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Résumé :

Nous évaluons dans ce papier comment la non-normalité des rendements peut affecter
l’allocation d’actifs. Une expansion en séries de Taylor de la fonction d’utilité espérée
permet de se concentrer sur un certain nombre de moments et de calculer numérique-
ment 'allocation de portefeuille optimale. Un avantage décisif de cette approche est
qu’elle demeure opérationnelle méme lorsque le nombre d’actifs devient important. Nous
montrons qu’en présence de non-normalité modérée le critére espérance-variance fournit
une bonne approximation de la maximisation de 1'utilité espérée. En revanche, en cas
de non-normalité marquée (telle que celle obtenue pour certains titres sur les marchés
développés ou pour certains indices boursiers sur les marchés émergents), le critére
espérance-variance peut conduire a une approximation erronée de 1'utilité espérée. Dans
de telles situations, des stratégies fondées sur I'optimisation d’un critére faisant inter-
venir les troisiéme ou quatriéme moments sont susceptibles d’approcher correctement

I'utilité espérée.

Mots-clés : Allocation d’actifs, Rendements boursiers, Non-normalité, Fonction d’utilité.
Classification JEL : C22, C51, G12.

Abstract:

We evaluate how departure from normality may affect the allocation of assets. A Taylor
series expansion of the expected utility allows to focus on certain moments and to
compute numerically the optimal portfolio allocation. A decisive advantage of this
approach is that it remains operational even if a large number of assets is involved. We
show that under moderate non-normality the mean-variance criterion provides a good
approximation of the expected utility maximization. In contrast, under large departure
from normality (as found in some stocks in mature markets or in some stock indices in
emerging markets), the mean-variance criterion may fail to approximate the expected
utility correctly. In such cases, the three-moment or four-moment optimization strategies

may provide a good approximation of the expected utility.

Keywords: Asset allocation, Stock returns, Non-normality, Utility function.
JEL classification: C22, C51, G12.



Résumé non technique :

Depuis longtemps, il a été montré que les rendements des actifs financiers sont non-
normaux. De nombreuses études empiriques suggerent que la distribution des rendements
est asymétrique et présente des queues épaisses. Par la suite, une abondante littérature
s’est interrogée sur ’adéquation du critére espérance-variance proposé par Markowitz
(1952) pour 'allocation d’actifs. De nombreux auteurs ont étudié comment la fonction
d’utilité espérée pourrait étre approchée par une fonction des moments élevés. Toute-
fois, les premiéres évaluations de 'intérét de ces moments élévés sont plutdot mitigées.
Certaines études ont comparé 'utilité espérée (obtenue par une maximisation directe) et
'utilité approchée (obtenue par le critére espérance-variance). Dans la plupart des cas,
les auteurs n’ont trouvé que de petites différences entre les deux stratégies d’allocation.
Dans d’autres contextes, toutefois, la non-normalité des rendements pourrait interdire
le critére espérance-variance d’approcher correctement 1'utilité espérée.

Une approche intéressante pour tenir compte des moments élevés dans 1’allocation
d’actifs consiste a utiliser une expansion en séries de Taylor pour déduire I’approximation
de la fonction d’utilité espérée. Alors que cette approche a souvent été utilisée dans les
tests empiriques du Modéle d’Evaluation Des Actifs Financiers avec moments élevés, trés
peu d’études ont considéré le probléme de 'allocation d’actifs & partir d’'une expansion
en séries de Taylor. Il faut noter qu’il existe plusieurs critiques a l'utilisation de cette
expansion dans un cadre d’allocation d’actifs. En particulier, ’expansion en séries de
Taylor peut ne converger vers 1'utilité espérée que sous certaines conditions. Pour cer-
taines fonctions d’utilité (comme la fonction exponentielle), ’expansion converge pour
toutes les valeurs possibles de la richesse, alors que pour d’autres (comme la fonction
puissance), la convergence n’est obtenue que pour un intervalle restreint de richesse.
En outre, la troncation des séries de Taylor souléve plusieurs difficultés, car il n’existe
pas de régle, en général, pour déterminer l’ordre de la troncation. Pire, I'inclusion d'un
moment additionnel n’améliore pas nécessairement la qualité de I'approximation.

Dans ce papier, nous étudions comment la non-normalité des rendements peut af-
fecter I’allocation de la richesse d’un investisseur maximisant son utilité. Pour répondre
a ce probléme, nous considérons tout d’abord le cas d’un investisseur avec une fonc-
tion d’utilité exponentielle, qui permet de calibrer le degré d’aversion pour le risque de
I'investisseur trés simplement. Nous approchons alors 1'utilité espérée a partir d’une
expansion en séries de Taylor avec deux moments ou plus. Enfin, nous comparons
I’allocation obtenue quand 1'utilité espérée est maximisée directement avec 1’allocation
obtenue a partir d’'une expansion jusqu’a un certain ordre. Nous utilisons plusieurs
critéres pour apprécier ces différentes stratégies d’optimisation. En plus d’'une mesure
de la distance entre les poids des portefeuilles, nous estimons le cotit d’opportunité

d’utiliser une stratégie sous-optimale, c’est-a-dire une optimisation fondée sur les mo-



ments, plutot qu’'une maximisation directe de la fonction d’utilité espérée.

