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Abstract

This paper models the relationship between growth and volatility for G7 economies in the time period 1960-

2009. It delivers for the first time estimates of this relationship based on a logarithm variant of stochastic

volatility in mean (SV-M) models. The relationship appears significantly positive in Germany and Italy, but

insignificant in other countries. We also show that output volatility has increased in all countries since the

beginning of the financial crisis, which illustrates the end of the great moderation. For comparison, the paper

also delivers estimates based on a logarithm variant of GARCH in mean (log-GARCH-M) models, the class

of time series models previously used in the literature to estimate the growth-volatility relationship. We show

that SV-M models deliver results preferable to those of log-GARCH-M models, despite the high computational

cost of their estimation. SV-M models fit generally better data than log-GARCH-M ones. As their residuals

do not violate distribution assumptions, they do not deliver dubious conclusions concerning the significance of

the relationship, which is the case of the log-GARCH-model for France, the UK and the US. Finally, SV-M

models suggest a positive impact of unexpected volatility on output growth, which is not taken into account by

log-GARCH-M models.

Keywords: growth, volatility, sequential Monte-Carlo methods.

JEL code: O40, E32, C15.

Résumé

Cet article modélise la relation entre la croissance et la volatilité des économies du G7 au cours de la période

1960-2009. Il fournit pour la première fois des estimations de cette relation fondée sur une variante en logarithme

des modèles à volatilité stochastique en moyenne (SV-M). La relation s’avère significativement positive pour

l’Allemagne et l’Italie, mais non significative pour les autres pays. La volatilité du PIB a augmenté dans tous

les pays depuis le début de la crise, ce qui illustre la fin de la grande modération. L’article fournit aussi, à

titre de comparaison, des estimations fondées sur une variante en logarithme des modèles GARCH en moyenne

(log-GARCH-M). Ceux-ci étaient utilisés jusqu’à présent dans la littérature pour estimer la relation volatilité-

croissance. Les modèles SV-M fournissent des résultats préférables à ceux des log-GARCH-M, en dépit d’un

temps de calcul plus important pour mener à bien les estimations. Ils témoignent d’abord d’une meilleure

adéquation aux données et respectent mieux les hypothèses concernant les distributions des résidus, ce qui évite

de tirer des conclusions infondées sur la significativité de la relation. Enfin, les modèles SV-M suggèrent que la

volatilité non anticipée aurait un impact positif sur la croissance du PIB, impact qui n’est pas pris en compte

par les modèles log-GARCH-M.

Mots-clés: croissance, volatilité, méthodes de Monte-Carlo séquentielles.

Classification JEL: O40, E32, C15.
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Introduction

The deep recession caused by the 2007-2008 financial crisis seems to end the period of the Great Moderation.

This large decline of output volatility occurred in the mid-1980s, as shown for the US by McConnell and Perez-

Quiros (2000) and Blanchard and Simon (2001). This decline also occurred for most of other G7 economies

(Stock and Watson 2005). Three explanations have been suggested for the moderation: good monetary policy

(good policies), improved inventory management (good practices) or a decline in the volatility of exogenous

shocks (good luck). A frequency-domain analysis, carried out by Ahmed et al. (2004), concluded that good

luck was the most likely explanation. Recent shocks associated to the crisis confirm this conclusion. Canarella

et al. (2008) find preliminary evidence that US and UK economies have entered in a new regime of high

volatility. Such a high volatility has put foreground the debate about the relationship between growth and

volatility. Indeed, this issue plays a crucial role in assessing the usefulness of short-run stabilization policies

(see for example Blackburn 1999 or Aghion et al. 2009).

The aim of our paper is to determine the empirical relationship between output volatility and output growth.

We propose a new empirical approach based on the stochastic volatility in mean (SV-M) model, the SV coun-

terpart of GARCH-M models. SV-M models incorporate output volatility as an explanatory variable of output

growth. As we do not have an analytical expression of their likelihood, we estimate these models with Sequential

Monte-Carlo (SMC) methods detailed in Doucet et al. (2001).

