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Abstract

The 2007 sub-prime crisis in the United States, prolonged by a severe economic recession
spread over many countries around the world, has led many economic researchers to focus on
the recent fluctuations in housing prices and their relationships with macroeconomics and mon-
etary policies. The existence of common housing cycles among the countries of the euro zone
could lead the European Central Bank to integrate more specifically the evolution of such asset
prices in its assessment. In this paper, we implement a multivariate unobserved component
model on housing market variables in order to assess the common euro area housing cycle and
to evaluate its relationship with the economic cycle. Among the general class of multivariate
unobserved component models, we implement the band-pass filter based on the trend plus cycle
decomposition model and we allow the existence of two cycles of different periods. The dataset
consists of gross domestic product and real house prices series for four main euro area countries
(Germany, France, Italy and Spain). Empirical results show a strong relationship for business
cycles in France, Italy and Spain. Moreover, French and Spanish house prices cycles appear to
be strongly related, while the German one possesses its own dynamics. Finally, we find that
GDP and house prices cycles are related in the medium-term for fluctuations between 4 and
8 years, while the housing market contributes to the long-term economic growth only in Spain
and Germany.

Keywords: House prices, Business cycles, Euro area, Unobserved components model.

JEL codes: C13, C32, E32, R21
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Résumé

La crise américaine des sub-primes, prolongée par une sévère récession économique mon-
diale, a incité de nombreux chercheurs à s’intéresser aux fluctuations récentes des prix de
l’immobilier résidentiel et à leurs liens avec la macroéconomie et les politiques monétaires.
L’existence d’un cycle immobilier commun aux principaux pays de la zone euro pourrait con-
duire la BCE à intégrer plus précisément l’évolution de ce type d’actif dans son évaluation
des conditions économiques pour mener à bien sa politique montaire. Dans ce papier, nous
implémentons un modèle multivarié à composantes inobservables sur des variables de prix im-
mobiliers afin d’évaluer l’existence d’un cycle commun à ces variables ainsi que sa dépendance
au cycle économique. Parmi la classe des modèles multivariés à composantes inobservables, nous
utilisons les modèles dits de filtre passe-bande, basés sur une décomposition tendance-cycle des
séries, et nous permettons aux modèles d’exhiber deux cycles de fréquences différentes. Le jeu
de données utilisé est constitué des séries de PIB et de prix réels de l’immobilier résidentiel pour
les quatre principaux pays de la zone euro (Allemagne, France, Italie, Espagne). Les résultats
empiriques montrent une relation de forte intensité entre les cycles du PIB français, italiens et
espagnols. De plus, les cycles immobiliers français et espagnols apparaissent fortement reliés,
alors que le cycle allemand possède sa propre dynamique. Enfin, nous trouvons que les cycles
du PIB et de l’immobilier sont reliés sur le moyen terme, pour des fluctuations variant entre 4
et 8 ans, alors que le marché immobilier ne contribue à la croissance économique de long terme
uniquement en Espagne et en Allemagne.

Mots clés: Prix immobiliers, Cycles économiques, Zone euro, Modéles à composantes inobserv-
ables

Codes JEL: C13, C32, E32, R21
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1 Introduction

According to European treaties, the main objective of the Eurosystem is to maintain price
stability through a two pillars strategy. In opposition to the Fed, the ECB has clarified that
price stability is measured by inflation rates of below, but close to, 2% over the medium term.
To get this target, the first pillar consists in an analysis based on a large set of economic and
financial indicators and the second pillar gives a role to the money. In this respect, it is well
known that asset prices are variables of great interest in the conduct of monetary policy and
will certainly be more and more integrated in the future in the monetary policy makers decision
process.
Especially, among all asset prices, the monitoring of housing prices is one of the element of
regular assessments carried out by central banks. Indeed, housing finance has an impact on the
transmission of monetary policy to the economy and a better understanding of the housing sec-
tor could lead to more accurate inflation forecasts. Recently, some researchers have put forward
that central banks should rather target asset prices instead of inflation in their strategy. For
example, Leamer (2007) proposes a monetary policy based on housing starts rather than output
gap.

Since the summer 2007 the evolution of housing prices has raised concern as highlighted by
the US sub-prime crisis that had strongly affected macroeconomic fluctuations in most of the
industrialized countries. Recent economic recessions experienced in those countries have shed
light on the role of the housing sector and have led researchers and economists to investigate
this specific sector. Regarding the aggregated euro area, assessment of house prices is generally
carried out by considering the euro area as whole. However, this evaluation at the aggregate
level can hide some country-specific fluctuations. Indeed, to our knowledge, there is no evidence
that euro area members housing cycles are synchronized, although several papers have shown
that the euro area business and growth cycles cycles are meaningful (see, for example, Anas,
Billio, Ferrara & Mazzi (2008) for a review of various euro area cycles dating). The existence of a
common housing cycle among the countries of the zone could lead ECB to integrate more easily
the evolution of this specific asset price in its assessment. On the other side, if country-specific
cycles were too large, this would complicate the task of the ECB.

A wide number of empirical papers have pointed out the existing relationship between housing
and business cycles. For example, Leamer (2007) compares the US housing market cycle and
the US business cycle as defined by the Dating Committee of the NBER, from 1947 to 2006.
By using the contributions to GDP growth during the 8 phases of recession covering the whole
period, Leamer points out that the business cycle is in fact a consumer cycle mainly driven by
residential investment. Consequently, the author argues that residential investment can be seen
as an accurate early warning of oncoming recession. Ahearne, Ammer, Doyle, Kole & Martin
(2005) find that real house prices are pro-cyclical, that is co-moving with real GDP, consump-
tion, investment, CPI, budget and current account balances and output gaps. They note also
that house price booms are typically preceded by a period of easing monetary policy, but then
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diminishing slack and rising inflation lead monetary authorities to begin tightening policy before
house price peak. We also refer to Iacovello (2005), for a theoretical monetary business cycle
model that formalizes the interaction between house prices and the business cycle, or to Good-
hart & Hofmann (2008) for empirical evidence of a ”significant multidirectional link between
house prices, broad money, private credit and the macroeconomy”.