Dans la partie empirique du papier, nous nous intéressons a trois types de données
différents, caractérisés par les rendements s’éloignant modérément ou nettement de la
normalité. Ces données comprennent (1) des rendements hebdomadaires des grandes
zones géographiques; (2) des rendements hebdomadaires d’actions issues de l'indice
S&P100; (3) des rendements mensuels de marchés émergents. Alors que ces différents
types de rendement sont non-normaux, ils induisent des implications trés différentes
pour la qualité de 'approximation de 1'utilité espérés & partir d’une fonction des mo-
ments. D’un coté, dans le cas de rendements légérement non-normaux, nous obtenons
que les différentes stratégies d’allocation conduisent essentiellement a la méme alloca-
tion, suggérant que le critére espérance-variance fournit une approximation correcte de
I’'utilité espérée. D’un autre coté, en cas de forte non-normalité, la différence entre la
maximisation de 'utilité espérée et le critére espérance-variance peut étre trés impor-
tante. Nous montrons que, dans de tels cas, I'extension a un critére fondé sur trois
ou quatre moments permet une amélioration sensible de 'utilité espérée. La qualité de
I’approximation est mise en lumiére par I’évaluation du cotit d’opportunité qui est tres
faible, dans tous les cas étudiés, pour le critére fondé sur les quatre premiers moments

de la distribution.

Non-technical summary:

It has long been recognized that financial asset returns are non-normal. Strong
empirical evidence suggests that returns are driven by asymmetric and/or fat-tailed
distributions. Subsequently, an abundant literature emerged, questioning the adequacy
of the mean-variance criterion proposed by Markowitz (1952) for allocating wealth.
Several authors considered how the expected utility function may be approximated by
a function of higher moments. However, early evidence on the usefulness of additional
moments in the allocation process is rather mixed. A number of studies have compared
the expected utility (obtained from direct optimization) with the approximated utility
obtained from the mean-variance criterion. In most cases, the authors obtained very
small differences between the two allocation strategies. In other contexts, however, the
departure from normality may prevent the mean-variance criterion to approximate the
expected utility accurately.

A convenient way of dealing with higher moments in the asset allocation is the use of
the Taylor series expansion to derive an approximation of the expected utility function.
While this approach has long been used in empirical applications to test the CAPM

with higher moments, very few studies have considered the asset allocation problem



using Taylor series expansions. There are several criticisms to the use of Taylor series
expansions in the asset allocation context, however. In particular, the Taylor series
expansion may converge to the expected utility under restrictive conditions only. For
some utility functions (such as the exponential one), the expansion converges for all
possible levels of wealth, while for others (e.g., the power function), convergence is
obtained only over a given range of final wealth. In addition, the truncation of the
Taylor series raises several difficulties, because there is no rule, in general, for selecting
the order of the truncation. Worse, the inclusion of an additional moment does not
necessarily improve the quality of the approximation.

In this paper, we investigate how non-normality of returns may affect the allocation
of wealth for utility-maximizing investors. To address this issue, we first consider the
case of an investor with an exponential utility function, that captures the investor’s
risk aversion in a very simple way. Then, we approximate the expected utility by a
Taylor series expansion with two or more moments. Thus, we compare the allocation
obtained when the expected utility is directly maximized with the allocation obtained
using an expansion up to a given order. We use several criteria for gauging the various
optimization strategies. In addition to a distance measure between portfolio weights,
we estimate the opportunity cost of using a sub-optimal strategy, i.e., an optimization
based on moments, rather than on a direct numerical optimization of the expected utility
function.

In the empirical part of the paper, we consider three different data sets, contain-
ing returns with both moderate and large departures from normality. These data sets
contain (1) weekly returns for broad geographical areas; (2) weekly returns from stocks
of the S&P100 index; (3) monthly returns for emerging markets. While all these data
display departure from normality, they turn out to have very different implications for
the quality of the approximation of the expected utility by a function of moments. On
one hand, in case of slight non-normality of returns, we obtain that the different alloca-
tion strategies provide basically the same allocation, suggesting that the mean-variance
criterion correctly approximates the expected utility. On the other hand, under more
severe departure from normality, the difference between the maximization of the ex-
pected utility and the mean-variance criterion may be very large. We provide evidence
that in such cases the extension to a three-moment or a four-moment criterion results
in a good approximation of the expected utility. The goodness of the approximation is
highlighted by the opportunity cost which is found to be very small in all instances for

the four-moment criterion.



1 Introduction

It has long been recognized that financial asset returns are non-normal. Strong empirical
evidence suggests that returns are driven by asymmetric and/or fat-tailed distributions.
On one hand, several authors argued that extreme returns occur too often to be consis-
tent with normality (Mandelbrot, 1963, Fama, 1963, Blattberg and Gonedes, 1974, Kon,
1984, Loretan and Phillips, 1994, Longin, 1996). On the other hand, crashes are found
to occur more often than booms (Fama, 1965, Arditti, 1971, Simkowitz and Beedles,
1978, Singleton and Wingender, 1986, Peiro, 1999).

Subsequently, an abundant literature emerged, questioning the adequacy of the
mean-variance criterion proposed by Markowitz (1952) for allocating wealth. Several
authors considered how the expected utility function may be approximated by a func-
tion of higher moments (Arditti, 1967, Levy, 1969, Samuelson, 1970, Jean, 1971, Levy
and Sarnat, 1972).! However, early evidence on the usefulness of additional moments
in the allocation process is rather mixed. A number of studies have compared the
expected utility (obtained from direct optimization) with the approximated utility ob-
tained from the mean-variance criterion (Levy and Markowitz, 1979, Pulley, 1981, Kroll,
Levy, and Markowitz, 1984, Simaan, 1993). In most cases, the authors obtained very
small differences between the two allocation strategies. Simaan also suggested that the
opportunity cost of the mean-variance investment strategy is empirically irrelevant when
the opportunity set includes a riskless asset, and small for usual levels of risk aversion
when the riskless asset is denied. An explanation of the good performance of the mean-
variance criterion in these papers may be that, although returns are non-normal, they
are driven by an elliptical distribution. For such a distribution (which includes the
normal, Student-t, and Levy distributions), Chamberlain (1983) has shown that the
mean-variance approximation of the expected utility is exact for all utility functions.

