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Abstract

The paper develops a model for forecasting inflation in France. As this model has to
be integrated in the Eurosystem projection exercises, the projections are conditional to
specific assumptions and must be consistent with the Macroeconomic projection exercise
of the Banque de France. The specification of the model is thus highly constrained. The
theoretical foundations of the model are based on the markup model for prices, but the
resulting empirical model also has elements relating to the purchasing power parity and
the Phillips curve. The model aggregates forecasts of the main HICP subcomponents.
We show that the model exhibits better performance than a standard AR(4) model.

Keywords : Inflation, Out-of-sample forecast, Economic modelling

JEL codes : C52, C53, E37

Résumé

Cet article présente un modéle de prévision d’inflation pour la France. Ce modèle
ayant vocation à être intégré au sein de l’exercice de prévisions macroéconomiques de
l’Eurosytème, il a été développé dans un cadre contraint. Ainsi, les prévisions dépendent
d’hypothèses spécifiques et doivent être en ligne avec l’exercice de prévisions macro-
économiques de la Banque de France. Par ailleurs, l’approche empirique a été priviligiée
à une stricte application des modèles théoriques. Le modèle s’inspire initialement du
modèle de mark-up de formation des prix, mais la maquette finale est également en lien
avec la théorie de parité du pouvoir d’achat et la courbe de Phillips. Ce modèle présente
de meilleures performances qu’un simple modèle autorégressif.

Mots clés : Inflation, Prévisions hors échantillon, Modélisation économique

Codes JEL: C52, C53, E37
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1 Introduction

Structural changes such as the euro changeover, new regulations, and econometric con-
siderations lead us to reestimate the Banque de France model for forecasting inflation in
France (model described in Jondeau, Le Bihan & Sédillot (1999)).

This article develops a model which fits three criteria. First, this model must be
used for the Eurosystem projection exercises, which takes place four times a year. This
constraints the specification of the model: the projections are conditional to common
assumptions shared by the National Central Banks of the Eurosystem and the European
Central Bank (ECB), and the forecast exercise must be consistent with the Macroeco-
nomic projections of the Banque de France. Second, we offer a conceptual framework in
order to estimate a semi-structural model. The aim is to understand better the behaviour
of inflation using standard economic theory. Third, our model has to provide good fore-
casting performances. Conciliating data adequacy and theory consistency was a challenge.

In the medium run (18 months), the overall price index (HICP) is divided into five
components: industrial goods, services, processed food, unprocessed food and energy.
The industrial goods, services and processed food HICP are modelled with a single equa-
tion error correction model (ECM). The theoretical foundations of these equations are
based on the markup model for prices, but the resulting empirical models also have ele-
ments relating to purchasing power parity and the Phillips curve. The energy HICP and
the unprocessed food HICP are modelled in a more disaggregated approach. In order to
improve the inclusion of specific information, a modelling approach based on disaggre-
gated time series models (52) is specified in the short run (3 months).

Section 2 develops the institutional framework in which our model is used and the
constraints it induces. The theoretical foundations of the structural model are exposed in
Section 3. Section 4 describes the econometric strategy. Section 5 analyzes the properties
of the data. The equations are described in section 6 and section 7 presents the forecasting
performance of the model. The specific short run approach is detailed in section 8. Section
9 concludes.
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OVERVIEW OF THE MODEL

The overall structure of the model is as follows:

1. In the short run, the overall HICP is disaggregated into 52 components

2. In the medium run, the overall HICP is disaggregated into six main components:
UNPFOOD, PFOODXT, IGXE, PSER, ENRGY and ADM HICP

With:
UNPFOODHICP= Unprocessed food HICP
PFOODXTHICP= Processed food excluding tobacco HICP
IGXEHICP= Industrial Good excluding energy HICP
PSERHICP= Private services HICP
ENRGYHICP= Energy HICP
ADMHICP= Administered prices which are communication, transport and tobacco prices

1. In the short run, the 52 subcomponents are mainly forecast with ARIMA and high
frequency information is included

2. In the long run, the non volatile HICP components are forecast as a function of cost
and fluctuation indicators.

The PFOOXT HICP (10% of overall HICP)
∆ logPt = f(FOODEURO,PPRODXE,U)

The IGXE HICP (31% of overall HICP)
∆ logPt = f(PPRODXE,U)

The PSER HICP (35% of overall HICP)
∆ logPt = f(ULC,U)

Where:
Pt=The relevant endogenous variable
PPRODXE=Production Prices excluding energy (whole economy)
FOODEURO=International food prices in Euro
U=Unemployment
ULC=Unit Labor Cost
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Figure 1: General Overview of the model
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2 The institutional framework

This section describes the institutional framework in which the projections are produced.
The Banque de France inflation projection exercise is integrated in first, the Eurosystem
projection exercise, and second, the Banque de France macroeconomic projection exercise.
This induces constraints on both the explanatory variables and the projection figures.

2.1 Setting the explanatory variables

The model we develop here is used four times a year within the Eurosystem inflation
projection exercises, which involves all the National Central Banks of the Eurosystem.
These projections, ”(...) play an important role within the economic analysis in the ECB’s
monetary policy strategy as a tool for aggregating and organising existing information
on current and future economic developments” (ECB 2001). In order to be integrated
in an overall euro area framework they must be consistent with other euro area country
projections. As a result, a set of common assumptions is agreed and shared by the Na-
tional Central Banks and the ECB. This set of assumptions concerns the international
environment covering Brent prices, international food prices, international raw material
prices and the exchange rate.
In parallel, an iterative process aims at making consistent the inflation forecast and the
Banque de France macroeconomic projections for France, which include the projection of
the National Account deflators, specially the consumption deflator. Hence, forecast do-
mestic assumptions come from the Baghli et al. (2004)’s macroeconomic model Mascotte
for the French economy and, at a given stage, the inflation projections are integrated in.

2.2 Deriving the projection figures

Because the projection figures must be provided to the ECB and aggregated with other
National Central Bank projections, the format is standardised. It determines the forecast
horizon, the level of aggregation and the data frequency. First, the forecast horizon is up
to 18 months. Second, the overall HICP must be divided into 5 main components: the
industrial good excluding energy, the service, the processed food, the unprocessed food
and the energy HICP. Finally, the projection must be monthly data, which has induced
some frequency adjustments we describe below.

This institutional framework highly constrains the specification of the model. It gives
the priority to predictive performance and data adequacy. It also requires a structural
model using macroeconomic indicators. In this context, we consider a mark-up model for
prices as a relevant theoretical structure.
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Figure 2: The institutional constraints of the forecasting model

3 The theoretical framework

Specifying, estimating and testing a model strictly and fully founded from a theoretical
view point is beyond the scope of this paper. Nevertheless, a theoretical background is
required in order to propose a sound specification, to give some hints as regards the choice
of the explanatory variables and to provide some suggestions about possible constraints
on the coefficients.
Given the constraints we have described above, the structure of the model we have de-
cided to refer to is based on the so called mark-up model, which has a long tradition
in empirical work starting from Eckstein and Fromm (1968). We first describe how the
prices of home produced consumer goods and services are formed. Second, because final
consumption also includes imported consumer goods and services, we discuss the rele-
vance of introducing import prices. Finally, we give some hints on how the mark-up
model can be augmented with additional variables.

3.1 A mark-up model for home produced good and service
prices

In an imperfect competition environment, a firm i determines its market share Yi/Y by
setting its price Pi relatively to the average price of its competitors price P on the basis of
the demand function it faces, supposed to exhibit a price elasticity ε (ε > 1) with respect
to the relative price Pi/P :

Pi = P ∗
(Y
Yi

) 1
ε

The profit maximizing condition implies that, in equilibrium, the marginal revenue
equals the marginal cost Cmi . The firm’s revenue being Ri = Pi ∗Yi, its marginal revenue
is:
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dRi

dYi
=
dPi
dYi
∗ Yi + Pi

= Pi(1−
1

ε
)

The equilibrium condition for the firm can hence be written:

Pi = (1 +
1

ε− 1
) ∗ Cmi

In the symmetric equilibrium, this leads in the aggregate to the fundamental equation:

P = (1 + µ) ∗ Cm (1)

The price level is thus defined by a mark-up µ over the marginal cost, with µ = 1
ε−1

In a Cobb-Douglas framework, where the aggregate production function could be
described by:

Y = AKβ(ΓN)1−β (2)

Γ denoting the labour productivity, it can be shown that the cost function has the form:

C(Y ) =
Y

A

( ρ
β

)β
( w

(1− β)Γ
)1−β (3)

w and ρ being respectively the labour and cost of capital per unit. In that case, the
log of equation (1) gives:

ln(P ) = ln(1 + µ) + β ln(ρ) + (1− β) ln(
w

Γ
) + a (4)

with a = −β ln β − (1− β) ln(1− β)− ln(A)

From a statistical view point, equation (4) can be seen as the relationship that has
to hold in the long run and that could be used as the error correction term in an error
correction framework.