As far as we know, the SV-based approach adopted here has not been carried out for studying the relationship

between output volatility and output growth. Following Caporale and McKiernan (1998), time series studies of

this relationship are generally based on GARCH in mean (GARCH-M) models. The SV-M model, created by

Koopman and Uspensky (2002), is applied in their paper to international stock index returns. Berument et al.

(2009) applied this model to measure the effect of inflation uncertainty on inflation.

Here, we estimate a logarithm variant of SV-M models of G7 output series in the time period 1960-2009. We

relate the growth to the log-volatility instead of the volatility itself, as the skewness of output growth is low.

This avoids the problem of autocorrelation of residuals encountered in Koopman and Uspensky (2002). We find

a significantly positive relationship for Germany and Italy and insignificant relations in other countries. For the

sake of comparison, we also estimate a logarithm variant of GARCH-M models (log-GARCH-M), which were

previously applied in the literature. Our results appear preferable relative to those of log-GARCH-M models

for three reasons. SV-M models fit generally better data than log-GARCH-M models. As their residuals do

not violate distribution assumptions, they do not deliver dubious conclusions concerning the significance of the

relationship, which is the case of the log-GARCH-M model for France, the UK and the US. Finally, SV-M

models suggest a positive impact of unexpected volatility on output growth, which is not taken into account by

log-GARCH-M models.

The paper proceeds as follows. In the first section, we survey the theoretical debate and the previous empirical

evidence about the relationship between the output volatility and the long-run growth. In the second section,
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we present our SV-M model, in comparison with the log-GARCH-M model, and the estimation methodology.

In a third section, we comment our empirical results. In a last section, we conclude.

1. Volatility and growth

1.1. The theoretical debate. Firstly, output volatility might have two opposite effects on investment behav-

ior. On one hand, a high uncertainty should decrease investment, because such expenditures are irreversible

and can be delayed (Pindyck 1991). This effect is reinforced, when the risk increases with time (Hassler 1996;

Bloom et al. 2009). On the other hand, Cooper et al. (1999) show that, when shocks are positively serially

correlated and adjustment costs are fixed, replacement investment is procyclical.

Then, the impact on growth can be analyzed, by incorporating the investment behavior in endogenous growth

models. For example, with convex adjustment costs of the capital stock, the long-term growth of a AK model

should be negatively correlated to output volatility (Barlevy 2004). Without adjustment costs, Jones et al.

(2005) show that this relationship is negative, only if the risk aversion of households is lower than one. In

the opposite case, an increase in volatility raises the average growth rate with the saving rate because of a

precautionary comportment.

Finally, following the Schumpeterian view, some endogenous growth models underline the role of productivity

improving activities (PIA). Aghion and Saint-Paul (1998) show that recessions should have a cleansing effect, i.e.

an incentive to reorganize and innovate. The opportunity cost of long-term productivity enhancing investments,

relative to short-term ones, is lower during recessions than during expansions and their share in total investment

should thus be countercyclical. However, credit market imperfections hamper innovation and reorganization

during recessions (Aghion et al. 2005). Credit constraints have an asymmetrical effect: they imply a reduction of

R&D expenditures during recessions, but no augmentation during expansions. Moreover, this effect is stronger

for R&D expenditures than physical investments because such expenditures have a positive return at a longer

term.

1.2. The previous empirical evidence. If the theoretical debate has not determined what should be the

sign of this growth-volatility relationship, empirical evidence is also mixed and divided between studies based

on panel datasets and those based on time series.