More recently, techniques have been developed to solve the allocation problem when
concern for higher moments is included. Lai (1991), Chunhachinda et al. (1997), Prakash,
Chang, and Pactwa (2003) and Sunh and Yan (2003) applied the polynomial goal pro-
gramming (PGP) approach to the portfolio selection with skewness. All these studies
provided evidence that incorporating skewness into the portfolio decision causes major
changes in the optimal portfolio. A shortcoming of this approach, however, is that the
allocation problem solved in the PGP approach cannot be precisely related to an ap-
proximation of the expected utility. In particular, the choice of the parameters used to

weigh moment objectives is not related to the parameters of the utility function. Con-

'Within a Capital Asset Pricing Model, interest in higher moments goes back to the theoretical
work by Rubinstein (1973) and its first empirical implementation by Kraus and Litzenberger (1976).
Further work in that area is by Friend and Westerfield (1980), Barone-Adesi (1985), Sears and Wei
(1985, 1988), and more recently by Fang and Lai (1997), Kan and Zhou (1999), Harvey and Siddique
(1999, 2000), Jurczenko and Maillet (2001, 2003).



sequently, no measure of the quality of the approximation can be inferred from such
an exercise. Another drawback is that there is no natural extension to an optimization
problem including moments beyond the third one.

An alternative way of dealing with higher moments in the asset allocation is the use of
the Taylor series expansion to derive an approximation of the expected utility function.
While this approach has long been used in empirical applications to test the CAPM
with higher moments, very few studies have considered the asset allocation problem
using Taylor series expansions. Recent contributions are by Harvey et al. (2002) and
Guidolin and Timmermann (2003). The first study proposed using Bayesian techniques
to determine the optimal asset allocation when returns are driven by a skew normal
distribution. The second paper investigated how the approximation of the expected
utility by a Taylor series expansion can be implemented in the context of returns driven
by a Markov-switching model with conditionally normal innovations.

There are several criticisms to the use of Taylor series expansions in the asset allo-
cation context, however. As put forward, for instance, by Lhabitant (1998), the Taylor
series expansion may converge to the expected utility under restrictive conditions only.
For some utility functions (such as the exponential one), the expansion converges for all
possible levels of wealth, while for others (e.g., the power function), convergence is ob-
tained only over a given range of final wealth. In addition, the truncation of the Taylor
series raises several difficulties. In particular, there is no rule, in general, for selecting
the order of the truncation. Worse, the inclusion of an additional moment does not
necessarily improve the quality of the approximation (see Brockett and Garven, 1998,
Lhabitant, 1998, and Berényi, 2001).

In this paper, we investigate how non-normality of returns may affect the allocation of
wealth for utility-maximizing investors. To address this issue, we first consider the case
of an investor with an exponential utility function. This utility function has been widely
used in the literature, because it captures the investor’s risk aversion in a very simple
way. Then, we approximate the expected utility by a Taylor series expansion with two or
more moments. Thus, we compare the allocation obtained when the expected utility is
directly maximized with the allocation obtained using an expansion up to a given order.
We use several criteria for gauging the various optimization strategies. In addition to
a distance measure between portfolio weights, we follow Simaan (1993), Kandel and
Stambaugh (1996), as well as Ang and Bekaert (2002) and estimate the opportunity
cost of using a sub-optimal strategy, i.e., an optimization based on moments, rather
than on a direct numerical optimization of the expected utility function.

In the empirical part of the paper, we pay a particular attention to the statisti-
cal properties of the returns investigated. First, we carefully test several hypothesis on
returns: the univariate as well as multivariate normality, and the serial correlation of

returns and squared returns. In addition, we consider three alternative data sets, which



are characterized by different data frequencies and higher-moment features. These data
sets contain (1) weekly returns for broad geographical areas; (2) weekly returns from
stocks of the S&P100 index; (3) monthly returns for emerging markets. While all these
data display departure from normality, they turn out to have very different implications
for the quality of the approximation of the expected utility by a function of moments.
On one hand, in case of slight non-normality of returns, the different allocation strate-
gies provide basically the same allocation, suggesting that the mean-variance criterion
correctly approximates the expected utility. On the other hand, under more severe de-
parture from normality, the difference between the maximization of the expected utility
and the mean-variance criterion may be very large. We provide evidence that in such
cases the extension to a three-moment or a four-moment criterion results in a good ap-
proximation of the expected utility. The goodness of the approximation is highlighted by
the opportunity cost which is found to be very small in all instances for the four-moment
criterion.

The remainder of the paper is organized as follows. In Section 2, we describe the asset
allocation problem, its approximation by a Taylor series expansion, and the practical
implementation of this approximation. In Section 3, we present the various data sets
investigated and discuss the statistical properties of returns. Section 4 relies on the asset
allocations obtained under direct maximization of the expected utility and under Taylor
series expansion of different orders. The quality of the different approximations is also

investigated using several measures. In Section 5, we provide concluding remarks.