3.2 The role of imported good and service prices

The previous paragraph relates to the formation of domestic prices. Final consump-
tion C is made of home produced (Y ) and imported (M) consumer goods and services,
respectively at price Pc, P and PM . This leads to the accounting relationship:

Pc = (1− α) ∗ P + α ∗ PM (5)

with α = M
C

, the share in volume of imported goods and services in total consumption.
Log-linearising (6) gives:

lnPc = (1− λ) lnP + λ ∗ lnPM + δ (6)
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with λ = PM∗M
PC∗C

, the share in value of imported goods and services in total consumption.

This feature is important to keep in mind since, if substantial, a price shock can lead
to a distortion in these shares and lead to an apparent instability of the specification
if λ was supposed to be fixed. More generally, for a given structure of consumption in
volumes, the relative impact on the aggregate of a price shock on one of these components
is not the same depending on the price level.
Finally, regarding consumption price indexes, most equations in empirical work are a
reduced form of (4) and (6):

lnPc = θ0 ∗ ln(1 + µ) + θ1 ∗ ln(ρ) + θ2 ∗ ln(
w

Γ
) + θ3 ∗ ln(PM) + θ (7)

with:
θ0 = (1− λ)

θ1 = (1− λ) ∗ β

θ2 = (1− λ) ∗ (1− β)

θ3 = λ

θ = δ + a ∗ (1− λ)

From these constraints, it can be seen that θ1 + θ2 + θ3 = 1, which represents a static
homogeneity condition.

The empirical work usually elaborates on the basis of this specification, adopting an
eclectic approach regarding the choice of the explanatory variables, the possible sources
(or the absence) of fluctuations during the business cycle in some key variables, like
the mark-up (Britton, Larsen, Small (2000)) or the labour productivity Γ, and also the
changes in regulations that could be at the root of some changes in competition, leading
to a structural change in the mark-up .

3.3 From the mark up model to the empirical price equations:
the choice of explanatory variables and indicators of fluctu-
ations

The explanatory variables in the various equations of the model we propose depend on
the sector. The unit labour cost (ULC, denoted by w/Γ in equation (4)) is the corner
stone of this type of equation. On the contrary, the cost of capital is usually difficult to
identify, especially for forecasting in the short to medium term. But other variables can
be of interest, especially in a sectoral framework since in some sectors, the price of inter-
mediate goods (such as agricultural producer prices (PAG) in the model) or import prices
appear to have an important role. Production Prices excluding energy (PPRODXE) can
stand both for ULC and hard raw material import prices excluding energy. Finally, when
stable, the mark-up cannot be identified, since a constant is also present in the equation.
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It is also common practice to introduce variables such as the capacity utilisation rate
(CUR) and/or the unemployment rate (U) in this type of equations. Several interpreta-
tions for the presence of these additional variables exist. First, some sectors can be highly
competitive, in which case the price dynamics adjusts as a function of the discrepancy
between supply and demand: the CUR can be a proxy for a measure of disequilibrium
between supply and demand. For the other sectors, the CUR can also be an indicator of
fluctuations in the mark-up. In those cases a positive link is expected between prices and
the CUR once we assume that the markup is procyclical. Regarding the unemployment
rate U, besides its behaviour over the business cycle, in which case the choice between
this variable and the CUR in the equation would only be an empirical matter, it could
also measure a source of costs of adjustment, due to rigidities in the labour market, not
fully reflected by the labour cost variable. In those cases a negative link is expected
between prices and U, in line with the Phillips curve.

Concerning imported goods, we consider the inclusion of import prices and the prices
of imported goods excluding energy. Ciccarelli and Mojon (2005) demonstrate that the
common factor of inflation in 22 of OECD coutries has strong predictive performance for
the French HICP.

As a conclusion, in an error equation framework, the long run relationship could be:

lnPc =
∑

θi ∗ ln(Pi) + θi+1 ∗ ln(
w

Γ
) + θ (8)

Pi denoting different variables depending on the sector and the empirical significance:
Unit Labor Costs (ULC), Producer Prices Excluding Energy (PPRODXE), Agricultural
Prices (PAG)... Concerning the short run relationship, the CUR or U could be indicators
of business cycle fluctuations.

4 The econometric strategy

As we have seen before, the institutional framework not only constrains the theoretical
framework but also the econometric strategy, concerning the level of aggregation for
example. Our econometric strategy both aims at improving the predictive performance
of the model and leads to an easy-to-handle projection tool. This section deals with the
main features of the econometric strategy: the level of aggregation, the specification of
the equations and the explanatory variables.

4.1 The level of aggregation

The debate about aggregation versus disaggregation in economic modeling is summa-
rized in Hendry and Hubrich (2007). There are three arguments for aggregating forecast
components rather than forecasting an aggregated index. The first one is that each dis-
aggregated variable has its own determinants and dynamic properties. The second one
is that forecast errors could cancel out. Finally, it allows including detailed information
available in the short run. On the opposite, forecasting an aggregated index may improve
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the estimation of diffusion effects. Moreover, since the model for the disaggregate vari-
ables will in practice not be perfectly specified, the aggregate model would not reduce
the forecast performance. Then, it is more likely to fit theory. Finally, from a practical
point of view it is easier when producing forecasts to handle a model with few equations
and to justify any judgmental corrections (residuals etc).

The comparison of a direct versus an indirect approach to forecast HICP in the
medium-run has been explored in the literature: results depend on the type of model used
and on the forecasting horizon (Hendry and Hubrich, 2007). Duarte and Rua (2007) find
an inverse relationship between the forecast horizon and the amount of information un-
derlying the forecast, when minimizing the Root Mean Square Forecast Error. Bruneau
et al. (2006) show that for France it is better to use a model on the subcomponents of
the overall index, i.e. the HICP excluding energy and unprocessed food, the unprocessed
food index and the energy index, and to recompose the overall index, rather than forecast
it directly. Concerning inflation excluding unprocessed food and energy prices, Hubrich
(2003) demonstrates that it improves forecast accuracy to model the main components
separately and then to aggregate them. Hendry and Hubrich (2007) show that including
disaggregates helps forecasting the aggregate if the disaggregates follow different stochas-
tic structures and are interdependent.

Our model is consistent with these results as we use a disaggregated model in the short
run, which is described in Section 8, whereas our medium run model is more aggregated.
It is also in line with the Eurosystem projection exercise requirements on the format of
the projection figures. Thus, our model aggregates the forecast of the main components
of the HICP: the processed and unprocessed food HICP, the manufactured goods HICP,
the services HICP and the energy HICP. Because they are subject to particular dynamics,
some components such as tobacco, combined transports and communications are modeled
separately. Besides, the most volatile HICP components, energy and unprocessed food
HICP, are disaggregated and their subcomponents are forecast separately. As a result,
the components that we project with a structural model are exactly the private services
HICP (PSER HICP), the manufactured goods HICP (IGXE HICP) and the processed
food excluding tobacco HICP (PFOODXT HICP). They represent more than 70% of the
overall HICP.
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Table 1: Components of the overall HICP modeled in the medium run

Name Weight
(2009)

Model

Underlying inflation

Processed food excluding tobacco 10% Error Correction Model
Tobacco 2% Hikes according to announcement

Industrial goods excluding energy 31% Error Correction Model

Private services 35% Error correction model
Transports and communication 6% ARMA with fixed seasonal effects

Volatile components

Unprocessed food 8% ARMA with fixed seasonal effects
Energy 8% Error Correction equations and hikes accord-

ing to announcements (gaz and electricity)

4.2 The specification of the model

Except for unprocessed food prices, energy prices, and some components subject to par-
ticular dynamics (tobacco, combined transports and communications) which represents
only 22% of the overall HICP, the specification refers to the theoretical benchmark we
have developed in section 1. Thus, on the basis of equation (8) which will act as an error
correction term, and referring implicitly to adjustment costs and the role of expectations
as a source of dynamics in economic variable, we will use a general specification of the
form:

φ(L)∆lnPc = −γ[ln(PC−1)− δ′zt−1] + θ(L)∆zt + ηt (9)

zt represents k explanatory variables that could be envisaged from the theoretical back-
ground presented above, φ(L) a scalar polynomial and θ(L) a vector of scalar polynomials.