Ramey and Ramey (1995), the reference paper in the literature on this subject, find a negative relationship

for 92 countries in the period 1960-1985, which is robust to various controls1. They relate output growth yi,t to

control variables Xi,t and to the standard deviation σi of the residuals, by estimating the following equation:

yi,t = δσi + θXi,t + σiεi,t

where εi,t ∼ NID(0, 1). On the contrary, they find a positive effect of the volatility of expected growth,

when they distinguish it from the volatility of innovations. This point would explain the opposite result found

1Although some earlier papers like Kormendi and Meguire (1985) found the opposite result, this result has then been confirmed

by Martin and Rogers (2000), Kneller and Young (2001) and Rafferty (2005).
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previously in Kormendi and Meguire (1985), where the standard deviation of monetary shocks, correlated with

output innovations, might capture the negative effect.

However, this empirical approach based on panel datasets relies on a rough description concerning the evo-

lution of output volatility. This one is generally measured as the standard deviation of the regression residuals

in the whole time period or in fixed-length windows and the cross-section dimension is in this case more im-

portant than the time dimension. Thus, the heterogeneity of the countries included in the sample might affect

these results. For example, Imbs (2007) has shown with a sectoral dataset covering 47 countries that a positive

relationship at the sectoral level is hidden by a negative relationship at the aggregated level.

Some papers tried to deal with this heterogeneity issue, by modeling the growth-volatility relationship with

GARCH-M models estimated on time series datasets. In these models, a country’s expected output growth

linearly depends on the conditional volatility and the conditional volatility follows an ARMA process, whose

innovations are the square of the innovations of output growth. As far as we know, this model was applied to

the estimation of the growth-volatility relationship for the first time by Caporale and McKiernan (1996). They

modelled the industrial production (IP) of the United Kingdom in the time period 1948.01-1991.09. This paper

finds a positive effect, but results are mixed in other following applications of GARCH-M models to GDP (or

IP) time series2.

2. Modeling the growth-volatility relationship

After a brief description of the SV-M model applied here, we compare it to a log variant of GARCH-M

models which were previously applied to the same issue. Then, we explain the methodology chosen here for the

estimation of the SV-M model.

2.1. SV-M models. We consider the following SV-M model, which is very close to the model proposed in

Koopman and Uspensky (2002):

(2.1)

 yt = c+
∑p
i=1 αiyt−i + δht + σ∗ exp

(
ht

2

)
εt

ht = φht−1 + ηt

with two independent noises εt ∼ NID(0, 1) and ηt ∼ NID(0, σ2
η). The mean equation of output growth

yt contains lagged terms, the log-volatility ht and the innovation, equal to a standardised noise εt times the

squared root of the volatility exp
(
ht

2

)
and the volatility level σ∗. The parameter φ is constrained to lie in the

interval ]-1;1[, in order to model the log-volatility as a stationary AR(1) process.

The only difference with the model of Koopman and Uspensky (2002) consists in including the log-volatility

in the mean, instead of the volatility itself. In both models, the log-volatility is assumed Gaussian and centered.

Thus, the volatility of output growth has a high skewness, i.e. a high asymetry caused by the the zero bound. As

the skewness of output growth is quite low (e.g. -0.20 for the US), a relation to the log-volatility seems likelier

2For the US, Caporale and McKiernan (1998) and Fountas and Karanasos (2006) estimated a positive effect with annual data

in a time period which starts in the nineteenth century. However, if the model takes into account the great moderation with a

structural break, the effect is not significant (Fang and Miller 2008).
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than a relation to the volatility itself. If the true model includes the log-volatility, estimating a misspecified

model with the volatility shoud cause autocorrelation of residuals. This is the case in Koopman and Uspensky

(2002): Box-Ljung statistics exceed their critical values in most estimated models. As shown in section 4, this

problem seems to be solved with our specification, as residuals do not show significant auto-correlation.

In a reduced form, if we define the innovations by ut = σ∗ exp
(
ht

2

)
εt, the logarithm of their square follows

an ARMA(1,1) process:

log(u2
t ) = (1− φ) log(σ∗2) + φ log(u2

t−1) +
(
ηt + log(ε2t )− φ log(ε2t−1)

)
because the last term is a non-Gaussian MA(1) process.