2 The optimal portfolio allocation

In this section, we begin with the investor’s asset allocation problem, that in general
cannot be solved analytically. We then describe how the Taylor series expansion can be
used to approximate the allocation problem. Conditions for the expansion to be conver-
gent are detailed for the utility function under study. Last, we indicate how portfolio

moments are computed from asset return moments.

2.1 The investment decision in general

We consider an investor who allocates her portfolio in order to maximize the expected
utility U (W) over her end-of-period wealth W. The initial wealth is arbitrarily set equal
to one. There are n risky assets with return vector R = (Ry, ..., R,,)" and joint cumulative
distribution function F'(Ry,...,R,). End-of-period wealth is given by W = (1 +r,),
with 7, = o/R, where the vector a = (o, ...,a,) represents the fractions of wealth

allocated to the various risky assets. We assume that the investor does not have access



to a riskless asset, implying that the portfolio weights sum to one (3.1, a; = 1).2 In
addition, portfolio weights are constrained to be positive, so that short-selling is not
allowed.
Formally, the optimal asset allocation is obtained by solving the following problem:
max  EUW)] = BU{+oR)] = S JUQ+ L ailt) dF (B, .., Ry)
s.t. Z?:l o; = 1.

The n first-order conditions (FOCs) of the optimization problem are
OE U (W)]

O
where U (W) denotes the jth derivative of U. We assume that the utility function

satisfies the usual properties so that a solution exists and is unique. On one hand, when

=E[R-UDW)] =0 (1)

the empirical distribution of returns is used, the solution to this problem can be easily
obtained (see, e.g., Levy and Markowitz, 1979, Pulley, 1981, Kroll, Levy, and Markowitz,
1984). On the other hand, when a parametric joint distribution for returns is used, the
FOCs in equation (1) do not have a closed-form solution in general.® In such cases,
Tauchen and Hussey (1991) provided a numerical solution using quadrature rules. This
approach has been applied to normal iid returns by Campbell and Viceira (1999) or to
a regime-switching multivariate normal distribution by Ang and Bekaert (2002). The
difficulty for non-normal distributions and in particular for distributions that involve
asymmetry and fat tails, is that the required number of quadrature points is likely to
increase exponentially with the number of assets. Therefore, solving the optimization
problem using numerical integration becomes tricky for more than two or three assets.
For more general distributions of returns, Monte-Carlo simulations may be necessary to
approximate the expected utility function (Patton, 2002).

Since we are primarily interested in measuring the effect of higher moments on the

asset allocation, we now approximate the expected utility by a Taylor series expansion

2As in Simaan (1993), we found in early experiments that, when the investor is allowed to invest
in a riskless asset, there is virtually no difference between maximizing the expected utility and using
an optimization based on moments. The proposed explanation is that, since the weight affected to
the riskless asset increases sharply with the degree of risk aversion, the various optimization strategies
cannot display large differences in portfolio weights that would be based on higher-moment properties
of returns. For low degrees of risk aversion, the investor puts the emphasis on the expected return
of the portfolio, implying that second and higher moments are not taken into account, regardless the

optimization strategy.
3The case of normal returns is a trivial exception. When returns are driven by a Markov-switching

model with conditionally normal innovations, an analytical solution also exists (Ramchand and Susmel,
1998). Simaan (1993) also proposed an example with an exponential utility function and a Pearson ITI
distribution in which the expected utility is derived analytically.
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around the expected wealth. For this purpose, the utility function is expressed in terms
of the wealth distribution, so that

where f (w) is the probability distribution function of end-of-period wealth, that depends
on the multivariate distribution of returns and on the vector of weights . Hence, the

infinite-order Taylor series expansion of the utility function is

U pri LI LaLEs

k=0

where W = E (W) = 1+ a'u denotes the expected end-of-period wealth with u = E (R)
the expected return vector. Under rather mild conditions (see Lhabitant, 1998, and

below), the expected utility is given by

E[UW)=E iU(k) (W)IE!VV—W)k] :i%E[(W—W)k}.

Therefore, the expected utility depends on all central moments of the distribution of the
end-of-period wealth.

Necessary conditions for the infinite Taylor series expansion to converge to the ex-
pected utility have been explored by Loistl (1976) and Lhabitant (1998). The region
of convergence of the series depends on the utility function considered. In particular,
the exponential or polynomial utility functions do not put any restriction on the wealth
range, while the power utility function converges for wealth levels in the range [O, QW] .
It is worth emphasizing that such a range is likely to be large enough for bonds and
stocks when short-selling is not authorized. In contrast, it may be too small for options,
due to their leverage effect. These results hold for arbitrary return distributions.

Now, since the infinite Taylor series expansion is not suitable for numerical imple-
mentation, a solution is to approximate the expected utility by truncating the infinite
expansion at a given value k. For instance, the standard mean-variance criterion pro-
posed by Markowitz (1952) corresponds to the case k = 2. More generally, an expansion
truncated at k provides an exact solution to the expected utility when utility is de-
scribed by a polynomial function of order k. This result holds because such a utility
function depends only on the first ¥ moments of the return distribution. This avenue has
been followed for instance by Levy (1969), Hanoch and Levy (1970), or Jurczenko and
Maillet (2001) for k = 3 (cubic utility function) and by Benishay (1992) and Jurczenko
and Maillet (2003) for k¥ = 4. As noted by Tsiang (1972), however, polynomial utility
functions can only provide local approximations because they cannot satisfy conditions

required for a well-behaved utility function for all values of wealth.
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Furthermore, it is not clear, a priori, at what level the Taylor series expansion should
be truncated. For instance, Hlawitschka (1994) provided examples in which, even if the
infinite expansion converges, adding more terms may worsen the approximation at a
given truncation level. On the other hand, Lhabitant (1998) described an example in
which omitted terms are of importance. Some arguments put forward by Ederington
(1986) as well as Berényi (2001) suggest that introducing the fourth moment will gen-
erally improve the approximation of the expected utility.