Generally, econometric methods involved in empirical comparison of cross-country housing cycles
rely on graphical inspection of peaks and troughs as in Ahearne et al. (2005) or standard non-
parametric tools, such as contemporaneous or cross-correlations as proposed by Catte, Girouard,
Price & André (2004) or Alvarez, Bulligan, Cabrero, Ferrara & Stahl (2009). Parametric mod-
elling has been also requested in order to estimate housing cycles. For example, probit regressions
have been considered by Borio & McGuire (2004), van den Noord (2006) or Cunningham & Kolet
(2007) in order to estimate the probability of an upcoming peak in the housing cycle. Terrones
(2004) explains house prices fluctuations and co-movements by using a dynamic factor model for
house price growth and six other key variables applied to 13 industrial countries. Del Negro &
Otrok (2007) estimate also a dynamic factor model for the US states to differentiate a common
cycle in house prices from local state-specific cycles. Ceron & Suarez (2004) applied various mul-
tivariate extensions of the Markov-Switching model in order to discriminate between a common
cyclical component and country-specific component on housing prices. They also include in the
models four variables with a potential impact on housing cycle, namely GDP growth, unem-
ployment rate, interest rates and inflation rate. VAR models have been also considered to relate
housing prices shocks, monetary policy and macroeconomic variables. For example, Del Negro
& Otrok (2007) implement a VAR model to assess to what extend expansionary monetary policy
in the US is responsible for the increase in houses prices. Also Vargas-Silva (2008) examines the
impact of monetary policy shocks on the US housing market using a restricted VAR model. In
the multi-country framework, Goodhart & Hofmann (2008) or Assenmacher-Wesche & Gerlach
(2009) estimate a panel VAR model with 17 OECD countries including quarterly variables such
as GDP, house prices, consumer price index, interest rates.

In this paper, we present an econometric analysis based on unobserved component time series
models to capture the house price cycle among the four main euro area countries (Germany,
France, Italy and Spain, representing around 80% of the euro area GDP) and to assess its
relationship with the economic growth cycle. The class of unobserved component models as in-
troduced by Harvey (1989) can be effective in the signal extraction of business cycles. We refer
for example to Azevedo, Koopman & Rua (2006) for a macroeconomic business cycle applica-
tion in a multivariate setting. We consider the multivariate unobserved component model for
modeling housing price fluctuations and business cycles simultaneously. Fadiga & Wang (2009)
have also adopted an unobserved component model in their successful approach for identifying
common movements and dynamics in the house prices of four main U.S. regions. By specifying
different multivariate decomposition models, we empirically identify common trends and cycles
in GDP and house price series in the four euro area countries for the period from 1981 to 2008.
Specifically, we find a strong relationship for macroeconomic growth cycles in France, Italy and
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Spain. Moreover, French and Spanish house price cycles appear to be strongly related, while the
German one possess its own dynamics. Finally, we find that the GDP and house prices cycles
are related in the medium-term for fluctuations between 4 and 8 years, while the housing market
contributes to the long-term economic growth only in Spain and Germany.

2 Unobserved components time series models

Our aim is to show empirical relationships between macroeconomic and housing cycles for Ger-
many, France, Italy and Spain. We focus on the two key variables Gross Domestic Product
(GDP) and real house prices (RHP). The unobserved components (UC) time series model pro-
vides a valuable methodology for the econometric analysis of time series, see Harvey (1989) for a
complete treatment. While an univariate UC model can be regarded as a pure time series model,
the multivariate extension allows the establishment of dynamic relations between different time
series which may have an economic interpretation. These dynamic interactions can be disentan-
gled into short, medium and long term effects. In this section we introduce our multivariate UC
approach for the purpose of analyzing the dynamics of the GDP series and real house prices for
the four euro zone countries (France, Germany, Italy and Spain) with the purpose of studying
the dynamic relations between the business and housing market cycles. First we briefly intro-
duce the univariate basic form of the model and provide some details of the model which are
needed for an understanding of our analysis.

2.1 Univariate unobserved component models

In an UC model, the observed time series is disentangled into components that are formulated
as stochastic functions of time and are designed to represent dynamic features such as trend,
cycle and irregular noise. A basic decomposition for many macroeconomic time series (in logs)
can be based on trend, cycle and noise components where the trend is modelled as a slowly
evolving process, the cycle is typically based on a stationary autoregressive moving average
(ARMA) process and the noise is often taken as a Gaussian white noise process. The cyclical
dynamics for the cycle component can be enforced by having complex characteristic roots in the
autoregressive polynomial. It is straightforward in a UC model to introduce additional features
such as explanatory variables, interventions and seasonal components. This flexibility is due
to the fact that the UC model can be regarded as a special case of the state space model.
Therefore, parameter estimation and the signal extraction of the components can be based on
the Kalman filter and its related smoothing algorithms. In the state space framework, we can
treat multivariate time series, missing observations, mixed frequencies, unevenly recorded data
and other data irregularities as part of the standard methodology. A detailed treatment of state
space methods is presented in Durbin & Koopman (2001).

We assume that the time series {Yt } is observed which we routinely transform into logs,
that is

yt = log Yt, t = 1, . . . , n. (1)
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The UC model decomposes yt into additive stochastic components as given by

yt = µt + ψt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (2)

where µt represents the trend, ψt the cycle component and εt the irregular disturbance term.
The trend component µt in (2) is specified in our applications by the local linear trend model
as given by

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ),

(3)

where βt represents the drift or slope of the trend µt and the disturbances εt, ηt and ζt are
mutually uncorrelated at all lags and leads, for t = 1, . . . , n. Some notable limiting cases of this
specification include: if σζ → 0 while ση is nonzero the trend is a random walk with drift β1;
if ση → 0 while σζ is nonzero the trend follows a smooth integrated random walk; when both
tend to zero, µt reverts to a deterministic linear trend. In our empirical section we use a smooth
trend specification by restricting σ2

η to zero. The initial values of µ1, β1 are generally unknown,
and will be represented by non-informative or diffuse initial distributions.

Fluctuations in economic time series associated with medium-term frequencies related to
periods between 1.5 and 8 years are typically interpreted as the business cycle, see Baxter & King
(1999)1. The dynamic effects related to these medium frequencies appear often less pronounced
in the observed economic time series and tend to be of a stationary nature. To incorporare the
cyclical dynamics in the time series model, we have the stochastic cyclical component ψt with(

ψt+1

ψ∗t+1

)
= ρ

[
cosλc sinλc

− sinλc cosλc

](
ψt

ψ∗t

)
+

(
κt

κ∗t

)
,

(
κt

κ∗t

)
∼ NID(0, σ2

κI2), (4)

where the three unknown coefficients λc, ρ and σ2
κ in the cycle equation (4) represent, respec-

tively, the cyclical frequency, the damping factor and the cycle disturbance variance, respectively.
The period of the cycle is given by 2π/λc. For |ρ| < 1, 0 < λ < π, the cycle ψt and the auxilary
process ψ∗t are stationary ARMA(2,1) processes, with variance σ2

κ/(1− ρ2). The cycle collapses
into an AR(1) process when λc approaches zero. The cycle process (4) is stationary when |ρ| < 1
and its unconditional distribution provides the properly defined initial conditions for ψt and ψ∗t .
The disturbances κt and κ∗t are specified to be uncorrelated with the disturbances of the other
components at all lags and leads, and uncorrelated with the initial distributions.

In case the variance for a particular component is equal to zero, the component is determin-
istic (rather than a dynamic stochastic process). In case the cycle variance is zero (and usually
with the estimate of ρ close or equal to unity), the cycle component is a fixed sine-cosine wave.
In case the period of a cycle is zero or as a very large value, the cycle process reduces to an
autoregressive process of order one with its autoregressive coefficient equal to ρ.