Finally, the expected growth yt|t−1 depends on the expected log-volatility, called here ht|t−1 and equal to

φht−1:

yt|t−1 = c+
p∑
i=1

αiyt−i + δht|t−1,

but output growth also depends on the unexpected volatility (ht − ht|t−1) which is equal to the innovation ηt:

yt = c+
p∑
i=1

αiyt−i + δht|t−1 + δ
(
ht − ht|t−1

)
+ σ∗ exp

(
ht
2

)
εt.

2.2. Comparison with log-GARCH-M models. The previous SV-M model has a specification close to the

following log-GARCH(1,1)-M model: yt = c+
∑p
i=1 αiyt−i + δ log(σ2

t ) + ut

log(σ2
t ) = ω + ξ log(σ2

t−1) + ψ log(u2
t−1)

with σ2
t the conditional volatility of the innovation ut. Such a log variant of the GARCH model was proposed

without any in-mean effect in Geweke (1986).

For the sake of comparison with the SV-M model, this model is rewritten with standardised residuals εt ∼

NID(0, 1) and a centered log-volatility ht: yt = c+
∑p
i=1 αiyt−i + δht + σ∗ exp

(
ht

2

)
εt

ht = φht−1 + ψηt−1

with φ = ξ + ψ and ηt = log(ε2t ) − E
[
log(ε2t )

]
. The mean of log(ε2t ) is known to be approximately equal to

-1.27. The stationarity of the log-volatility requires the persistence parameter to be lower than one in absolute

value (|φ| < 1). This log-GARCH-M model has the same mean equation as the previous SV-M model with the

same independent variables : the lags of the dependent variable and the log-volatility of the innovation.

Importantly, while the log-volatility is modeled in the SV-M as an AR(1) process with a second independent

innovation, the log-volatility is in the log-GARCH-M model an expected log-volatility based on the residuals of

the mean equation.

As in the SV-M model, the logarithm of the squared innovations follows an ARMA(1,1) process:

log(u2
t ) = (1− φ) log(σ∗2) + φ log(u2

t−1) +
(
log(ε2t ) + (ψ − φ) log(ε2t−1)

)
6



because the last term is also a non-Gaussian MA(1) process.

Finally, the nature of output volatility is different in both models. In the log-GARCH(1,1)-M model, the

expected output growth yt|t−1 depends on the expected log-volatility:

yt|t−1 = c+
p∑
i=1

αiyt−i + δht.

and there is no unexpected log-volatility. Thus, an important advantage of SV-M relative to GARCH-M models

consists in relating output growth to both components of the volatility, through the coefficient δ.

3. Estimation methodology

Both GARCH and SV are non-linear models. In log-GARCH-M models, log-volatility is directly observed

given a set of parameters θ and past observations y1, . . . yt−1 (we will denote this y0:t−1 in a more condensed

way). Thus, likelihood has an analytical expression available and can be directly maximized with numerical

methods, at a low computational cost. This is not the case for SV-M models, where parameters and volatility

have to be estimated and where likelihood has no analytical form.

To handle this, simulation techniques allow to simulate the posterior distribution of the volatility and its

minimum mean squared error (MMSE) estimate. The maximisation of the likelihood based on the estimated

volatility delivers parameters estimates, but this maximisation has a high time cost. Monte-Carlo Markov chain

(MCMC) or sequential Monte-Carlo (SMC) methods, described respectively in Robert and Casella (2004) and

Doucet et al. (2001), allow to sample from posterior distributions. Here, we choose the second approach, which

is better suited to our recursive problem. This approach has already been applied by Fernandez-Villaverde

and Rubio-Ramirez (2005) to the estimation of state variables and parameters of dynamic stochastic general

equilibrium (DSGE) models. Our estimation methodology differs from theirs for the estimation of parameters.