It should be noticed, at this point, that the approximation of the expected utility
by a Taylor series expansion is related to the investor’s preference (or aversion) towards
all moments of the distribution, that are directly given by derivatives of the utility
function. Scott and Horvath (1980) have put forward that, under the assumptions of
positive marginal utility, decreasing absolute risk aversion at all wealth levels together

4

with strict consistency for moment preference,* one has

UY W) > 0 VW  if kisodd and
UY W) < 0 VW  if kis even.

Further discussion on the conditions that yield such moment preferences or aversions
may be found in Pratt and Zeckhauser (1987), Kimball (1993), and Dittmar (2002).
Brockett and Garven (1998) provided examples indicating that expected utility pref-
erences do not necessarily translate into moment preferences. Yet, Berényi (2001) has
established conditions under which the inclusion of skewness and kurtosis preserves the
ranking property of the expected utility. In particular, he shows that, for distributions
with negative skewness, including an additional higher moment always leads to a bet-
ter approximation of the expected utility. In case of positive skewness, including both
skewness and kurtosis can improve or worsen the approximation.

Focusing on terms up to the fourth one, we obtain
- _ 1 - O
_ ) _ 1y _
BIUW) = U(W)+UD (W) E[W W]+ 0@ (W) E|(W - W)’
1) e _ 1 e ]
+5 U (W) B[(W = W) + U@ (W) B [(W - W)*| + o),

where O(W*) is the Taylor remainder. We define the expected return, variance, skew-

4 An investor exhibits strict consistency for moment preference if a given moment is always associated
with the same preference direction regardless of the wealth level.

11



ness, and kurtosis of the end-of-period return as®

oy = El(ry— )= E(W W)
8?) = El(r, up)g] = EB[(W — W)g]
/ii = E[(rp — up)4] = E[(W — W)4]
Hence, the expected utility is simply approximated by the following preference function
- 1 - 1 - 1 -
EUW) = U (W) + 50 (W) o) + iU(?’) (W) 5+ U (W) s (2)

Under conditions established by Scott and Horvath (1980), the expected utility depends

positively on expected return and skewness and negatively on variance and kurtosis.

2.2 The case of the CARA utility function

We consider now the CARA (for Constant Absolute Risk Aversion) utility function. The
CARA utility function is defined by:

U(W) = —exp(=AW) (3)

where A\ measures the investor’s constant absolute risk aversion. This specification
has been widely used in the literature because of the appealing interpretation of the
associated parameter.® The approximation for the expected utility is given by
A2 AN
~ i 2 3 4

E (U (W)) =~ —exp (=AW) {1 + 5% 3% + ek (4)

After some obvious simplifications, the FOCs can be respectively as:

" ( 22 AP 1 ) Ado2  A?0s) )\_38/£§

2 3 4
1+?O'p— asp—i—zlip

200 300 4 da (5)

Optimal portfolio weights can be obtained alternatively by maximizing expression
(4) or by solving equalities (5). Inspection of relation (5) reveals that computing this
expression would be rather simple if the variance, skewness, and kurtosis of the portfolio

return and the derivatives thereof are known.

5These definitions of skewness and kurtosis, as central higher moments, differ from the statistical
definitions as standardized central higher moments £ {((rp —pp) / ap)j} for j = 3,4.

6The CARA utility function has been used in a number of papers on the allocation of wealth, see,
e.g. Levy and Markowitz (1979), Pulley (1981), Kroll, Levy, and Markowitz (1983), Simaan (1993). As
an alternative, we also considered the CRRA (for Constant Relative Risk Aversion) utility function,
that has also been widely studied in the literature. The Taylor series expansion converges toward the
expected utility for levels of wealth ranging between 0 and 2, an interval that may appear rather
restrictive in some applications. Yet, it should be noticed that we found basically the same results with
both utility functions, even when we considered very non-normal returns, so that we only report results
obtained with the CARA utility function.
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2.3 Solving the asset-allocation problem

Now we briefly describe how the moments of a portfolio return can be expressed in a

very convenient way and how their derivatives may be obtained. This allows to compute

equation (5). This approach has been extensively described by Athayde and Flores

(2001) and used by Harvey et al. (2002) and Prakash, Chang, and Pactwa (2003).
First, we define the (n,n?) co-skewness matrix

My =E[(R—p)(R—p) @ (R—p)] = {si}

and (n,n?) co-kurtosis matrix
My=E[(R—p)(R—p) @ (R—p) @ (R-p)] = {ryu}

with elements

s = E[(Ri—p) (R —py) (Re — )] i,5,k=1,.,n
g = B [(Ri— ) (B — 1) (B — ) (B — )] i, J,k,l=1,..n.

This notation extends the definition for the covariance matrix, which is denoted Ms.