The UC model can be formulated as a linear state space model specified by the equations

yt = Zαt + εt, εt ∼ NID(0, σ2
ε),

αt+1 = Tαt + ηt, ηt ∼ NID(0, H), t = 1, . . . , n,
(5)

1Sometimes this cycle is also referred to as the growth or deviation cycle Mintz (1969) by opposition to the

business cycle as defined by the NBER which refers to expansion/recession cycle. However, in this paper we keep

the business cycle terminology to describe those medium-term fluctuations.
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where the first equation relates the observation yt to an unobserved state vector αt, which
contains the trend, cyclical and other components required for describing the model. The state
vector is modelled by the vector autoregressive process specified in the second equation, together
with an initial distribution for α1. The system variables Z, T , σ2

ε , H are chosen to represent a
particular model, and will usually depend on unknown parameters, which can be estimated by
maximising the Gaussian likelihood function of the model. After replacing the parameters by
their estimated values, the unobserved components can be estimated using the Kalman filtering
and smoothing equations. For a more complete discussion of state space methods and their
applications, we refer to Harvey (1989) and Durbin & Koopman (2001). An introductory text
for UC models is Commandeur & Koopman (2007).

2.2 Multivariate unobserved component models

The UC model for univariate time series can be easily extended to multivariate time series.
For example, letting yt denote a N × 1 vector of observations, a multivariate UC model can be
applied to the N time series simultaneously. The decomposition model (2) becomes multivariate
when its scalar components is replaced by vector components. We then have

yt = µt + ψt + εt, εt ∼ NID(0,Σε), t = 1, . . . , n, (6)

where trend µt and cycle ψt are stochasticN×1 vectors. TheN×1 irregular vector εt is generated
by the multivariate normal distribution with zero mean and variance matrix Σε. The dynamic
model specifications (3) for trend µt and (4) for cycle ψt remain as in the univariate case but the
scalar process becomes a vector process. The disturbances in these stochastic specifications also
become vectors and are assumed to come from multivariate normal distributions. Specifically,
we have

ηt ∼ NID(0,Ση), ζt ∼ NID(0,Σζ), κt ∼ NID(0,Σκ), κ̇t ∼ NID(0,Σκ), t = 1, . . . , n.

The cycle specification (4) has become a vector equation but the discounting factor ρ and cycle
frequency λ are common to all elements of ψt. These coefficients are therefore kept as scalars.
Harvey & Koopman (1997) define this specification as the similar cycle model. To incorporate
cycles with different frequencies in the model, different similar cycle components can be included.

The multivariate extension of the trend-cycle decomposition model (2) is referred to as the
seemingly unrelated time series equation (SUTSE) model. The individual slopes in vector βt are
only related through the correlations between the individual disturbances in vector ζt as implied
by the variance matrix Σζ . The same principle applies to the slope and cycle vector components
in the model. The disturbance variance matrices therefore play an important role. In particular,
the rank of the variance matrix is of interest. For example, in case Σζ has full rank, all trend
disturbances in ζt have their own unique source of variation but may be correlated between
each other. In case Σζ has lower rank, the individual trend disturbances in ζt are generated
by a smaller set of independent disturbances. This follows straightforwardly since any variance
matrix can be expressed via the Choleski decomposition, that is

Σζ = AζDζA
′
ζ , (7)
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where Aζ is a lower unity triangular N × rζ matrix and Dζ is a diagonal rζ × rζ matrix with
the rank of Σζ given by rζ . In a strict sense, we require a full column rank matrix for Aζ and
positive values on the diagonal of Dζ for matrix Σζ to have rank rζ . Consequently, we have

ζt = Aζζ
∗
t , ζ∗t ∼ NID(0, Dζ),

and
βt = β∗ +Aζβ

∗
t , β∗t+1 = β∗t + ζ∗t , (8)

where β∗ is a fixed vector with N − rζ non-zero values and rζ zero values. In this way, all
slope variables in βt have different initial values. In case rζ < N and as a consequence Σζ has
a lower rank, ζt and βt are linear combinations of a smaller set of stochastic processes. The
same arguments apply to other disturbances and components in the model. A lower rank of the
variance matrix can be imposed but it can also be the result of estimation. Testing procedures
for common trends and cycles have been developed recently by Nyblom & Harvey (2001).

3 Data

As our aim is to show empirical relationships between macroeconomics and housing cycles for
France, Germany, Italy and Spain, we focus on two types of variables, namely Gross Domestic
Product (GDP) and real house prices (RHP).

For the GDP series we use official series as released by statistical institutes of each country.
GDP series are expressed in volume and are chain-linked. The RHP series are not officially
harmonised at the European level, as it is for example the case for inflation measurement through
the Harmonized Index of Consumer Prices (HICP). We therefore use the database constructed
by the four main National Central Banks of the Eurosystem in the framework of a joint research
project on macroeconomics of housing markets and we refer to Alvarez et al. (2009) for a detailed
presentation of this data set. Note however that German house prices have been interpolated
from an annual frequency by the Deutsche Bundesbank. Last, we use real house prices deflated
by using national HICP.

Both types of variables are sampled on a quarterly basis, from 1981 Q1 to 2008 Q4. Thus
we integrate the latest fluctuations related to the sub-prime and financial crisis that led to the
2008 economic recession in euro area countries. For each country, GDP and RHP are presented
in figures 1 and 2, respectively.

4 Empirical findings

4.1 Preliminary analysis

To obtain a first indication of the dynamic properties of the gross domestic product (GDP) and
real house prices (RHP) for the four countries, we present in Figure 3 the correlogram and the
sample spectrum for each of the eight time series in first differences. It shows that the series do
not share strong common dynamic features, especially for GDP series. The four correlograms
for the GDP series do not reveal strong serial correlation in the differences. For Germany there
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Figure 1: Quarterly time series for period 1981–2008 (28 years) of gross domestic product (GDP) in
volumes for countries (i) France, (ii) Germany, (iii) Italy and (iv) Spain.
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Figure 2: Quarterly time series for period 1981–2008 (28 years) of real house prices (RHP) for countries
(i) France, (ii) Germany, (iii) Italy and (iv) Spain.
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is almost no lagged dependence with the exception of lag 4 (that is, one year). This may be
due to the interpolation carried from annual series. The dynamic properties for the RHP series
present more persistence and are somewhat more similar although France also appears to have
almost no serial dependence in its first difference. The sample spectra for the time series confirm
these findings. Furthermore, they also show that cyclical dynamics in the differenced series are
not apparent and do not have many common features. We conclude that the formulation of an
unobserved components time series model for the decomposition of the time series into trend,
cycle and irregular components requires a parsimonious and somewhat restricted framework. In
particular, we refer to parameters that determine the dynamic properties of a time series in an
UC time series model. The dynamic and common features in the observed time series may not
be sufficiently strong that all parameters of the model can be estimated on the basis of this
data-set. We therefore will impose restrictions in the selection of the models. All restrictions
will be justified and we will present diagnostic results to provide some evidence that restrictions
are sufficiently supported by the data-set.