3.1. Filtered estimation of the states. State space models are characterized by a measurement equation,

where the observed variables are expressed as a function of the contemporaneous state variables, and a transition

equation, that expresses the dynamics of the state variables. The SV-M model as specified in equation 2.1 is

already written in a state-space form.

SMC methods are based on the Bayes law and use iterative algorithms, that take advantage of this description.

Their aim is to simulate sequentially according to the filtered distribution of the unobserved variable, i.e. the

conditional distribution of ht given past observations y0:t−1. The sampling with importance re-sampling (SIR)

algorithm that we use, proceeds sequentially for all dates t in the two following steps:

(i) Suppose a sample (hit|t−1)i=1..N distributed according the conditional law of ht given past observations

is available (we will denote it h1:N
t|t−1). Using observation yt and measurement equation, the sample is

re-sampled into h1:N
t|t , according to measurement likelihood weights given by 3

3In this part, we denote p(a|b) the conditional probability density function of a given b for all random variables a and b.
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`t(ht, y0:t; θ) , p(yt|ht, yt−p:t−1; θ)

=
1√

2πσ∗ exp
(
ht

2

) exp
(
−

(yt − c−
∑p
i=1 αiyt−i − δht)2

2(σ∗)2 exp(ht)

)

with θ = (c, α1, ..., αp, δ, σ
∗, φ, ση)′ the vector of parameters. This resampling step generates a sam-

ple distributed according to the conditional law of ht given past and present observations. The SIR

algorithm cannot be executed without the existence of these densities.

(ii) Then, some transition noises are drawn according to the law of ηt specified in the model. They are

used together with the sample h1:N
t|t and the transition equation to generate a sample h1:N

t+1|t distributed

according to the conditional law of ht+1 given past observations.

To initialize at date t = 0, N particles h1:N
0|−1 are drawn from an a priori initial law of the unobserved log-

volatility h0. Here, we choose the uniform law U([−1; 1])4. Then operations (i) and (ii) are sequentially repeated

for all dates t > 0, till the last observation yT .

The generated samples are used to get filtered estimates of the unobserved variables, since the MMSE filtered

estimate of ht is given by

E[ht|y0:t; θ] ≈
1
N

N∑
i=1

hit|t

3.2. Smoothed estimation of the states. In the previous subsection, we only explain how we estimate

unobserved variables given past and current observations. The estimate given all observations, including future

ones, is called smoothed estimate and is computed from an extra smoothing algorithm. Here, we implement

the non-linear forward-backward smoother of Godsill et al. (2004), that consists in re-weighting the previous

particles into h1:N
t|T , using the transition likelihood, given by

p(ht|ht−1; θ) =
1√

2πση
exp

(
− (ht − φht−1)2

2σ2
η

)
The existence of these densities is another necessary assumption, for performing smoothed estimation. MMSE

smoothed estimates of ht, given by E[ht|y0:T ; θ], are again computed as the empirical mean of smoothed samples.

The 95% confidence intervals of both filtered and smoothed estimates are directly computed from the samples

distributed according to the corresponding distributions.

3.3. Maximum likelihood estimation of parameters. We use maximum likelihood inference to estimate

the parameters. SIR algorithm described previously provides a way to compute the likelihood L(θ) of the model,

4As in any Bayesian inference, this choice has an impact on the simulated sample h1:N
t|t , but this impact decrease quickly with

the date t.

8



applying Monte Carlo approximation, since

L(θ) = Eh[`0(h0, y0, θ)|θ]
T∏
t=1

Eh[`t(ht, y0:t, θ)|y0:t−1; θ](3.1)

≈
T∏
t=0

1
N

N∑
i=1

`t(hit|t−1, y0:t; θ)

However, this computation of likelihood is very noisy, due to Monte Carlo approximation errors. This makes

usual gradient maximization algorithms inefficient.