Three general approaches are used for estimating dynamic equations such as (9) :
single-equation regressions, in the two step procedure due to Engle and Granger, (1987),
vector autoregressions, as formulated by Johansen (1988, 1995) and single-equation condi-
tional error correction models, initially proposed by Phillips (1954) and further developed
by Sargan (1964) and Ericsson and Mackinnon (2002). In our model we choose to use
the method considered by Ericsson and Mackinnon (2002). Indeed, the other approaches
are less appropriate. First, given the conditional nature of the forecast that has to be
delivered, the multivariate framework formulated by Johansen is beyond the scope of
the kind of model envisaged here. Second, in the conditional framework used here, the
two step procedure proposed by Engle-Granger (1987) could have been envisaged, but
this method is known to suffer from estimation bias with short samples and one way to
reduce this bias is to consider the short term dynamics together with the long run rela-
tionship. Consequently, we will use the method considered by Ericsson and Mackinnon
(2002) which amounts to develop the ECM term and estimate by ordinary least squares
the equation:

φ(L)∆lnPc = −γ ln(PC−1) + β′zt−1 + θ(L)∆zt + ηt (10)
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where β′ = γ ∗ δ′.

4.3 The explanatory variables

In the structural model, in line with the conceptual framework described above, we
consider three kinds of explanatory variables: cost indicators, tension indicators and
import price indicators. These indicators are listed and described in Table 2. Concerning
domestic assumptions they are taken from the National accounts when realised and the
Mascotte model for forecast figures.

Table 2: The explanatory variables

Label Name Source Frequency Range

Cost variables

PPRODXE Producer Prices excluding En-
ergy

Mascotte Quarterly 1984q1
2007q2

ULC Smoothed (with a trend pro-
ductivity variable) Unit Labour
Cost

Mascotte Quarterly 1984q1
2007q2

CUR Capacity Utilization Rate Mascotte Quarterly 1984q1
2007q2

U Unemployment Rate Mascotte Quarterly 1984q1
2007q2

PAG Agricultural Prices National Ac-
counts

Quarterly 1990q1
2007q2

FOODEURO International food prices in euro ECB Monthly 1997m1
2007m6

WHEATEURO International wheat prices in
euro

ECB Monthly 1997m1
2007m6

Fluctuation variables

CUR Capacity Utilization Rate Mascotte Quarterly 1984q1
2007q2

U Unemployment Rate Mascotte Quarterly 1984q1
2007q2

V AT Standard Value Added Tax
Rate

European Com-
mission

Quarterly 1984q1
2007q2

Import Prices variables

IMPP Import Prices Mascotte Quarterly 1984q1
2007q2

GXEIMPP Good excluding energy import
prices

Mascotte Quarterly 1984q1
2007q2

Because our HICP forecasts are integrated in the consumption deflator equation of the
macroeconomic model Mascotte, domestic assumptions are not fully exogenous. Concern-
ing international prices, we take their strong exogeneity as given, as domestic inflation
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should not impact international prices.

5 The data

This section describes the specificities of both the HICP data and the exogenous ones.
First, HICP data have been built from the Eurostat HICP series and backdated to 1984.
Second, since we favour specifications which make use of quarterly changes from one
period to the next, rather than year-on-year changes, we describe how the HICP data
are seasonally adjusted. Third, as most of the exogenous variables are quarterly data,
the HICP components are also converted from monthly to quarterly data. Nevertheless,
since the forecast series have to be presented in terms of a monthly profile, the quarterly
results will need to be interpolated. This section briefly describes the conversion from
quarterly to monthly data and the reasons for this frequency adjustment choice. Finally,
it presents unit-root tests for all the variables of interest and demonstrates that they are
integrated of order one, which induces to model the variation in prices.

5.1 Data origination

The industrial good excluding energy (IGXE), the private service (PSER) and the pro-
cessed food excluding tobacco (PFOODXT) HICP series are provided by Eurostat. How-
ever, these series have only been computed since 1990 and even 1997 for the PFOODXT
HICP. As a result we backdate them to 1984. For this purpose, we use the Laspeyres-
chain INSEE National Price Indexes that exist on this sample.
We proceed in fourth steps. First, we compute basic ”non chain” price indexes for each
single included in the sectorial indexes PSER, IGXE or PFOODXT HICP using the
Laspeyres-chain INSEE national price series. Second, for each year we aggregate the
weight of these subindexes to obtain the total weight of each sector PSER, IGXE and
PFOODXT HICP. Third, the weighted sum of the ”non chain” sub-indexes gives the
”non chain” sectorial indexes. Finally, we chain these ”non chain” sectorial indexes and
reevaluate them with base 100 in 1990.

5.2 Seasonal adjustment

Defining the seasonal pattern of the series is necessary to model the variation of the price
index from one period to the next. Indeed, contrary to the explanatory variables, price
indexes are not seasonally adjusted. Seasonal adjustment of the series is preferred to the
inclusion of seasonal dummy variables which allows for less flexible adjustments as sea-
sonal patterns have changed over the period. Concerning seasonal adjustment, we have
chose to focus on Tramoseats seasonal adjustment method.

The series we have seasonally are the IGXE, PSER and PFOODXT HICP. Table 3
reports the sample seasonally adjusted and the outliers for each series.

Concerning unprocessed food prices, they are seasonally adjusted through fixed sea-
sonal effects.
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Table 3: Seasonal adjustment of price series

Price series Sample Outliers

IGXE HICP 1984-2007q2

PSER HICP 1984-2007q2

• Change in VAT in August 1995 and in April
2000 (level shifts)

PFOODXT HICP 1990-2007q2

• January 1997: transitional changes and level
shifts due to the impact of the Galland and
Raffarin laws,

• May 2002: Level shift due to the increase in
international food prices,

• September 2004: Level shift due to the impact
of the Sarkozy agreements,

• January and February 2007: Level shift and
outliers because of the impact of the Chatel
Law and of the increase in international food
prices

5.3 Temporal aggregation-disaggregation

As most of the explanatory variables are quarterly series, we face the problem of forecast-
ing a monthly indicator with quarterly variables. We have two possibilities: either we
convert our monthly price series into quarterly series and we model quarter-on-quarter
changes in prices, or we interpolate the explanatory variables into monthly series and
model month-on-month changes in prices. Because the second method would imply in-
troducing a noise and not a genuine information on the explanatory variables, we decide
to model quarter-on-quarter changes in prices. A third possibility could also be con-
templated in the perspective of modeling month-on-month change in prices. Indeed, the
recent literature has focused on state-space models estimated with extended Kalman Fil-
ter. However, as our model must be easy to handle, this kind of models does not seem
applicable.

In order to convert monthly price series into quarterly price series, two methods are
considered: the quarterly value is either one of the values of the quarter or the quarterly
average. Chauvin and Devulder (2007) show that taking the last value of the quarter
possibly leads to a systematic bias. This may be due to the fact that averaging observa-
tions over the quarters gives more robustness to the results, as the impact of exceptional
evolution in one month is divided by 3 and may even be compensated for by the evolution
observed in the months that are not the last one of a quarter. As a result, the quarterly
value is the quarterly average.
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Once the quarterly values of the HICP components are projected, they have to be
converted into monthly data. Different techniques of temporal disaggregation have been
developed in the literature. We can distinguish two kinds of procedures: procedures with-
out indicators and procedures with indicators. Procedures using indicators estimate the
high frequency series on the basis of high frequency information on logically or economi-
cally related variables (Di Fonzo, 2003). The most standard approaches of this procedure
have been developed in Chow-Lin (1971), Fernandez (1981), Litterman (1983) and more
recently Di Fonzo (2003). The problem is that we are in a forecasting context, which
invalidates the relevance of such procedures, as we have not the forecast of the indica-
tors. As a result, we are only interested in procedures without indicators. Among these
are the time series procedures using an ARIMA model (Al-Osh, 1989; Wei and Stram,
1990). As Di Fonzo (2003) explains, these procedures require high computational re-
sources and an active role of the user, which is not relevant given that our model must be
an easy-to-handle forecasting tool. As a result, we only consider smoothing procedures.
We distinguish two of them: the ”quadratic match average method” and the Boot et
al. (1967)’s one. The ”quadratic match average method” fits a local quadratic poly-
nomial for each observation of the quarterly series, then uses this polynomial to fill in
all observations of the monthly series so that the average of the monthly data matches
the quarterly data. The Boot et al. (1967)’s one minimizes the sum of squares of the
differences between the successive high frequency values subject to the constraint that
during each period the increase should equal the sum of the sub period-increases. For
convenience, we use the first method, the ”quadratic match average one”. However, the
Boot et al. (1967)’s one may certainly improve the performance of our model, and should
be considered in the future.