For instance, in the case of n = 3 assets, the resulting (3,9) co-skewness matrix is

S111 S112 5113 S211  S212  S213 S$311  S312  S313
Mz = S$121 5122 S123 $9221 5222 S223 5321 85322 5323 = Sljlc 52]'1: SSjk

S$131 5132 S133 5931 5232 5233 5331 5332 5333

where S ; is a short notation for the (n,n) matrix {sq;i} Similarly, the (3,27)

J,k=1,2,3"
co-kurtosis matrix is

My=| Kiuw Ko Kis | Kow Koow Koz | Kz Ksomr Kssk

where K1 denotes the (n,n) matrix {“11/€l}k,l=1,2,3- It should be noticed that, be-
cause of certain symmetries, not all the elements of these matrices need to be com-
puted. The dimension of the covariance matrix is (n,n), but only n(n+1)/2 el-
ements have to be computed. Similarly, the co-skewness and co-kurtosis matrices
have dimensions (n,n?) and (n,n?), but involve only n (n + 1) (n + 2) /6 elements and
n(n+1)(n+2)(n+ 3) /24 different elements respectively.”

Now, using these notations, moments of the portfolio return can be computed in

a very tractable way. For a given portfolio weight vector «, expected return, variance,

"For n = 3, one has to compute 6 different elements for the covariance matrix, 10 elements for the
co-skewness matrix and 15 elements for the co-kurtosis matrix (whereas these matrices have 9, 27, and

81 elements, respectively).
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skewness, and kurtosis of the portfolio return are, respectively:

py = p o2 = o Msa
sy =o' Mz (@ ® «) Ky =a'My(a®a®a)

[~ N

where ® stands for the Kronecker product. Alternatively, moments of the portfolio

return may be expressed as follows:

op = B ai(Bi—p)(r—m)|=a%,
L i=1

52 = F Zai (R; — 1) (rp — up)Q =da'S,
| i=1 J

H;% = kb Zai (R1 qu) (T'p /‘Lp)3 = Ck/Kp
i=1 _

where
Y, = E[(R

E (R = ) (= 1,)] = Moo
Sy = B[(Ri—p) (=)’ = Ms (a0 0)
E|(Bi— ) (= 1,)’] = Milo®a@a)

are the (n,1) vectors of covariances, co-skewness, and co-kurtosis between the asset
returns and the portfolio return, respectively. These notations are obviously equivalent
to the previous ones and they offer the advantage of requiring only small-dimensional
vectors.® Yet, the optimization procedure, described below, is performed over the weight
vector « that is implicitly incorporated in ¥,, S,, and K,. Therefore, in the end, the
explicit relationship between moments of the portfolio return and the weight vector has
to be established, in particular if analytic derivatives are to be computed.

Notations above allow a straightforward computation of the derivatives with respect
to the weight vector, that is:

0.2
% =Uu % = 2M204
Bsg Emg
72 =3M; (e ® a) 2 =4My(a®a®a).
Equations (5) can thus be rewritten as
p— b1 () [Maa] + 62 () [M3 (0 @ a)] — b5 (a) [My (@ @ a @ a)] =0 (6)

where 61, 02, and 83 are non-linear functions of «, such that é; (o) = A—i i=1,2, 3,

: _ A2 2 X3 o4
WlthA—1+20'p T Sp AT Kp

$The notations X, S,, and K, are directly related to the notions of systematic risk, that are widely-
used in the literature on higher-moment CAPM, see Kraus and Litzenberger (1976), Ingersoll (1987),
Hwang and Satchell (1999), Berényi (2001), Jurczenko and Maillet (2001, 2003).
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The n equations (6) can be easily solved numerically, using a standard optimization
package. The difficulty to solve this problem is not of the same order as compared to
problems involving numerical integration of the utility function. This approach pro-
vides an alternative way of solving the asset allocation problem to the PGP approach
developed by Lai (1991) and Chunhachinda et al. (1997). The main advantage of the
approach proposed here is that weights attributed to the various portfolio moments in
equation (6) are selected on the basis of the utility function, while they are arbitrarily
chosen in the PGP approach. Solving equation (6) also provides an alternative to the
rather time-consuming approach based on maximizing the expected utility numerically,
adopted by Ang and Bekaert (2002) or Patton (2002). Here, a very accurate solution is
obtained in just a few seconds, even in the case of a large number of assets. The price

to pay is that the focus is put on a finite number of moments only.

3 Data

We explore three data sets with very different characteristics of returns. The first data
set contains weekly returns for dollar-denominated stock indices for the main geograph-
ical areas (North America, Europe, and Asia). It consists of total return indices from
Morgan Stanley Capital International (MSCI), from January 1976 through December
2001.° These data are very aggregated returns, at the geographical level, their statistical
behavior may, therefore, be expected to be close to a normal distribution. The second
data set contains weekly returns for stocks included in the S&P100, from January 1973
through January 2003. The selected stocks were not chosen randomly as in some previ-
ous studies, but among those with a moderate to large departure from normality. As a
matter of fact, several studies used randomly selected U.S. stocks to illustrate that the
mean-variance criterion may be relevant in approximating the expected utility (Levy
and Markowitz, 1979, Kroll, Levy, and Markowitz, 1984, Simaan, 1993). Here, our aim
is to show that, in some instance, the widely-used mean-variance criterion may be inap-
propriate in selecting the optimal portfolio weights. The last data set contains monthly
returns for three dollar-denominated emerging-market indices (Hong Kong, South Ko-
rea, and Thailand), from February 1975 through June 2002. Emerging markets have
been shown to display very non-normal behavior (Harvey, 1995, Bekaert and Harvey,
1997, Hwang and Satchell, 1999, Jondeau and Rockinger, 2003b).