To circumvent this issue, we maximize an approximated likelihood L(θ, θ0) using a unique filtered or smoothed

sample of particles computed with a unique parameter θ0. This technique, developped in Hürzeler and Künsch

(2001), provides a smooth approximate of the likelihood which we can maximize with usual gradient maxi-

mization algorithms. This method has two advantages relative to simulated annealing, used for example in

Fernandez-Villaverde and Rubio-Ramirez (2005). It does not require to calibrate technical parameters, e.g. the

speed of cooling, and it delivers standard errors of parameters estimates.

The filter-based method relies on the importance sampling principle. Importance weights are defined as

follows,

πt(ht, θ, θ0) =
p(ht|y0:t−1; θ)
p(ht|y0:t−1; θ0)

Then, the likelihood can be computed from equation (3.1), using

Eh[`t(ht, y0:t, θ)|y0:t−1; θ] = Eh[`t(ht, y0:t, θ0)πt(ht, θ, θ0)|y0:t−1; θ0]

≈ 1
N

N∑
i=1

`t(hit|t−1, y0:t, θ0) πt(hit|t−1, θ, θ0)

It is also possible to approximate likelihood using a smoothed sample, defining importance weights as

π0:T (h0:T , θ, θ0) =
p(h0:T , y0:T ; θ)
p(h0:T , y0:T ; θ0)

Then the following identity can be used

L(θ) = L(θ0) Eh
[
π0:T (h0:T , θ, θ0)

∣∣ y0:T ; θ0
]

≈ L(θ0)
1
N

N∑
i=1

π0:T (hi0:T |T , θ, θ0)

The whole computation methodoly for πt and π0:T is explained in Hürzeler and Künsch (2001).

This method enables in both versions to remove noises due to multiple samples computations for different θ.

It allows then to use classical optimization tools. Here we use sequential quadratic programming, a variant of

Newton’s method for contrained maximization problems.

However, approximation using importance sampling is not accurate for θ too far from θ0. So we need to make

θ0 converging toward the optimum, in order to get a good approximation of the likelihood at the optimum. In

practice, this leads to use an iterative scheme with two steps:

(i) Maximization of the importance sampling approximated likelihood
9



(ii) Update of θ0 with the maximum computed in (i).

This converges to the maximum of the exact likelihood. Then, standard errors of parameters estimates are

computed from the inverse of the Hessian matrix at the optimum.

Computation with filtered samples is a global approximation of the likelihood. However it has a high O(N2)

complexity. On the contrary, computation with smoothed samples is O(N), but it is only a local approximation.

So in the first global iteration, we maximize filter based computed likelihood. This enables to find a first

maximum, much better than the arbitrary initial condition. Then we switch to smoother based computation,

which converges much faster.

However, the global convergence issue remains, since we still deal with an approximated likelihood. The only

solution to increase precision, is to rise the number N of particles. In practice, those computations are very

time consuming, so we use N = 500 particles in the first iteration and N = 2000 in the following ones. Running

those algorithms with Matlab on an AMD Athlon Dual Core Processor (2.59 GHz), a filtering step is achieved

in 1 second, a smoothing step is achieved in 2 minutes and about 2 hours are needed to perform a full estimation

of the model, with in average 15 global iterations and 150 likelihood computations in each iteration.

4. Empirical results

In this section, SV-M models are applied to the output of G7 countries and their results are compared to

those of log-GARCH-M models. The estimation of parameters should give information about the sign of the

growth-volatility relationship. The estimation of the log-volatility should help to describe the end of the great

moderation.

4.1. Data. We consider quarterly GDP growth rate series of G7 countries (Germany, France, Italy, UK, US,

Japan and Canada). Time series start in 1960:Q2, except for Germany for which quarterly data are available

only from 1968:Q1 and for Canada for which quarterly data are available only from 1961:Q2. They all finish in

2009:Q2. Thus, last observations are preliminary estimates, which should be revised in the future, and results

should be cautiously interpreted at the end of the sample. The series come from the Eurostat national accounts,

except for American, Japanese and Canadian series which come from OECD main economic indicators database.