Then, the seasonal component is added to convert the series into a seasonal one.

5.4 Stationarity

Before modeling the components of the HICP, it is useful to determine the orders of
integration for the variables we consider. The stationarity of the quarterly seasonally ad-
justed series (in logarithm) has been tested over the estimation period (1984-2008) using
the Augmented Dickey-Fuller algorithm (ADF) in three steps (Dickey and Fuller, 1979)
and the Ng-Perron test (Ng and Perron, 2001). Table 4 reports the results.

Both the ADF and the Ng Perron tests conclude that except for ULC, IGXE and
PSER HICP the series are integrated of order one. Consider ULC as the Ng Perron test
outperforms the ADF one, we can conclude that the series is integrated of order one. The
fact that IGXE and PSER HICP may be thought as being integrated of order 2 may be
as a result of changes in INSEE statistical methodology (Section 6) or breaks related to
the integration process into the Eurosystem. However, the stationarity of inflation in the
recent past and in our forecasts is not questionable. Hence, and in order to be able to
build a consistent and interpretable model, we have considered that all series used in the
model are integrated to order one.
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Table 4: Stationarity tests

Variables Augmented
Dickey-Fuller

Ng-Perron (with
constant)

Dependant variables

Industrial Good excluding energy HICP (s.a.) I(1)***, 1 lag I(2)***
Private Service HICP (s.a.) I(2)*** I(1)*, 2 lags
Processed Food excluding tobacco HICP (s.a.) I(1)***, c, 1 lag I(1)***

Explanatory variables

ULC I(2)*** I(1)***
PPRODXE I(1)***, 1 lag I(1)**, 1 lag
VAT standard rate I(1)*** I(1)***
CUR I(1)*** I(1)***
U I(1)***, 1 lag I(1)*, 1 lag
PAG I(1)*** I(1)***
Food prices in euro I(1)*** I(1)***
Wheat prices in euro I(1)*** I(1)***
Import prices I(1)*** I(1)***
Import prices of goods excluding energy I(1)*** I(1)***
Import prices of row material I(1)*** I(1)***

c stands for constant, the default number of lag is zero, *,**,*** are respectively the 10%, 5% and 1%
thresholds

6 The model

While specifying the equations, we follow the econometric strategy described above. For
each sectorial HICP, we test to which extent the ”best” theory-fitted equation has good
predictive performances. The fit of the equation is assessed by dynamic simulations, the
R-square, the t-statistics and the absence of autocorrelation to order 1 in the residuals
(Durbin-Watson statistics being close to 2 (DW), and a serial Breusch Godfrey corre-
lation LM-test). P-values of the error correction term herein were obtained using the
responses surfaces in Ericsson and Mackinnon (1999) as implemented in the program
ECMtest.xls (v1). In addition, we have also tested for the heteroscedaticity of residu-
als with the autoregressive conditional heteroscedasticity (ARCH, Engle (1982)) model.
When the ”best” model is not satisfying, we consider other related explanatory variables.
We demonstrate that the equation we have chosen is the best compromise between theory
adequacy and predictive performance.

Beyond the theoretical structure, we have also considered the following issues. First,
because of persistence effects and price rigidity, we have systematically tested for different
lags in the long term relationship. When it improves the fit in sample of the equation
and when it is coherent with diffusion effects from producer prices to consumer prices
we have chosen up to three lags, which allow us to work as long as possible with actual
observations. Second, we have tried to build equation including autoregressive terms. It
improves the theoretical meanings of the equation and the possible expert evaluation.
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6.1 The industrial good excluding energy HICP model

6.1.1 Data characteristics

One can distinguish between three kinds of exogenous shocks that have impacted the
IGXE HICP: changes in the composition of the index, the euro cash change over and
changes in the VAT. On the one hand, a change in the composition of the index in 1991
has induced a temporary level shift in the IGXE HICP year-on-year inflation. In 2005,
the weight of computer goods in the overall HICP is increased by 200%: because the
inflation for this HICP component is lower, this change has induced a permanent level
shift in the IGXE HICP inflation rate.
On the other hand, from 2001 to 2002, the euro cash changeover has had a temporary
impact on the IGXE HICP inflation, affecting in particular the timing of the price changes.
Attal-Toubert et al. (2002) demonstrate that the euro cash changeover has increased price
changes for IGXE with a positive effect on prices in January 2001 and January 2002 and
a negative impact in April 2002 through durable goods.
These changes are included in our equations through dummy variables (when it is not
specified, the value of the dummy variables is zero):

Table 5: Dummy variables used in the model

Name Value

Dum1991 =1 from 1991 1st quarter to 1991 4th quarter
Dumeuro =1 in 2001 1st quarter,=1 in 2002 1st quarter and -1 in 2002

2nd quarter
Dum05 =1 from 2005 1st quarter to the end of the horizon

Finally, changes in the value added tax rate (V AT ) have also impacted industrial
goods prices. As a result a VAT series has been designed with the following values:

• From 1987 to July 1995: V AT= 18.6%

• From August 1995 to March 2000: V AT=20.6%

• From April 2000 on V AT = 19.6%

6.1.2 Specifying the equation

The equation has been built in line with the econometric strategy described above: the
model is an error correction one with a constant, estimated with the single equation
method, in one step. As we have described above, we have first tested what we con-
sider to be the best theory-fitted equation (Model 1) then we have substituted some
explanatory variables with related ones, or even considered their exclusion to improve
the predictive performance of the model (Model 2 and 3). We first assumed that the best
theory fitted equation for the IGXE HICP would include, in the long-term relationship,
labor costs and hard raw material prices as cost indicators and good excluding energy
import prices and, in the short-term relationship, both the capacity utilisation rate and
the VAT rate as fluctuation indicators, added to the dummy variables described above.
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Table 6 describes why this equation is dismissed and how the predictive performances
are improved in model 2 and 3. We observe that changes in import prices are empirically
correlated with changes in home produced prices, which can be justified by the purchas-
ing power theory.

Table 6: IGXE HICP models

Explanatory variables Model 1 Model 2 Model 3

Long term relationship - Dependant variable

IGXE HICP, log, 3 lags -0.061∗∗∗[-5.7] -0.054∗∗∗ [-12.6] -0.039∗∗∗ [-12]

Long term relationship - Cost variables

Unit labor cost, log, 3 lags 0.027∗ [2.7] - -
Raw material import prices, log, 3 lags -0.000 [-0.2] - -
Production prices excluding energy, log,
3 lags

- 0.047∗∗∗ [7.46] 0.020∗∗∗ [3.07]

Good ex. energy import prices, log, 3 lags 0.026∗ [2.9] -0.007∗ [-1.87] -

Fluctuation variables - Short term relationship

Change in capacity utilisation rate, log,
3 lags

-0.036∗∗ [-1.99] -0.021 [-1.36] -

Unemployement, 3 lags - - -0.001∗∗∗ [-5.01]

Change in value added tax rate, 1 lag 0.358∗∗∗ [5.0] 0.32∗∗∗ [5.1] 0.363∗∗∗ [5.9]

Dummy variables

Dum05 -0.001∗ [-1.97] -0.00 [-1.36] -
Dum1991 - - 0.004∗∗∗ [3.9]

Dumeuro + dum1991 0.003∗∗∗ [4.6] 0.003∗∗∗ [5.4] -

Statistics

Sample 1987q1-2008q4 1987q1-2008q4 1987q1-2008q4
R2 0.79 0.82 0.83
Durbin Watson 1.07 1.26 1.7
Breusch Godfrey correlation LM-test, 4
lags

10[p-value=0] 5.3[p-value=0] 1.2[p-value=0.26]

ARCH, 4 lags 1.4[p-value=0.24] 0.5[p-value=0.99] 2.2[p-value=0.072]

White test 0.3[p-value=0.97] 0.4[p-value=0.96] 0.6[p-value =0.76]

Tstats are given between squared brackets. The significance threshold are ∗∗∗=1%, ∗∗=5%,∗=10%.