The spectra of the time series in first differences do not provide much evidence of cyclical
dynamics in the data-set. If any, some cyclical activity can be recognised for frequencies associ-
ated with longer cycles (the lower frequencies) and with shorter cycles (the high frequencies, say
smaller than 0.5× 2π = π). It is hard to separate these features from the low frequencies of the
trend. We therefore propose to formulate a flexible cycle component in our model to capture
all possible cyclical features in the data. By considering a component for the cyclical dynamics
with a length of, say, 5 years and another component for cyclical dynamics of, say, 12 years,
we allow all possible cyclical characteristics in the data to be captured. Further details of the
model specification are given below. Here we emphasize that we opt for this specification to
accomodate a wide range of cyclical features in the model. To separate the trend dynamics from
the (weak) cyclical dynamics, we can impose a smoothness restriction for the trend component.

4.2 Empirical model specification

These preliminary empirical findings has motivated us to base our analysis on univariate and
multivariate unobserved components time series models which are discussed in section 2. We
include components for trend, cycle and noise. The cycle component is modelled by two separate
cyclical processes with different periods, each of them having the parametric form described in
equation (4). The first cycle may capture the shorter term dynamics while the second cycle may
account for the longer term dynamics in the cycle component. The model for the time series is
then given by

yt = µt + ψ1t + ψ2t + εt, (9)

where yt is the observed variable (GDP or RHP for France, Germany, Italy or Spain) at time t.
The unobserved variables trend µt, irregular εt and cycles ψ1t and ψ2t are discussed in section
2. Each unobserved component is driven by stochastic disturbance processes which are not
correlated with each other. In case the analysis is for a single time series, the observation yt and
the components µt, ψ1t, ψ2t and εt are scalar variables.

In case of a multivariate time series analysis and by adopting the notation as used by (7)
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Figure 3: Correlogram and sample spectrum for quarterly growth rate of gross domestic product (GDP)
and real house prices (RHP) for (i) France, (ii) Germany, (iii) Italy and (iv) Spain. The sample for each
time series covers the years 1981–2008 (28 years). Each time series consist of 112 observations. The
x-axes for the spectra is the frequency scaled by 2π so 0.5 is associated with π and 1.0 with 2π.
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and (8), we can reformulate model (6) in terms of common factors. Such a decomposition model
with trend, two cycles and irregular components together with possible regression effects (Xt)
is given by

yt = µ∗ +Aηµ
∗
t +A(1)

κ ψ
∗(1)
t +A(2)

κ ψ
∗(2)
t +Xtδ +Aεε

∗
t , (10)

where factor loading matrices Aη, Aζ , A
(1)
κ , A(2)

κ and Aε are lower unity triangular N×r matrices
(with r ≤ N varying for each loading matrix) and the common components µ∗t , β

∗
t , ψ∗(1)

t ,
ψ
∗(2)
t and ε∗t are associated with disturbances that have diagonal variance matrices. Common

components are of interest for studying the dynamic structures and interactions within a set of
time series. For example, common trends imply that economic time series are cointegrated, see
the discussion by Stock & Watson (1988). The estimation of the unobserved components trend
and cycle together with the maximum likelihood estimation of unknown coefficients is based on
state space methods which are applicable to both univariate and multivariate models. Some
further details are discussed in the next section.

4.3 Parameter estimation and signal extraction

Parameter estimation is based on the method of maximum likelihood. The likelihood function
is routinely evaluated by the Kalman filter for a given value of the parameter vector. A quasi-
Newton optimization method is then employed to maximize the likelihood function with respect
to the parameter vector. For this purpose, the score function is evaluated numerically using a
smoothing algorithm. This approach is implemented in the user-friendly software STAMP 8.0
by Koopman, Harvey, Doornik & Shephard (2007). The Kalman filter and related smoothing
algorithms also carry out the estimation of the unobserved components that is often referred to as
signal extraction. Finally, the Kalman filter also forms the basis for forecasting. This approach
applies to univariate and multivariate models. However, the computational effort becomes more
involved when the dimension of yt increases. It may also be numerically more difficult to find
the maximum of the likelihood function with respect to a large dimensional parameter space.

4.4 Univariate analysis for each series

We begin the empirical analysis by analysing the eight time series (the GDP and RHP series
for the four countries France, Germany, Italy and Spain) using the univariate UC model as
described in section 2.1. The main purpose of the univariate analysis is to verify whether the
trend-cycle decomposition based on equation (2) is adequate for each of the eight time serie and
whether possible restrictions are appropriate. The estimation results are reported in Table 1.
In this Table 1 we indicate this by “–” and it only occurs for the house prices of Spain. All
reported variances are relative to the variance of the irregular component of the model. In case,
the irregular variance is estimated as zero, the largest variance of a component is chosen as the
numeraire.

For all eight time series we report in Table 1 the estimated variances of the disturbances
associated with the trend, the two cycle processes and the irregular component. For each cycle
component, we further report the estimated values for the discounting factor ρ and the period
p (in years). The model decompositions appear to apply for the GDP series with France and
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Italy having short business cycle frequencies. Some of the estimated cycle components have zero
variances (Germany for Cycle 1; France, Italy and Spain for Cycle 2). We emphasize that the
sum of Cycle 1 and Cycle 2 is a stochastic stationary time series process. For the GDP time
series, the estimated cycles represent rather short term dynamics (most cycle lengths are less
than 5 years) except for Germany which has an estimated cycle length of 13.5 years. These
findings confirm the features of the series reported in Figure 3.

In case of the house price series, the trend-cycle decomposition is clearly applicable for
house prices in Germany where the cycle lengths are estimated as 4.48 and 2.82 respectively
for Cycles 1 and 2 but with Cycle 2 having a low persistence (ρ is estimated as 0.61) such
that the cycle process disappears after two or three periods in future. Most dynamical features
in the price series are captured by the flexible trend specifications. This is apparent from the
relatively high values for the estimated trend variances. It is difficult to capture the stationary
dynamics represented by the cycle components in the relatively short time series of 112 quarterly
observations which constitute 28 years in the period from 1981 to 2008.