They are seasonally adjusted and expressed in the value of their national currency, using chained-price indexes.

They have been retropolated using historical series of the OECD business statistics database (BSDB).

4.2. Specification tests. The number of lags in the mean equation is determined for SV-M and log-GARCH-

M models by minimising the Schwarz information criterion (SIC). We also impose that our residuals should be

independent, as they are specified to be i.i.d in the model. When the Q statistic of order 12 is too high, the

Ljung-Box test rejects the independence of residuals and the number of lags is increased until the independence

of residuals is accepted by the test. As expected in section 2, our specification with the log-volatility in the mean

equation, instead of the volatility itself (specification of Koopman and Uspensky 2002), provides satisfactory
10



results concerning the autocorrelation of residuals. Table 1 and 2 show that we cannot reject the null hypothesis

of no autocorrelation for all countries either for SV-M and log-GARCH-M models.

We also check for the normality of the residuals. For all SV-M models, the Jarque-Bera statistic indicates

that the null hypothesis cannot be rejected at the 5% level. On the contrary, the null hypothesis is rejected

for France and UK with log-GARCH-M models. This might be due to fat tail effects. Using a Student’s t-

distribution for residuals could take this effect into account, but such a variant of the log-GARCH-M model

would be less parsimonious than the SV-M model.

Finally, we find a better fit (higher log-likelihood and lower SIC) of SV-M models relative to log-GARCH-M

ones. Such a result was also found by Koopman and Uspensky (2002) with financial time series. Kim et al.

(1998) had previously shown with Monte-Carlo tests that SV models have a fit significantly better than that of

GARCH models, but insignificantly different from that of less parsimonious t-GARCH models.

4.3. Parameters estimates. Table 1 reports the SV-M estimations results for the seven countries in the full

sample period.

Table 1. Estimation results for the SV-M model

Legend: standard errors are written in italic and p-values at the 5% level are underlined.

Volatility is highly persistent in all countries with estimated φ close to 0.94, except for Japan where φ is a

bit lower (0.82). Germany and Japan show the highest volatility level (σ∗ ≈ 0.95) during the period, almost
11



twice as high as France’s level, which is the lowest (σ∗ = 0.56). The variations in the volatility process are

the largest for the UK (ση = 0.54) and the smallest for France, Italy and the US with a value close to 0.29.

Different patterns about the relationship between growth and volatility arise from the estimations. Germany

and Italy present a significant and positive relationship, with respectively δ = 0.21 and δ = 0.16. For other

countries, δ is not significant, but we may distinguish France and Japan where the value is positive (δ = 0.08

for both), from the UK and the US where the value is negative (δ = −0.07 and δ = −0.02 respectively). Hence,

the SV-M model gives us insights that output volatility can be positively related to output growth, although

this relationship is not significant for all countries.

Table 2. Estimation results for the log-GARCH-M model

Legend: standard errors are written in italic and p-values at the 5% level are underlined.

To challenge these results we confront them to log-GARCH-M estimation results, which are presented in

table 2. First, as in the SV-M model, the estimate of φ indicates high persistence levels for all countries, but

the French log-volatility is nearly integrated (its persistence is close to one) in the log-GARCH-M model. The

high variations in volatility for the UK also arise from the large ψ.
12



Second, except for Canada, estimates of δ, the coefficient of the growth-volatility relationship, are always

lower in the log-GARCH-M model than in the SV-M model. This difference suggests that the SV-M model

would take into account a positive impact of unexpected volatility on output growth. If we look at standard

errors of estimates in the SV-M model, we see that this conclusion is only suggestive as this difference is not

significant for all countries. Although we would theoretically expect to get different results from both models

due the presence of unexpected volatility in the SV-M model only, the δ coefficient expresses the aggregated

impact of expected and unexpected volatilities, which may be very close to the impact of the expected one only.