P-values of the error correction term herein were obtained using the responses surfaces in Ericsson and

Mackinnon (1999) as implemented in the program ECMtest.xls (v1)

The tests confirm the good performance of Model 3. The number of lags (3) of the
regressors minimizes uncertainty as we can work with realized series up to a three quarter
horizon. We can distinguish three main differences from Model 1. First, we substitute
unit labor cost and raw materials import prices with production prices excluding energy,
which improves the robustness of the long term relationship. Second, as the sign of the
coefficient of good excluding energy import prices dismisses it as a significant variable
(Model 2) we exclude it. In fact, based on the purchasing power parity, we consider that
changes in home produced prices are correlated with changes in foreign prices. Third, also
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based on the sign of the coefficient, unemployment is considered as a better fluctuation
indicator than the utilisation capacity rate.

Table 7: The IGXE HICP equation

∆ log(Pt) = −0.039∗∗∗[−12] ∗ log(Pt−3) + 0.02∗∗∗[3.0] ∗ log(PPRODXEt−3)

−0.001∗∗∗[−5.0] ∗ (Ut−3) + 0.36∗∗∗[5.9] ∗∆(V AT ) + 0.004∗∗∗[3.9] ∗Dum91 + 0.18∗∗∗[12.9]

Tstats are given between squared brackets. The significance threshold are ∗∗∗=1%, ∗∗=5%,∗=10%.

6.1.3 Explaining IGXE inflation

Figure 3: IGXE HICP year on year growth rate (in %)

Figure 3 displays the dynamic simulations of the model over the 1991q1-2008q4 pe-
riod: the IGXE HICP is successively seasonally adjusted, converted into a quarterly
series, forecast with the equation described above, the forecast series is converted into
a monthly one and finally seasonal components are included. This illustrates the good
performance of the model. In Figure 4 appear the contributions of each explanatory vari-
able to the y-o-y inflation of the industrial goods HICP. One can notice the increasing
contribution of production prices from the year 2005 on, associated with the acceleration
of production prices during the oil price shock.
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Figure 4: Contributions of the explanatory variables to IGXE HICP year on year growth
rate (in pp)

6.2 The private services HICP

6.2.1 Description of the data

The modeled private services HICP (PSER HICP) includes housing and water supply.
Communication as well as transports are modeled separately, because, except for trans-
port by air, they are considered as administered prices. Indeed, these tariffs are decided
in France at a very centralised level and mostly change by seasonal steps. Concerning
the price of transport by air, they are modeled with an ECM including Brent prices in
euro as explanatory variable.

One can distinguish two structural changes that have impacted the PSER HICP
profile. The first one is in 1993 and is due to a change in the weight of the housing
component in the services HICP. It was revised downwards by nearly 10%. Because the
inflation in housing was higher than the inflation of overall private services, this downward
revision had a negative impact on the services HICP inflation. However, from 1994 on
housing inflation is closed to PSER inflation, the downward effect disappears.

The second one, in the 1st quarter of 2002, is due to the impact of the euro cash
changeover: as it is described in Attal-Toubert and al. (2002) the price of few services
such as hotels and restaurants, and personal care increased considerably. In order to take
into account these structural changes in our model we have included the following dummy
variables:

Table 8: Dummy variables used in the PSER HICP model

Name Value

Dum93 =1 in 1993 1st quarter and 1994 2nd quarter, =2 from 1993
2nd quarter to 1994 1st quarter

Dum02q1 =1 in the 1st quarter of 2002
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6.2.2 Specifying the equation

For the private service HICP, our best theory-fitted equation (Model 1) includes unit
labor cost as a cost indicator, and both the unemployment rate and the value added rate
as tension indicators. Table 9 describes the predictive performances of the model.

Table 9: PSER HICP model

Explanatory variables Model 1

Long term relationship - Dependant variable

PSER HICP, log, 3 lags -0.078∗∗∗ [-14.3]

Long term relationship - Cost variables

Unit labor cost, log, 3 lags 0.1∗∗∗ [12.3]

Fluctuation variables - Short term relationship

Unemployement, 3 lags -0.0008∗∗∗ [6.5]

Change in value added tax rate, 1 lag 0.18∗∗∗ [3.4]

Dummy variables

Dum93 -0.0007∗∗∗ [-3.1]

Dum02q1 0.004∗∗∗ [4.6]

Statistics

Sample 1990q1-2008q4
R2 0.9
Durbin Watson 1.7
Breusch Godfrey correlation LM-test, 4 lags 0.9[p-value =0.37]

ARCH, 4 lags 0.5[p-value =0.7]

White test 0.4[p-value =0.9]

Tstats are given between squared brackets. The significance threshold are ∗∗∗=1%, ∗∗=5%,∗=10%.

P-values of the error correction term herein were obtained using the responses surfaces in Ericsson and

Mackinnon (1999) as implemented in the program ECMtest.xls (v1)

The tests confirm the good performance of the model we consider in line with theory.
As for IGXE equation, the number of lags allows forecasting up to three quarters using
actual data from the National Accounts.

Table 10: The PSER HICP Equation

∆ log(Pt) = −0.078∗∗∗[−14.3] ∗ log(Pt−3) + 0.1∗∗∗[12.3] ∗ log(ULCt−3)− 0.0008∗∗∗[6.5] ∗ Ut−3

+0.18∗∗∗[3.4] ∗∆(V AT )− 0.0007∗∗∗[3.1] ∗Dum93 + 0.004∗∗∗[4.6] ∗Dum02Q1 + 0.36[12.3] + 0.4∗∗∗[14.8]

6.2.3 Dynamic simulation and contribution

The dynamic simulations of the model over the 1990q1 2008q4 period on Figure 5 il-
lustrates its good performance. In Figure 6 appear the contributions of the different

22



Figure 5: Service HICP year on year growth rate (in %)

variables to the y-o-y inflation of the PSER HICP. It demonstrates first than ULC con-
tributes substantially to the profile of PSER inflation. Second, the positive contribution
of U from the third quarter of 2007 is offset by the contribution of the residuals. This
would be due to the increased flexibilisation of the labor market. With more temporary
jobs, a decrease in unemployment would induce fewer tensions on the labor market.
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Figure 6: Contributions of the explanatory variables to service HICP year on year growth
rate (in pp)

6.3 The processed food excluding tobacco HICP

Our model for processed food excluding tobacco prices (PFOODXT) takes into account
changes in profit margins behaviour due to changes in regulation and the impact of the
Common Agricultural Policy (CAP). Indeed, the specificities of the French retail sector
and the changes in its regulation as well as the CAP intervention prices have significantly
impacted on consumer prices.

6.3.1 Description of the data

A. Impact of the specificities of the retail sector on consumer prices

The profile of the PFOODXT HICP is highly determined by the retail sector legisla-
tion, through the behaviour of profit margins. Askenazy, Weidenfeld (2007) divide the
evolution of the retail sector legislation into three periods (Figure 6):

• From 1973 to July 1996, the retail sector was regulated by the Royer law: processed
food HICP inflation was lower than in the 15 country euro area.

• From July 1996 to September 2004, two new laws determined the profile of the
processed food HICP: the Raffarin law and the Galland law. The PFOODXT
HICP inflation was higher than in the 15 country euro area.

• From September 2004 on, the Raffarin law and the Galland laws were discussed,
assessed and reformed with the September 2004 Sarkozy agreements, the Jacob
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law and the Chatel law: the PFOODXT HICP inflation was lower than in the 15
country euro area.

Figure 7: France and euro area processed food year on year inflation

See Annex A for more details on legislation. The consequence of these reforms was
a decrease in the sale at a loss threshold that enhanced retailers to decrease their profit
margins. From then on, inflation in processed food prices has been lower in France than
in the euro area.