Since all series are decomposed according to a similar model structure, it is of interest to
compute the correlations between the extracted cycles. These correlations are reported in Table
2. We first concentrate on the aggregate cycle, that is the sum of Cycle 1 and Cycle 2. The cycle
components for GDP can be interpreted as business cycles. First, for each country, correlations
between GDP and house prices range from 0.06 for Italy and 0.76 for Spain. The high correlation
for Spain reflects the strong contribution of the housing sector to the economic growth in Spain.
The GDP-RHP correlations for France and Germany are close to 0.5. Second, we find that the
GDP cycles for the four countries are strongly correlated, the correlations range from 0.52 to
0.89. The GDP correlations are highest between France, Italy and Spain while all correlations
with Germany are the lowest but still larger than 0.5. The German business cycle is known to
be lagging the business cycles of other euro area countries, see for example Alvarez et al. (2009).
It may explain the low GDP correlations with Germany. The housing price cycle correlations
between countries range from 0.42 to 0.94. The highest correlations are obtained with the house
prices of Spain and France and with those of Germany and Italy. Last, the cross-correlation
between GDP of one country and the house prices of another country are all relatively low.
Particular low values are between France GDP and Germany price (0.23), France GDP and
Italy price (0.15) and Italy GDP and German price (0.08). High cross-correlations are obtained
between Spanish prices and, on the one hand, French GDP and Italian GDP, on the other hand.
Both are larger than 0.6.

When we consider the correlations of the cycles separately for Cycle 1 and Cycle 2, we
find that generally the correlations for Cycle 2 are similar to those of the combined cycles. The
correlations for Cycle 1 are also similar with the exception of all correlations with Italian housing
prices being negative. This is most likely due to the short period of Cycle 1 that is estimated
as low as 1.1 years. The other periods for Cycle 1 are estimated at 3 years or higher with the
exception of the Germany-RHP Cycle 2.

To enable a stable and consistent model-based analysis for the eight time series, we design a
trend-cycle decomposition by enforcing the following restrictions: (i) the relative trend variance
is set equal to the low value of 0.03; (ii) the length of Cycle 1 and Cycle 2 are set to 5 and
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Table 1: Estimation results for univariate models for each series

France Germany Italy Spain
GDP R R R R

Trend var 0.65 0.03 0.01 0.03 0.48 0.03 0.10 0.03
Cycle 1 var 0.81 0.17 0.00 0.15 3.85 5.75 0.07 0.00
Cycle 1 ρ 0.94 0.90 1.0 0.90 0.87 0.90 0.95 0.90
Cycle 1 p 3.04 5 5.42 5 2.97 5 3.62 5
Cycle 2 var 0.00 1 1.81 2.86 0.00 7.79 0.00 2.31
Cycle 2 ρ 1.0 0.95 0.95 0.95 1.00 0.95 1.00 0.95
Cycle 2 p 5.8 12 13.5 12 5.50 12 9.11 12
Irreg var 1 0.0 1 1 1 1 1 1
N 7.2 11.4 3.23 5.23 6.58 11.1 27.1 34.9
Q 14.5 24.9 15.1 14.6 9.26 13.3 22.1 24.8
R2 0.31 0.24 0.11 0.02 0.23 0.12 0.22 0.12

France Germany Italy Spain
RHP R R R R

Trend var 0.59 0.03 0.34 0.03 0.00 0.03 0.39 0.03
Cycle 1 var 0.00 0.01 0.31 1.51 0.04 0.02 1 0.01
Cycle 1 ρ 1.0 0.90 0.97 0.90 0.96 0.90 0.34 0.90
Cycle 1 p 6.34 5 4.48 5 1.11 5 – 5
Cycle 2 var 0.00 2.19 1 19.9 1 49.4 0.00 39.5
Cycle 2 ρ 1.0 0.95 0.61 0.95 0.99 0.95 0.99 0.95
Cycle 2 p 8.37 12 2.82 12 13.3 12 – 12
Irreg var 1 1 0 1 0 1 0 1
N 23.8 0.59 5.89 9.95 7.03 8.32 36.1 11.9
Q 10.6 187 55.5 111 13.7 68.4 29.3 127
R2 0.61 0.25 0.35 0.15 0.56 0.22 0.47 0.28

Note: Parameter estimates for each component are reported. var denotes variance of the component relative to

the irregular variance (when applicable), ρ is the discount parameter and p is the period of the cycle (in years).

Diagnostic test statistics for the standardized one-step ahead prediction residuals are also reported: N is the

Jarque-Bera normality test (distributed as a χ2 variable with two degrees of freedom (df) and 95% critical value

5.99, Q is the Ljung-Box portmanteau test statistic based on the sum of squared sample autocorrelations (from

1st order upto 12th order of the standardized residuals and R2 is the goodness-of-fit statistic that compares the fit

of the model with a simple random walk model. Estimation results are presented for all series and for two model

specifications: the UC model (10) with unrestricted parameters and with the restrictions trend var σ2
ζ = 0.03,

Cycle 1 ρ = 0.9, Cycle 1 p = 5, Cycle 2 ρ = 0.95 and Cycle 2 p = 12 (in columns labelled with R).

15



12 years respectively; (iii) the persistence parameters ρ are set to 0.9 and 0.95 respectively.
These values are chosen after some experimentation but it has been established that the chosen
values produce reliable decompositions. Initial justification of these parameter choices is given
at the end of section 4.1. With respect to our choice of the cycle lengths 5 and 12 years, we
confirm that the standard business cycle length lies between 1.5 and 8 years. However, in Table
1 we have reported estimates of cycle lengths higher than 8 years, in particular, Germany-GDP,
Italy-GDP, France-RHP and Italy-RHP. This finding has motivated us to set the long cycle
length to 12 years. The short cycle length of 5 years is close to the average of the estimates
of Cycle 1 reported in Table 1. It is found that the reported results are not very sensitive to
other choices of cycle lengths when they are fixed at values which are sufficiently close to 5 and
12 years. With respect to the choice of the discount factor ρ, the values 0.9 and 0.95 are close
to the estimates from univariate models for Cycles 1 and 2, respectively. The relative trend
variance is chosen such that trend component is sufficiently smooth. The remaining parameters
are estimated. The estimation results are reported in Table 1 where the restricted models are
indicated by the letter R in the column headers.

For the restricted models, signal extraction is also carried out by Kalman filter and smoother
methods. The implied weight and gain functions of the estimated trend and cycle components
from a restricted model are presented in Figure 4. The weight functions are sufficiently wide to
produce smooth estimates for trend and cycles. The gain functions show that the decomposition
is effective since the trend captures the lowest frequencies, the short cycle appears to weight most
heavily on the typical business cycle frequencies while the long cycle captures fluctuations of
longer period when they exist. Also a sufficient amount of band-pass properties can be recognised
in this set of gain functions. The estimated irregular component captures the remaining high
frequencies in its gain function that is not reported in Figure 4.

Although the normality (N) and serial correlation (Q) diagnostics are somewhat better
for the unrestricted models and although the goodness-of-fit (R2) measures are worse for all
restricted models, the models still produce an effective decomposition. The restrictions enforce
the same decomposition model to all eight series. The importance of each cycle component to
each series is still determined via the estimation of the two cycle variances. The model is rather
poor in terms of goodness-of-fit for the Germany GDP series but we regard this as the exception.
The other series provide satisfactory decompositions based on our trend-cycle model (10).