The data sets are described in Table 1.1 Let Ry, t = 1,--- ,T, denote the log-

9 At the end of 1999, the North American, European, and Asian markets represented 47.2%, 30.3%,

and 19.4% of total market capitalization in the world MSCI index.
10Tt is worth emphasizing that the frequency of data is often claimed to affect both departure from

normality and the serial correlation pattern of returns and volatilities. The latter effect is not an issue

in our context, since we focus on the unconditional sample distribution of returns.
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return of market or asset 7 at date t. As a preliminary investigation of the data, Table
2 reports univariate and multivariate summary statistics on returns. For each data set,
we begin with an estimate of the first four moments and a test of the null hypothesis
of normality of the univariate distributions. Since the normality hypothesis is crucial
to our analysis, we paid a particular attention to this test. Although a large number
of tests have been proposed in the literature, we focus on three well-known procedures,
that have proved to be relevant in similar contexts: (1) the statistic (JB) proposed
by Jarque and Bera (1980) tests whether skewness and excess kurtosis are jointly zero,
using the asymptotic distribution of the estimators. This test is known to be suitable for
large samples only, because sample skewness and kurtosis approach normality only very
slowly. (2) The omnibus statistic (Omnibus) proposed by Doornik and Hansen (1994) is
based on the approximated finite-sample distribution of skewness and kurtosis. (3) The
Kolmogorov-Smirnov statistic (KS) consists in the comparison between the theoretical
and the empirical cumulative distribution functions. Since these statistics are likely to
have different finite-sample properties (see, e.g., Doornik and Hansen, 1994, or Bekaert
and Harvey, 1997), we performed Monte-Carlo simulations to evaluate the critical values
corresponding to the sample size of each data.'! As Table 2 (Panel A) confirms, all test
statistics consistently reject the normality hypothesis for all return series at the 1%
significance level (using both theoretical and size-adjusted critical values).

We also consider a test for serial correlation of returns. Given the high level of
serial correlation of squared returns, we use a version of the Ljung-Box statistic (QW),
corrected for heteroskedasticity, to test for the nullity of the first four serial correlations
of returns. This statistics is distributed as a x? (4) under the null of no serial correlation.
Inspection of the QW statistics does not reveal significant linear dependencies of returns.
Next, we test for heteroskedasticity by regressing squared returns on once lagged squared
returns. The standard test statistics proposed by Engle (1982), (LM), is distributed as
a x? (1) under the null hypothesis of homoskedasticity and normality. We also consider
a test for heteroskedasticity developed by Lee and King (1993), (LK), that does not
require normality. Under the null, the LK statistic is distributed as a one-sided N (0, 1).
The table provides evidence of second-moment dependencies for all data sets, confirming
that there is a large amount of heteroskedasticity in the data.'?

Then, we turn to the multivariate analysis. In Table 2 (Panel B), we report all non-

redundant elements of the correlation, co-skewness, and co-kurtosis matrices, estimated

'Monte-Carlo experiments were based on 10,000 replications of samples of size 150, 350, and 1500
of an iid N (0,1) variable. Rejection rates as well as size-adjusted critical values of the various tests

used in this paper are available from the authors.
12We obtained the same pattern of significance using different lags for the QW, LM, and LK test
statistics.
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simultaneously using the relations:

E(Rit)

E Ry — ;) (Rju — p J) = 0ij, i=1,..n, j=1i+1,...,n
E(Ri — ;) (Rje — p15) (Rie — 1)
) (Rie = 1) (Rie = ) (Rie = )

= U, 1=1,...,n,

= Sijk, 1, 7,k=1,..n,

E (Ry

= Kijki, i)ja k>l = 17 s N

We also reports finite-sample standard errors computed with the GMM-based proce-
dure of Bekaert and Harvey (1997). Finally, we perform several multivariate normality
tests. As compared with the univariate tests discussed above, these multivariate tests
incorporate hypotheses on the co-skewness and co-kurtosis matrices. We focus on three
tests for multivariate normality: (1) the omnibus statistics described by Doornik and
Hansen (1994) extents the univariate test discussed above. This test computes higher
moments on variates which have been preliminary transformed to approximately in-
dependent normals. (2) The statistics proposed by Small (1980) weighs the marginal
skewness and kurtosis coefficients of the raw variables by their approximate correla-
tions. (3) The statistics described by Mardia (1970) is based on multivariate measures
of skewness and kurtosis. These statistics are described in Doornik and Hansen (1994).
The distribution of the first two statistics is known to be approximately a chi-square,
while the last statistic is distributed only asymptotically as a chi-square. Monte-Carlo
experiments confirmed that these tests are correctly sized even in small sample.

In Table 2 (Panel B), we observe very contrasted patterns of skewness in the data
sets under study. In data set DS1, all co-skewness between MSCI global indices are found
to be negative, most of them being statistically significant. In data set DS2, most co-
skewness between S&P stocks are negative, although not significantly. Finally, in data
set DS3, no clear pattern emerges between emerging markets, with most co-skewness
being insignificant.

The broad picture for co-kurtosis is much clearer, since a number of co-kurtosis are
significantly larger than their expected value under multivariate normality.!® Largest
values are found for MSCI global indices (DS1) and S&P stocks (DS2). The three
multivariate normality tests reject the null hypothesis for all data sets at any usual

significance level.