B. The intervention prices of the CAP and their impact on agricultural prices and on
consumer prices

As it is explained in the National Bank of Belgium Economic Review (2008), the
effects of the food commodity price increase recorded since mid 2007 have been substan-
tial. The main reason is that the common agricultural policy no longer smoothes out
world market price fluctuations. First, guaranteed prices have been revised downwards.
Second, European agricultural prices are more correlated to international prices when
the latter go above the CAP intervention prices. Finally, the CAP reform was conceived
in order to give more importance to market mechanisms. As a result, from 2000, the
variance in agricultural prices has increased: the standard deviation increased from 2.2%
for the sample 1997q1- 1999q4 to 4.4% for the sample 2000q1-2007q4. Consequently, we
have decided to test for breakpoints when using international food prices in euro in our
equation using a Quandt-Andrews breakpoint test. We have selected the points where
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the Chow F-statistics is maximal. When necessary we introduce a multiplicative dummy
variable called DUMCAP including these breakpoints.

Table 11 listed and described the dummy variables we have introduced to take into
account changes in legislation and the CAP reform. In the French retail sector, negotia-
tions from producers to retailers mostly occur in January and February, that is why the
impact of the reforms could be more important in the first quarter.

Table 11: Dummy variables used in the PFOODXT HICP model

Label Value Explanation

DumAccords =2/3 in 2004q3 and 2005q2; =1 in 2004 4th
quarter and 2005q1

Impact of the Sarkozy
agreements

DumJacobchatel =1 in 2007q1 and 1
2 in 2007q2; =1 from

2008q2 to 2004q4
Impact of the Jacob and
Chatel laws

DumJacobchatel =1 in 2007q1 and 1
2 in 2007q2; =1 from

2008q2 to 2004q4
Impact of the Jacob and
Chatel laws

Dumvf =1 in 2001q2 and q3; -1 in 2001q4 and 2002q1 Mad Cow Disease

Dum08 =1 in 2008q1 Impact of the increase in
international food prices

DumCAP =0.2 from 2006q3 to 2007q2 and 1 from
2007Q3

Impact of the increase in
international food prices
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6.3.2 Specifying the equation

The model we first tested was, in line with our econometric strategy, a VECM with
cost and fluctuation indicators. We consider that relevant cost indicators for PFOODXT
HICP would be PPRODXE and FOODEURO. Concerning tension indicators, we consider
the change in international food prices, in Brent prices in euro and, because of the share
of wages in retail sector cost structure the unemployment rate. As PPRODXE in the
long-term relationship is not a significant variable, we test it in the short term one. As
a result, because FOODEURO is a significant variable only from 2006q3 onwards, we
constrained the long-term relationship from then on. We also omit changes in Brent
prices in euro. The second model performs well.

Table 12: The PFOODXT HICP model

Explanatory variables Model 1 Model 2

Long term relationship - Dependant variable

PFOODXT HICP, log, 2 lags -0.009∗∗∗ [-1.9] -0.001∗∗∗ [-3.5]

Long term relationship - Cost variables

FOODEURO, log, 2 lags 0.0009∗ [1.8] 0.0018∗∗∗ [4.7]

PPRODXE, log, 2 lags -0.008 [-0.2] -

Fluctuation variables - Short term relationship

Change in FOODEURO, log, 4 lags 0.06∗∗∗ [3.4] 0.05∗∗∗ [2.7]

Change in oil prices in euro, log, 1 lags 0.02 [1.0] -
Unemployment, 1 lag -0.001∗∗∗ [-3.3] -0.0001∗∗∗ [-3.5]

Change in PPRODXE, log, 2 lags - 0.05 [1.1]

Dummy variables

DumAccords -0.007∗∗∗ [-4.9] -0.007∗∗∗ [-5]-

DumJacobchatel -0.007∗∗∗ [-3.8] -0.007∗∗∗ [-4.5]

Dum08 0.02∗∗∗ [7.4] 0.02∗∗∗ [7.5]

DumVF 0.002∗∗ [2.2] 0.003∗∗ [2.5]

Breakpoints

2006q3 and 2007q3, Chow statistic 9.8[p-value =0] 34[p-value =0]

Dumcap 0.5 from 2006q3 to
2007q2 and then 1

0.2 from 2006q3 to
2007q2 and then 1

Statistics

Sample 1990q3-2008q4 1990q3-2008q4
R2 0.78 0.80
Durbin Watson 1.55 1.6
Breusch Godfrey correlation LM-test, 4 lags 5.7[p-value=0.22] 5[p-value=0.27]

ARCH, 4 lags 0.9[p-value=0.91] 0.3[p-value=0.89]

White test - 0.8[p-value=0.74]

Tstats are given between squared brackets. The significance threshold are ∗∗∗=1%, ∗∗=5%,∗=10%.

P-values of the error correction term herein were obtained using the responses surfaces in Ericsson and

Mackinnon (1999) as implemented in the program ECMtest.xls (v1)
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Table 13: The PFOODXT HICP Equation
∆ log(Pt) = Dumcap ∗ [−0.001∗∗∗[−3.5] ∗ log(Pt−2) + 0.002∗∗∗[4.7] ∗ log(FOODEUROt−2)]

−0.0001∗∗∗[3.4] ∗ Ut−1 + 0.05∗∗∗[2.7] ∗∆ log(FOODEUROt−4) + 0.05[1.1] ∗∆ log(PPRODXEt−2)

−0.007∗∗∗[5] ∗Dumaccords−0.007∗∗∗[4.5]∗DumJacobChatel+0.02∗∗∗[7.5]∗Dum08+0.003∗∗∗[2.5]∗Dumvf

6.3.3 Dynamic simulations and contributions

Figure 8: Processed food HICP year on year growth rate (in %)

The dynamic simulations of our model over the 1990q1-2008q4 period show that our model
predicts reversals but is not as performant as our IGXE good and PSER HIPC equations.
The difficulty of modeling processed food prices in the euro area and in France lays on
the structural changes in the sector due to legislation and the CAP. Figure 9 displays the
contributions of the different variables to the y-o-y inflation of the private services HICP.
One can notice the importance of dummies in the PFOODXT HIPC behaviour, mainly
because of these changes.
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Figure 9: Contributions of the explanatory variables to processed food HICP year on year
growth rate (in pp)

6.4 The energy HICP

The energy HICP is divided into three subcomponents:

• oil product, including liquid fuels, fuels and lubricants;

• gas, including gas, solid fuel and hot water HICP;

• electricity.

The HICP component for gas and electricity are projected without breakdown whereas
oil products are divided into three subcomponents: oil fuels, diesel oil and unleaded oil.

Because of different price behaviour, oil product, gas and electricity prices are mod-
eled differently. Indeed, gas and electricity prices incur irregular hikes, subject to the
approval of the government whereas oil product prices vary monthly with Brent prices.
First, concerning gas prices, they are modeled with Brent prices with lags of 3 quarters
and 9 quarters. When it is necessary, we adjust the timing of the hikes according to
public announcements. Second, concerning electricity prices, headline inflation has been
considered as the upper limit for price increases over the year since the public agreement
of the 24th of October 2005. Subsequently, there is no equation for this component, we
just include a hike each summer by less than 2%.
Finally, the oil product HICP is divided into three components that are modeled in two
steps. First, they are modeled excluding taxes. Second, taxes are integrated to rebuild
the components. There are two kinds of taxes on oil products in France: the oil product
domestic tax (TIPP) that is linked to volumes (excise tax) and the VAT that is linked
to prices, including the TIPP .
The liquid fuel for heating HICP, the diesel oil HICP and the unleaded oil HICP excluding
taxes are modeled with an ECM. In the long term specification, the explanatory variable
is the price of the Brent in euro. Thus, the margin behaviour is taken into account. The
short term specification includes as well the price of the Brent through two variables:
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one with one lag, the other without lag. For the diesel oil and oil fuels there is also an
autoregressive component, with one lag. Thus, refining margins as well as transport and
retail margins are taken into account in the long term specification of the Error Correc-
tion Model. Contrary to the other equations of the model these equations are monthly
equations since all the series in the information set are available on a monthly basis.