From the univariate analysis we can conclude that the decomposition model is adequate for
our analysis and that the resulting cycles have sufficient features in common to analyze the series
further and to search for common dynamic properties.

4.5 Bivariate analysis for each country

The model for a bivariate analysis in which we treat GDP and real house prices simultaneously
is considered for each country individually. It is given by

yt = µt + ψ1t + ψ2t + εt,

where yt is a 2× 1 vector containing the observations for GDP and real house prices in a given
country at time t. The unobservables trend µt, business cycle ψ1t, longer cycle ψ2t and irregular
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Figure 4: The weight and gain functions for a restricted univariate decomposition model with the compo-
nents (i) trend, (ii) 5-years short cycle, (iii) 12-years long cycle and (not reported) irregular. The x-axes
for the gain functions is the frequency scaled by 2π so 0.5 is associated with π and 1.0 with 2π.
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Table 2: Correlations between cycles extracted from univariate models for each series

Cycle 1
Fr GDP Fr RHP Ge GDP Ge RHP It GDP It RHP Sp GDP Sp RHP

Fra GDP 1.00 0.46 0.40 0.24 0.64 -0.46 0.57 0.42
Fra RHP 0.46 1.00 0.29 0.62 0.33 -0.51 0.35 0.39
Ger GDP 0.40 0.29 1.00 0.32 0.75 -0.16 0.67 0.58
Ger RHP 0.24 0.62 0.32 1.00 0.18 -0.52 0.06 0.13
Ita GDP 0.64 0.33 0.75 0.18 1.00 -0.13 0.61 0.65
Ita RHP -0.46 -0.51 -0.16 -0.52 -0.13 1.00 -0.25 -0.19
Spa GDP 0.57 0.35 0.67 0.06 0.61 -0.25 1.00 0.75
Spa RHP 0.42 0.39 0.58 0.13 0.65 -0.19 0.75 1.00

Cycle 2
Fr GDP Fr RHP Ge GDP Ge RHP It GDP It RHP Sp GDP Sp RHP

Fra GDP 1.00 0.51 0.53 0.23 0.89 0.16 0.90 0.63
Fra RHP 0.51 1.00 0.46 0.44 0.58 0.68 0.68 0.94
Ger GDP 0.53 0.46 1.00 0.52 0.44 0.49 0.62 0.46
Ger RHP 0.23 0.44 0.52 1.00 0.07 0.82 0.22 0.43
Ita GDP 0.89 0.58 0.44 0.07 1.00 0.08 0.90 0.72
Ita RHP 0.16 0.68 0.49 0.82 0.08 1.00 0.29 0.64
Spa GDP 0.90 0.68 0.62 0.22 0.90 0.29 1.00 0.76
Spa RHP 0.63 0.94 0.46 0.43 0.72 0.64 0.76 1.00

Cycle 1 + 2
Fr GDP Fr RHP Ge GDP Ge RHP It GDP It RHP Sp GDP Sp RHP

Fra GDP 1.00 0.51 0.52 0.23 0.83 0.15 0.89 0.61
Fra RHP 0.51 1.00 0.44 0.44 0.52 0.68 0.68 0.94
Ger GDP 0.52 0.44 1.00 0.50 0.54 0.47 0.61 0.44
Ger RHP 0.23 0.44 0.50 1.00 0.08 0.80 0.22 0.42
Ita GDP 0.83 0.52 0.54 0.08 1.00 0.06 0.84 0.64
Ita RHP 0.15 0.68 0.47 0.80 0.06 1.00 0.29 0.64
Spa GDP 0.89 0.68 0.61 0.22 0.84 0.29 1.00 0.76
Spa RHP 0.61 0.94 0.44 0.42 0.64 0.64 0.76 1.00

Note: The reported correlations are for the estimated cycles from the unrestricted univariate analysis for each

time series. Since our UC model contains two cycles, we report correlations for each cycle (Cycle 1 and Cycle 2)

and for the combined cycle (Cycle 1 +2).
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εt are also 2×1 vectors. Each unobservable is driven by bivariate stochastic disturbance processes
which are correlated. The estimation results for each country are reported in Table 3. In all
cases, we obtain for at least one component a high correlation coefficient between GDP and RHP
for a specific dynamic process, providing some evidence that the series have common dynamic
features. In all countries, except for Italy, the highest correlation between GDP and RHP is
found for the estimated business cycle components.

For Italy, the highest correlation is recorded for the irregular component. This may be due
to the presence of a shift between the two cycles; it may have vanished the contemporaneous cor-
relation. For the other countries, when looking separately at both medium-term and long-term
cycles the situation is interestingly quite different. Indeed, for France, the highest correlation is
between medium-term cycles (with a period estimated at 8 years), while there is no dependence
between long-term cycles of period 15.6 years. This means that the housing market may have
an impact on conjunctural economic activity, but the determinants of long-term economic and
housing market cycles may be different. The finding for Spain is also different. We find that
both medium-term (8.2 years) and long-term (14.4 years) cycles are strongly correlated (0.95
and 0.82, respectively). These results point out the strong dependence between the housing
market and the Spanish economic activity, at both short and long frequencies. This may reveal
that the housing market has a major role in macroeconomic developments for Spain. It turns
out that for many years the Spanish economy has taken benefit from the boom in the housing
sector, both in terms of growth and employment, at least until the recent downturn. It appears
that, for the same reasons, the housing market cycle in Germany is strongly correlated to eco-
nomic activity. The periods of the two German cycles are estimated as 4.3 and 7 years which
are typical business cycle frequencies. The negative correlation of cycles with the lowest period
may indicate a phase shift between GDP and RHP.

We note that the estimation results indicate that two cycles can be recognised, a short cycle
with a period smaller than 8 years and a long cycle with a period larger than 8 years. Germany
and Italy appear to possess only shorter cycles while longer cycles are found for France and
Spain where the periods are even as high as 15.6 and 14.4 years, respectively. The relationships
in housing prices between France and Spain, on one hand, and between Germany and Italy,
on the other hand, could stem from the similar dynamics in terms of short and long cycles.
These results seem to justify our choices for the restricted univariate model with short and long
cycle lengths of 5 and 12 years, respectively, in section 4.4. The restricted model setting can be
regarded as the common denominator of the bivariate models that are estimated in this section.