Indeed, when persistence is very high, 1− φ2 � φ2 and then

var(φht−1) =
φ2

1− φ2
(σ∗)2 � (σ∗)2 = var(ηt)

This means that the expected volatility is very large compared to the unexpected volatility. In practice, the

expected volatility accounts for 85% to 90% of total volatility, except for Japan where it is lower. This probably

explains why parameter estimates obtained with SV-M and log-GARCH-M models are not significantly different.

However, there were a priori no reasons to discard the unexpected volatility ex ante. Our results simply suggest

that doing so turns out to be a legitimate approximation.

Third, while estimates are only significant for Germany and Italy in the SV-M model (with a positive sign),

estimates are also significant for France, the UK and the US (with respectively a positive, a negative and a

negative sign) in the log-GARCH-M model. This could be a misleading result. In the log-GARCH-M case,

contrary to the SV-M case, the normality of residuals is not warranted and Student tests can deliver false

conclusions about the significance of the growth-volatility relationship. Indeed, p-values of Jarque-Bera tests

are lower than 10% for three countries (Germany, France and the UK), lower than 15% for two countries (Italy

and the US) and higer than 25% for the two last countries (Japan and Canada). In conclusion, SV-M models

deliver more robust conclusions than log-GARCH-M models, because of the better quality of their residuals.

4.4. Estimates of log-volatilities. Figure 1 plots the estimates of stochastic volatility. For all countries

except Japan, we observe high volatility levels in the 1960’s and 1970’s, which tend to decrease from the 1980’s

until the beginning of the current crisis. The decrease is prompt for the US around 1983, which is consistent

with the standard ”great moderation” story. For other countries, the decrease is more gradual.

If we consider 95% confidence intervals of state estimates, we notice that the lowest upper bound of the

interval in the whole sample is lower than the highest lower bound of the interval. Thus, for all countries, the

decrease in volatility is significant in the last 50 years. Recent data gives us precious indications on a clear

increase of the volatility in the last two years, implied by the the financial crisis of 2007-2008. This illustrates

the end of the great moderation.

We can compare our results with those obtained by Stock and Watson (2005). They estimate the volatility

in an AR model of the G7 output growth rates with non-stationary SV innovations. Their sample covers the

period going from 1960 to 2002. Our results are similar for the US, the UK and Italy. Some divergences occur
13



Figure 1. Estimates of the log-volatility in G7 economies

Legend: for the SV-M model, smoothed estimates of the log-volatility (black line) with their 95% confidence intervals (dotted

lines); for the log-GARCH-M model, log-volatilities (grey line).

for France, Germany and Japan, but global conclusions are the same, although their time period does note

include the end of the great moderation.

5. Conclusion

This paper applies for the first time the SV-M model to describe the relationship between growth and

volatility. This relationship appears significantly positive in Germany and Italy, but insignificant in other

countries. Output volatility has increased in all countries since the beginning of the financial crisis, which

illustrates the end of the great moderation. SV-M models are also compared with log variants of GARCH-M
14



models, the class of time series models previously used in the literature to address this issue. We show three

advantages of SV-M models. They fit generally better data than log-GARCH-M models. As their residuals do

not violate distribution assumptions, they do not deliver dubious conclusions concerning the significance of the

relationship, which is the case of the log-GARCH-model for France, the UK and the US. Finally, they deliver

a positive impact of the unexpected volatility, which is not taken into account in log-GARCH-M models.

In further researches, the model of the growth-volatility relationship could first be enriched in two directions:

by disentangling the unexpected from the expected volatility; by distinguishing the long-run from the short-run

fluctuations of output growth. These distinctions could be incorporated by merging the SV-M model with an

unobserved component framework. Then, the model could also be extended with a multivariate dimension, in

order to encompass the model of Ramey and Ramey (1995). Such an extended model would be more difficult

to estimate, but it would help to characterise more precisely the growth-volatility relationship.
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