Table 14: The unleaded oil excluding tax equation

∆ log(Pt) = 0.39∗∗∗[14.4] ∗∆ log(Pbrenteurot) + 0.21∗∗∗[7.2] ∗∆ log(Pbrenteurot−1)

−0.15∗∗∗[14.4] ∗ log(Pt−1) + 0.10∗∗∗[4.2] log(Pbrenteurot−1) + 0.16∗∗∗[3.8]

Tstats are given between squared brackets. The significance thresholds are ∗∗∗=1%, ∗∗=5%,∗=10%.

P-values of the error correction term herein were obtained using the responses surfaces in Ericsson

and Mackinnon (1999) as implemented in the program ECMtest.xls (v1)

• Estimation period=1991m7 2007m12

• R2 = 0.7

• DW = 1.97

• LM(4) = 0.25, p-value= 0.89

• ARCH(4) = 7, p-value= 0

Table 15: The diesel oil excluding tax equation

∆ log(Pt) = 0.4∗∗∗[15.2] ∗∆ log(Pbrenteurot) + 0.11∗∗∗[2.9] ∗∆ log(Pbrenteurot−1)

−0.2∗∗∗[5.3] ∗ log(Pt−1) + 0.16∗∗∗[5.4] log(Pbrenteurot−1)

+0.18∗∗∗[3.4] ∗∆ log(Pt−1) + 0.16∗∗∗[4.8]

Tstats are given between squared brackets. The significance thresholds are ∗∗∗=1%,
∗∗=5%,∗=10%.P-values of the error correction term herein were obtained using the responses sur-

faces in Ericsson and Mackinnon (1999) as implemented in the program ECMtest.xls (v1)

• Estimation period=1991m7 2007m12

• R2 = 0.7

• DW = 2.05 Not appropriate because of the lagged-dependent variable, see the LM
test.

• LM(4) = 0.25, p-value= 0.91
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Table 16: The oil fuel excluding tax equation

∆ log(Pt) = 0.4∗∗∗ ∗∆ log(Pbrenteurot)[17.7] − 0.13∗∗∗ ∗ log(Pt−1)[4.7]

+0.1∗∗∗ log(Pbrenteurot−1)[4.8] + 0.26∗∗∗ ∗∆ log(Pt−1)[6.1] + 0.12∗∗∗[4.0]

Tstats are given between squared brackets. The significance thresholds are ∗∗∗=1%, ∗∗=5%,∗=10%.

P-values of the error correction term herein were obtained using the responses surfaces in Ericsson

and Mackinnon (1999) as implemented in the program ECMtest.xls (v1)

• ARCH(4) = 0.75, p-value= 0.54

• Estimation period=1991m7 2007m12

• R2 = 0.7

• DW = 1.7 Not appropriate because of the lagged-dependent variable, see the LM
test.

• LM(4) = 2.3, p-value= 0.03

• ARCH(4) = 4.1, p-value= 0.00

6.5 The unprocessed food HICP

The unprocessed food HICP is divided into four sub-indexes: meat products, fish, fruits
and vegetables. The change in prices is modeled monthly as an ARMA with fixed seasonal
effects. It is estimated with OLS.

7 Forecasting performance

As it is commonly done in the literature, the forecasting performance of the main equa-
tions is assessed in comparison to benchmark models. We have considered four benchmark
models. The first one is a single 4-lag autoregressive equation (AR(4)), to which all the
dummy variables that have been identified are added, in order to make a fair comparison.
Such non-informative models are known to have satisfactory forecasting accuracy and
are frequently used by central banks to forecast short term inflation (see the three-month
model described in Section 8). However, their major drawback is that they do not allow
for any economic interpretation of price developments. The second benchmark model is a
vector autoregressive model with four lags. The endogenous variable are the other HICP
components and are selected following a Granger causality test. The third model is a
non-constrained model (NC) using the same explanatory variables as our equation. Fi-
nally, the fourth model is the former one the Banque de France used to forecast inflation
(FMOD).
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One can assess the performance of our model with two different methods. The first
one consists in estimating the forecast performance within the estimation sample. The
other one evaluates the forecast performances of the model out of the estimation sample.
The literature generally agrees that forecasting methods should be assessed using out-of-
sample tests rather than in-sample tests. First, it is in line with a forecasting model utility
and applications. Second, because of structural changes post-sample performance is often
lower than in-sample performance as in in-sample test the equation is estimated including
these potential structural changes. Bartolomei and Sweet (1989) provide evidence on the
fact that methods selected by best in-sample fit may not best predict post-sample data.

Two different statistics are computed through recursive estimates projections: the
Root Mean Square Error (RMSE) and the Diebold Mariano (DB) statistics. Because
the sample is quite limited we use the modified Diebold Mariano statistic S ′ (Harvey,
Leybourne and Newbold, 1997)) which is estimated with Newey-West corrected standard
errors that allow for heteroskedastic autocorrelated errors. We reject the null hypothesis
of equal predictive accuracy at the 5% level if

|S ′| > 1.96

7.1 Methodology

We assess the out-of-sample performance in 33 rolling samples, the first one is 2000q1-
2001q2 and the last one is 2008q1 - 2009q2. We test 18 different horizons (or 6 quarters).
Note that, in any case, the starting point of estimates is set at the beginning of our
estimation sample (between 1987Q1 and 1990Q4, depending on the equation).

7.2 Results

For each model, we have included the dummy variables in the autoregressive equation.
Indeed, we want to be sure that the forecasting performance of our model does not only
come from the correction of outliers. Nevertheless, our model is designed to produce
conditional forecasts. In this exercise, the conditionary variables are taken equal to the
observations over the projection horizon. This represents a bias in favour of our model
when the benchmark model is the AR(4).
Table 17 presents the results for the three main equations of our model. As the perfor-
mance of the VAR is not significantly better than that of the AR(4), the RMSE relative
to this equation are not presented in the table.

The forecasting errors of our equations are lower than of all the benchmark models
on average. However, the Diebold-Mariano statistics reveals the relative fragility of our
model. In fact, it has been argued in the literature that inflation has become harder
to forecast especially over the 10-15 years in the sense that ”it has become much more
difficult for an inflation forecaster to provide value added beyond a univariate model”
(Stock and Watson, 2007). It is a proof of the importance of the expert judgment. The
fact that our model underperforms in the short run is one of the reason for developing a
different model in the three month horizon. This type of model is described in the next
section.
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Table 17: RMSE of the IGXE equation relative to the benchmark models and Diebold
Mariano Statistics (for horizons h from 3 to 18 months)

IGXE PSER PFOODXT

h AR(4) NC FMOD AR(4) NC FMOD AR(4) NC FMOD

3 0.80 0.81 0.27 0.98 1.01 0.55 1.05 1.04 0.96
(1.1) (1.1) (4.8) (0.3) (-0.1) (2.9) (-0.4) (-0.9) (0.3)

6 0.84 0.87 0.44 0.82 0.86 0.62 0.97 0.99 0.95
(1) (1.1) (3.8) (1.5) (0.9) (3.8) (0.2) (0.2) (0.3)

9 0.8 0.84 0.55 0.73 0.80 0.58 0.97 0.98 0.97
(1.2) (1.2) (2.5) (1.7) (1.2) (2.9) (0.2) (0.4) (0.2)

12 0.79 0.80 0.70 0.66 0.76 0.56 0.94 0.99 0.94
(1.3) (1.2) (2.4) (1.8) (1.3) (2.1) (0.4) (0.3) (0.2)

15 0.78 0.77 0.81 0.60 0.70 0.56 0.90 0.98 0.88
(1.4) (1.3) (1.6) (1.8) (1.7) (1.5) (1) (0.1) (0.6)

18 0.78 0.73 0.93 0.54 0.64 0.53 0.9 1 0.85
(1.3) (1.4) (1.4) (1.8) (1.8) (1.2) (1.2) (0.2) (0.6)

8 The short run model

Our forecasting strategy includes a specific model for the short run (three month horizon).
In this model, the HICP is modeled in a very disaggregated approach: it is disaggregated
into 52 subcomponents which are forecast with ARIMA models. This section details
these estimations.