We therefore have also considered the estimation of the bivariate model with the restrictions:
(i) the relative trend variance is set equal to the low value of 0.03; (ii) the lengths of the cycles
1 and 2 are set to 5 and 12 years respectively; (iii) the persistence parameters ρ are set to 0.9
and 0.95 respectively. The correlation between the trend disturbances for GDP and RHP is set
to zero.
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Table 3: Estimation results for the bivariate model for each country

Parameter estimates (Restricted) Diagnostics
GDP var RHP var corr.coeff period discount ρ GDP RHP

FRANCE
sqr-trend 0.0 (0.03) 0.0 (0.03) 0.00 (0.00) – – N 3.25 13.4
Cycle 1 3.0 (0.68) 3.3 (0.21) 0.88 (0.78) 8.0 ( 5) 0.98 (0.90) Q 17.0 17.4
Cycle 2 1.0 (1.75) 126 (229) 0.07 (0.53) 15.6 (12) 0.99 (0.95) R2 0.38 0.63
irregular 0.6 (1.00) 1.6 (0.00) -0.2 (0.00) – –
GERMANY
sqr-trend 0.0 (0.03) 0.0 (0.03) 0.00 (0.00) – – N 8.52 1.08
Cycle 1 2.5 (0.66) 5.4 (1.33) -0.6 (-0.3) 4.3 ( 5) 0.90 (0.90) Q 6.86 42.1
Cycle 2 3.1 (0.35) 0.5 (0.46) 1.00 (0.95) 7.0 (12) 0.98 (0.95) R2 0.39 0.29
irregular 4.3 (1.00) 1.1 (0.00) 0.58 (0.90) – –
ITALY
sqr-trend 0.1 (0.03) 0.9 (0.03) -0.2 (0.00) – – N 4.19 4.57
Cycle 1 4.3 (6.92) 16. (1.08) -0.1 (-0.8) 6.0 ( 5) 0.92 (0.90) Q 10.1 8.60
Cycle 2 0.0 (5.23) 8.4 (1654) 0.00 (0.00) 1.1 (12) 0.94 (0.95) R2 0.14 0.47
irregular 0.8 (1.00) 1.2 (1.00) 0.96 (1.00) – –
SPAIN
sqr-trend 0.0 (0.03) 0.0 (0.03) 0.00 (0.00) – – N 9.05 21.7
Cycle 1 3.3 (0.00) 12. (0.00) 0.95 (1.00) 8.2 ( 5) 0.98 (0.90) Q 17.5 43.0
Cycle 2 0.0 (1.15) 83. (133) 0.82 (0.61) 14.4 (12) 0.99 (0.95) R2 0.45 0.73
irregular 3.9 (1.00) 7.7 (0.00) -0.4 (0.00) – –

Notes: Periods are expressed in years. The values in parentheses refer to the restricted model specification.

Diagnostic test statistics for the standardized one-step ahead prediction residuals are also reported: N is the

Jarque-Bera normality test (distributed as a χ2 variable with two degrees of freedom (df) and 95% critical value

5.99, Q is the Ljung-Box portmanteau test statistic based on the sum of squared sample autocorrelations (from

1st order upto 12th order of the standardized residuals and R2 is the goodness-of-fit statistic that compares the

fit of the model with a simple random walk model.
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4.6 Four-variate analysis for GDP and house prices

Next we consider GDP and RHP series for the four countries and model them simultaneously
by the similar decomposition model

yt = µt + ψ1t + ψ2t + εt,

where yt is a 4 × 1 vector of observed GDP or RHP variables for France, Germany, Italy and
Spain. After a prior analysis we found that an appropriate decomposition can be based on
independent trend µt and independent irregular εt components. In other words, we impose
diagonal variance matrices for the disturbances driving these components. We could also have
assumed to include common trends for the four countries. Our preliminary results indicated
that imposing independent trends helps in finding country associations for the cycle components.
Given our focus on the cycle components, we have opted for independent trend specifications.

An important constraint imposed on the four-variate model is that the cycle disturbances
have variance matrices with ranks equal to two. It implies that the euro area cycle is represented
by two 5-year cycles and two 12-year cycles. We load the pairs of two cycles on France and
Germany. The cyclical dynamics in the GDPs of Spain and Italy are obtained as linear functions
of these four cyclical factors. The estimated components (µt, ψ1t, ψ2t and εt) are graphically
presented in Figure 5 for each country.
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Figure 5: A multivariate trend-cycle(s) decomposition for the GDP of countries (i) France, (ii) Germany,
(iii) Italy and (iv) Spain.
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The dynamic specification underlying this decomposition is appropriate since the diagnostic
statistics are satisfactory. The estimated common dynamics in the cycle components for GDP
are reported in Table 4. The business cycles for Germany and France are highly correlated
with each other for the long term cycle. The cycles for Italy and Spain are closely connected
with the cycle of France although the short-term cycle of Spain is negatively correlated with the
one of France. The cycles of Germany strongly affect the business cycles of the other countries
although its marginal longer term influence on Italy and Spain is negative. From the estimated
long cycles in Figure 5 (Cycle 2) we learn that the negative correlations with Germany are due
to the close-to-recession years 2003− 2006 in Germany not experienced by Italy and Spain. In
Table 4 we notice the negative loading coefficient for Spain on Germany’s GDP Cycle 2 (−0.41)
while its corresponding correlation coefficient is positive (0.64). Given the strong correlation of
Germany’s GDP Cycle 2 with the one of France (0.79) and the strong positive loading coefficient
for Spain on France’s GDP Cycle 2 (1.79), this apparent contradiction can be clarified.

The same decomposition model is applied to the RHP series for the four countries (see bottom
panel of Table 4) and the resulting decomposition is presented in Figure 6. The decomposition
model specification is the same but we have restricted the variance of the trend component to
enforce it as a smooth function of time. The evidence for common dynamics in the housing
cycle within the euro area is less evident. The housing price cycles in France and Germany have
correlations that do not exceed the value of 0.4. The 5-year RHP cycle of Italy is strongly and
negatively correlated with the one of France while the 5-year RHP cycle of Spain is strongly
and negatively correlated with the one of Germany. The 12-year housing price cycle dynamics
appear to have common features with those in Spain while a negative correlation exists between
Germany and Italy. From Figure 6 we learn that the longer cycles have the same swings from
peaks to throughs over time, the timings of the peaks and throughs are different. Therefore
the correlations between the long-term RHP cycles are mixed between the countries. However,
the correlation matrix for the 12-year RHP cycle is quite similar to the one for the 12-year
GDP cycle with the exception that the two underlying factors for France and Germany are less
correlated for housing price (0.79 for GDP and 0.38 for RHP).

Note that those results are in line with the comparative analysis carried out by Alvarez et al.
(2009) for both GDP and RHP variables, although the periods of cycles involved in both analysis
are not exactly identical.

