered is the Wold form of a VARMA(p; q) process with p � p and q � q, as implied

by Blanchard and Kahn�s (1980) results in our context, this �simply continuous� convergence

(8k 2 N, eJk �! Jk) implies in turn the �absolutely continuous�convergence eJ (L) �! J (L) along

the sequence of eJ (L) considered.
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