8.1 The econometric strategy at the three month horizon

At the three month horizon, the overall HICP is disaggregated into 52 components. This
is consistent with Duarte and Rua (2007) who find an inverse relationship between the
forecast horizon and the amount of information underlying the forecast, when minimizing
the Root Mean Square Forecast Error. The monthly variations of each of the 52 subcom-
ponents of the HICP, except energy prices, are forecast with an ARIMA process. Food
prices are also modeled with producer prices as explanatory variables. Concerning energy
prices, the heating oil and the fuel and lubricant HICP are modeled excluding taxes as a
function of Brent prices in dollar and the exchange rate, estimated by OLS.
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Table 18: Subcomponents of the overall HICP modeled in the short run
Name Weight Model

FOOD

Unprocessed food
Meat 4.3% ARIMA
Unprocessed fish 0.4% ARIMA
Processed fish 0.4% ARIMA
Unprocessed fruits 1% ARIMA
Processed fruits 1.1% ARIMA
Unprocessed vegetables 0.9% ARIMA
Processed vegetables 0.5% ARIMA
Processed food
Bread and cereals 2.3% ARIMA and bridge equation with producer

prices
Milk products 2.4% ARIMA and bridge equation with producer

prices
Oils and fats 0.4% ARIMA and bridge equation with producer

prices
Sweet products 1% ARIMA and bridge equation with producer

prices
Salt and Spices 0.6% ARIMA and bridge equation with producer

prices
Non alcoholic beverages 1.4% ARIMA and bridge equation with producer

prices
Alcoholic beverages 1.7% ARIMA and bridge equation with producer

prices
Tobacco 2% Irregular hikes according to announcements
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Name Weight Model

INDUTRIAL GOODS XE

Clothing and Footwear 5.5% ARIMA
Health Products 1.9% ARIMA
Purchase of vehicles 4.7% ARIMA
Accessories for personal vehicles 3.2% ARIMA
Furnishing 1.6% ARIMA
House equipment 1% ARIMA
Other manufactured goods 13.7% ARIMA

ENERGY CONSUMPTION
PRODUCTS

Heating oil 0.9% Bridge equation with Brent prices as explana-
tory variable

Liquid Fuel 4.3% Bridge equation with Brent prices as explana-
tory variable

Lubricant 0.03% Bridge equation with Brent prices as explana-
tory variable

Gas 1.2% Irregular hikes according to announcement
Solid Fuel 0.05% ARIMA
Heat energy 0.2% ARIMA

SERVICES

Private Services
Housing rentals 6.8% Information on social rentals
Water supply 0.4% ARIMA
Refuse collection 0.5% ARIMA
Hospital services 0.6% ARIMA
Medical services 0.6% ARIMA
Paramedical services 0.5% ARIMA
Restaurants 5.6% ARIMA
Hotels 1.3% ARIMA
Social protection 1.4% ARIMA
Insurance 2.5% ARIMA
Maintenance and repair of vehicles 2.3% ARIMA
Other private services 8% ARIMA
Communications
Telecommunications 3% ARIMA
Postal services 0.2% Announcements
Transports
Transport services by railway 0.5% ARIMA
Transport services by road 0.6% ARIMA
Transport services by air 0.9% ARIMA
Combined passenger transport 0.2% ARIMA
Transport services by sea 0.1% ARIMA
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Then, the forecast series are evaluated, and possibly modified, through three axes:

• The monthly variation is compared with the mean of the past three and five year
monthly variation.

• Charts are used to analyze the recent behaviour of the price series

• Available information is included (Table 18)

In a forecast exercise, from 40% up to 70% of the subcomponents forecast are modified
through this process. Information is regularly available for the following indexes:

Table 19: Information on HICP subcomponents

Name Source Description

Fruits and Vegeta-
bles

Ministry of Agriculture Weekly price series for the main cate-
gories of fruits and vegetables

Tobacco Government announcement Irregular hikes according to announce-
ments

Oil products Ministry of Industry Weekly price series for oil products in-
cluding and excluding VAT

Gaz and electricity Government announcement Irregular hikes according to announce-
ments

Health Products Legislation and market evo-
lutions

Legislation on social security reim-
bursements or generics

House rents INSEE Three month forecast
Health services Legislation and government

announcement
Irregular hikes and change in legisla-
tion concerning reimbursements

8.2 The real time forecasting performance of the short run
model

Because in the short run the included information is more important than in a longer
horizon, the projection process cannot be simulated. As a result we test the forecast
performance of the model in a real time framework. We use the forecast series from the
past NIPE to assess the forecast performance of our model. The latter are available from
January 2001 to September 2008. Because of the NIPE calendar, there is not a forecast
series at each date. Moreover, because we are not sure about the origins of these forecast
series, they are excluded when they look like outliers. These series are compared to the
autoregressive model described above.
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Table 20: RMSE of the forecast series relative to the autoregressive model (for horizons
from 1 to 3 months)

Equation Average 1 2 3

IGXE HICP 0.66 0.31 0.64 1.017

PSER HICP 0.87 0.55 1.32 0.76

PFOOD HICP 1.12 2.20 0.49 0.67

9 Conclusion

The present model for forecasting inflation in France is based on a theoretical framework
that is a mix between a markup model for prices and the Phillips curve. The model was
designed to provide good forecast performance, but also to be included in the Eurosystem
forecast exercises. The latter induces first, the use of specific assumptions, second, the
issue of forecast for the main HICP subcomponents. After the systematic investigation of
a large set of equations, based on this theoretical framework and under these constraints,
the model we obtained proves to be performing reasonably well. We provide evidence
for the robustness of our equations, the stability of our results, their ability to anticipate
turning points in inflation and the quality of dynamic simulations. We show that our
model, conditionally on the exogenous variables, outperforms a standard AR(4), a VAR
and a non-constrained model as well as the former one used by Banque de France (Jondeau
et al., 1999).
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A The legislation in the retail sector

1. The Royer law

Since 1973, the retail sector was regulated by the Royer law. An authorization was
needed to implement a retail shop of more than 1000 square meters. The authoriza-
tion was given by a commission essentially composed with elected representatives.
As a result, biased decision making, in favour of incumbents, was a risk. Moreover,
Bertrand Kramarz (2001) demonstrates that the requirements have created barriers
to entry. In order to fight against it, new laws were voted, the Sapin law (1993)
and then the Raffarin law (July 1996), bringing down the relative number of these
representatives in these commissions. However, the Raffarin law, together with the
Galland law, that was also voted in July 1996, did not enhance competition and
worse, had a reverse effect on prices.
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2. From 1996 to September 2004, the Raffarin and the Galland laws reduced compe-
tition in the French retail sector.

In addition to the decrease in the number of representatives in the commissions,
another measure was included in the Raffarin law: the threshold above which an
authorization was required to open a retail shop was reduced down to 300 square
meters. As a result, as we can see on the graph below (Askenazy,Weidenfeld (2007)),
the number of new retail shops substantially decreased from 1996.

Figure 10: Surface of new retail shops from 1996 to 2006
Source: Philippe Askenazy (2007)

Moreover, added to the Raffarin law, the Galland law reinforced the ban to sell at a
loss that has been existing in France since 1963: the retail sector profit margins due
to commercial cooperation services to producers were not included in the sell at a
loss threshold. During these years, retailers increased these profit margins, which
led producers to mechanically increase their unit cost: both consumer prices and
retail sector profit margins have increased whereas producer profit margins have
remained constant. Allain, Chambole (2005) explains how it induced increasing
prices.
As a result, from 1996 to 2004 competition was reduced in the retail sector, and
the inflation in processed food prices was higher than in the euro area.

3. The reforms: from the Sarkozy agreements in September 2004 to the Chatel law
in March 2008. In September 2004, because of producer and consumer complaints,
the government favoured agreements between producers and retailers that led to a
decrease by 1.2% of the prices in supermarkets.
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In July 2005, the Jacob law redefined the threshold of sale at a loss, partly deduct-
ing the profit margins due to commercial cooperation services. In January 2007,
the Chatel law further deducted these profit margins to the sale at a loss threshold.

Finally, in March 2008, the second part of the Chatel law totally deducted these
profit margins to the sale at a loss threshold. Moreover, the economy modernisa-
tion law, voted in July 2008, reformed the Raffarin law: the threshold above which
an authorization was required to open a retail shop was re-established up to 1000
square meters.

The consequence of these reforms was a decrease in the sale at a loss threshold that
enhanced retailers to decrease their profit margins. From then on, the inflation in
processed food prices has been lower in France than in the euro area.
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