4.7 Multivariate analysis for all eight variables

In this section we carry out a multivariate analysis of all eight variables simultaneously. We
collect the GDP and RHP time series for France, Germany, Italy and Spain into the 8 × 1
observation vector yt. We consider the multivariate UC model (10) and discussed in section
2.2. Regression effects are not included in the multivariate model. The same restrictions are
imposed on the model as those for the bivariate and four-variate models considered earlier
(two cycles of periods 5 and 12 years, independent trends, cyclical dynamics of Spain and Italy
expressed as linear functions of France and Germany). We limit reporting the estimation results
by only presenting the correlation coefficients for the two cycle components. The correlations
are presented in Table 5 for the short and long cycles (Cycle 1 and Cycle 2, respectively).
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Table 4: Covariances, correlations and factor loadings for the two cycle components in the four-variate
models for GDP and RHP

France Germany Italy Spain France Germany

GDP Cycle 1 (covariances ×10−6) factor loadings
France 4.11 0.25 ∗ 0.77 ∗ -0.40 ∗ 1 0
Germany 1.77 11.8 0.81 ∗ 0.78 ∗ 0 1
Italy 5.65 10.1 13.1 0.27 ∗ 1.08 0.69
Spain -1.04 3.50 1.27 1.65 -0.41 0.35
GDP Cycle 2 (covariances ×10−6)
France 8.08 0.79 ∗ 0.48 ∗ 0.98 ∗ 1 0
Germany 7.94 12.5 -0.16 ∗ 0.64 ∗ 0 1
Italy 3.43 -1.39 6.28 0.66 ∗ 1.42 -1.02
Spain 11.2 9.11 6.73 16.4 1.79 -0.41

RHP Cycle 1 (covariances ×10−6) factor loadings
France 15.5 0.37 ∗ -0.89 ∗ 0.05 ∗ 1 0
Germany 4.73 10.8 0.10 ∗ -0.91 ∗ 0 1
Italy -21.0 1.97 36.2 -0.50 ∗ -1.64 0.90
Spain 0.89 -14.6 -14.6 23.8 0.55 -1.60
RHP Cycle 2 (covariances ×10−6)
France 44.5 0.38 ∗ 0.70 ∗ 0.93 ∗ 1 0
Germany 4.43 3.13 -0.40 ∗ 0.69 ∗ 0 1
Italy 66.9 -10.3 207.1 0.38 ∗ 2.13 -6.30
Spain 100.4 19.9 88.3 262.8 1.89 3.69

Note: CCorrelations are reported in the upper right part and marked with ∗. The last two columns report the

factor loading matrices A
(i)
κ in (10) for i = 1, 2. For the RHP model we have restricted the variance of the trend

(σ2
η / σ

2
ε = 0.03) to enforce a smooth trend function.
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Figure 6: A multivariate trend-cycle(s) decomposition for the RHP of countries (i) France, (ii) Germany,
(iii) Italy and (iv) Spain.
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From Table 5 we note first that we obtain strong correlations for the 5-year cycles of GDP,
they range from 0.66 to 0.88 but there is less evidence for strong correlation for the 12-year
cycles of GDP. We find low correlations of the GDP Cycle 2 components with the GDP Cycle 2
component of Germany. However, France and Italy share a common long-term economic cycle.
Overall, this finding indicates a strong concordance at the business cycles frequencies among
the four countries. In other words, common shocks are driving the euro area business cycle
fluctuations, while long-term cycles may have a more idiosyncratic behaviour.

We observe relatively low correlations for real RHP variables among the four countries. For
the 5-year RHP cycle, only France and Germany have a positive correlation value while Germany
and Spain are strongly but negatively correlated. The negative correlation indicates a phase shift
in cycles. For example, it is found in the study of Alvarez et al. (2009) that the Spanish RHP
cycle leads other RHP cycles of other euro area countries. With respect to the 12-year RHP
cycle, we find two relatively high correlations, those between France and Spain and between
Germany and Italy (0.58 and 0.57, respectively).

There is some evidence of relationships between GDP and RHP cycles of specific countries.
Some correlations of substance have appeared mainly for the 12-year cycles. An exception is
the 5-year cycle for Spain that possesses a positive correlation (0.34) for its GDP and RHP
Cycle 1. With respect to Italy, we obtain close to zero correlations between GDP and RHP at
the business cycle frequencies. A similar finding is obtained for the estimated Cycle 1 from the
bivariate analysis but also, to a lesser extent, for the estimated Cycle 2 (lower frequencies). We
further notice the interesting result that a correlation of 0.41 is found for the 12-year cycle in
Germany between its GDP and RHP series. This correlation is also obtained for both restricted
and unrestricted bivariate models, implying thus a significant contribution of the housing sector
to the long-term dynamics of the economy.
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Table 5: Correlations for the two cycle components in the eight-variate model

France Germany Italy Spain
Cycle 1

GDP RHP GDP RHP GDP RHP GDP RHP
France GDP 1 -0.33 0.67 0.10 0.81 -0.59 0.77 0.13

RHP 1 0.075 0.65 -0.35 -0.13 -0.12 -0.64
Germany GDP 1 0.17 0.80 -0.27 0.88 -0.011

RHP 1 0.055 -0.26 -0.10 -0.95
Italy GDP 1 -0.037 0.66 0.034

RHP 1 -0.55 -0.040
Spain GDP 1 0.34

RHP 1
Cycle 2

GDP RHP GDP RHP GDP RHP GDP RHP
France GDP 1 0.95 0.19 0.043 0.72 0.41 0.54 0.50

RHP 1 0.44 0.24 0.63 0.43 0.57 0.58
Germany GDP 1 0.41 -0.31 0.26 0.44 0.21

RHP 1 -0.005 0.57 0.036 0.29
Italy GDP 1 0.045 0.12 0.37

RHP 1 0.13 0.099
Spain GDP 1 0.61

RHP 1

Note: For this model we have restricted the variance of the trend (σ2
η / σ

2
ε = 0.03) to enforce a smooth trend

function.
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5 Conclusions

In this paper, we have implemented several multivariate unobserved component models in order
to assess commonalities in the housing and business cycles of the four main euro area countries
(France, Germany, Italy and Spain) and to detect cyclical relationships between macroeconomy
and the housing sector. Specifically, we have allowed two cycles of different periods in the model
specification.

It turns out that we have shown synchronisation among the business cycles of the four
countries, leading thus to the existence of common cycles in the euro area. In contrast, there is
overall less evidence concerning real house prices, although results may slightly vary according
the various multivariate model specification. Indeed, in spite of the proven relationship between
France and Spain and of commonalities in the long-term cycles, there is no strong common
housing cycles in the euro area. It turns out that specificities and regulations in each country
strongly contribute to the evolution of domestic house prices. Finally, we find that the GDP
and real house prices cycles are related in the medium-term for fluctuations between 4 and 8
years, while the housing market contributes to the long-term economic growth only in Spain
and Germany.

As further research, it would be useful to integrate phase shifts in unobserved components
modelling in order to take leads and lags among cycles into account (see for example Ruenstler
(2004)). Another useful specification in this framework would be to assess the convergence of
housing cycles over recent years by using the approach proposed by Koopman & Azevedo (2008),
especially by integrating the last cycle in the analysis. Last we have used real housing prices
to evaluate the housing cycle, but other variables could have been considered as for example
residential investment, nominal house prices or measures of volume activity (housing starts,
buiding permits ...).
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