4 Portfolio allocation under non-normality

In this section, we address two related issues how asset allocation is modified when

returns are driven by a non-normal distribution. The first issue is how the allocation

13In the normal case, all co-skewness are equal to zero, while co-kurtosis are given by ks = 3,
KRiijj = 1.125, Riiij = 075, and Riijk = 0375, for 4 7&] 75 k 7& l,see Kotz et al. (2000)
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is altered when the investor is concerned by more than just the first two moments of
returns. The second issue is how far the allocation based on a truncated expansion of
utility is from the allocation based on a direct maximization of the expected utility.
For this purpose, we follow the approach of Simaan (1993) and compute, for a given
parameter set, the optimal asset allocation for the expected utility function (using di-
rect maximization) and for the Taylor series expansions with k& = 2, 3, 4 (based on
moment computation), corresponding to the cases where we incorporate information on
volatility, skewness, and kurtosis respectively. For each approximation, we evaluate the
opportunity cost.

Table 3 reports results for optimally selected portfolios for several values of the risk
aversion parameter \ ranging between 1 and 20. This range covers most values investi-
gated in the literature. Results include the optimal portfolio weights and the absolute
distance between portfolio weights obtained with the strategies based on moments (&;)
and the strategy based on the expected utility («), that is norm = > | |6 — of|.
We also report the first four moments of the optimal portfolio returns and the opportu-
nity cost (or optimization premium) of investment strategies based on moments rather
than on expected utility. If we denote 7, the optimal portfolio return obtained by direct
optimization of the expected utility, and 7, the optimal portfolio return from a given ap-
proximation, then the opportunity cost 6 is defined as the return that needs to be added
to the portfolio return of the approximation, so that the investor becomes indifferent

with the direct optimization
EU(l+#+0)]=E[U(1+7)]. (7)

The reported premium 6 is obtained by solving equation (7) numerically.

4.1 MSCI returns on geographical areas (DS1)

Results for MSCI returns are reported in Table 3a. Very small differences are found in the
portfolio weights when the optimization is based on the first two, three, or four moments.
As reported in the table, for a given risk aversion, A, optimal weights barely change when
the concern for an additional moment is introduced. This result, also illustrated in Figure
1, may be explained by the fact that returns for these large geographic areas depart only
slightly from normality. Yet, it appears clearly that changes in portfolio weights follow
from the values of skewness and kurtosis reported for returns. For instance, we observe
that the weight of Asia is slightly higher when concern for skewness is introduced in the
optimization criterion. This is related to the fact that returns in North America and
Europe have a relatively large negative skewness while skewness in Asia is close to 0.
In addition, we notice that the difference between optimal weights found for the

mean-variance criterion and for the expected utility is small for all risk aversion levels.
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Even for a very large degree of risk aversion, the difference between optimal weights
does not exceed 3.5 percentage points. Hence, the norm between portfolio weights is
lower than 0.1 for the mean-variance criterion and even lower than 0.03 for the four-
moment criterion. Such a closeness between portfolios translates in an approximately
zero opportunity cost. It is lower than 0.2 cent per dollar invested, even for the mean-
variance criterion and a large risk aversion.

Data set DS1 illustrates that even when returns are found, on statistical grounds,
to be non-normal (with a very strong rejection of the null hypothesis of normality), the
mean-variance criterion may be relevant for approximating the expected utility crite-
rion. In fact, this finding is consistent with empirical evidence provided by Levy and
Markowitz (1979), Kroll, Levy, and Markowitz (1984) and Simaan (1993) or with the
theoretical result of Chamberlain (1983), who showed that the mean-variance crite-
rion provides an exact approximation of the expected utility for the whole elliptical-
distribution family. Therefore, even returns driven by a Student-t or Levy distributions

would yield such a result.

4.2 S&P100 stock returns (DS2)

As reported in Table 2b, the departure from normality of the selected stocks is much
more pronounced than for MSCI indices, resulting from both asymmetry and fat tails.
Consequently, as Table 3b and Figure 2 show, the mean-variance criterion provides a
poor approximation of the optimal portfolio weights found by the direct maximization
of the expected utility. For very low levels of risk aversion, the difference of weights is
rather moderate, because both optimization strategies exclude the first stock (Delta Air
Lines). Yet, for moderate to large risk aversion levels, the mean-variance criterion puts
an excessive weight on the second stock (Gillette) on the basis of its large return and
low variance, failing to account for its very negative skewness and large kurtosis. Hence,
the distance between the portfolio weights obtained with the two optimization strategies
is larger than 0.2 for A > 15. When concern for skewness and kurtosis is introduced in
the optimization, the gap with the expected utility maximization significantly reduces.
With the four-moment strategy, the distance with expected utility decreases to about
0.15.

We also observe that portfolio moments obtained with an expansion of the utility
function are rather distant from those obtained with maximization of the expected
utility. This result can be directly related to the large differences in skewness and kurtosis
between the selected stocks. In particular, when only mean and variance are considered,
the portfolio skewness is excessively negative while portfolio kurtosis is excessively large.
Introducing a concern for higher moments partly fills the gap between portfolio moments

obtained with the moment strategy and expected utility maximization.
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Finally, opportunity costs are rather large for the mean-variance strategy, above 10
cents per dollar invested. The optimization premium lies around 5 cents for the three-
moment strategy and only 2 cents for the four-moment strategy. The opportunity cost
we obtain for the mean-variance criterion is much larger than the cost reported by
Simaan (1993) for such an optimization strategy. For similar levels of risk aversion, he
found optimization premia that did not exceed 1 cent. It should be noticed, however,

that his data is expected to be much closer to normality than ours.'

4.3 Emerging-market returns (DS3)

We turn to the case of emerging markets, that are characterized by very large departure
from normality. As indicated in Table 3c, in this context, the mean-variance criterion
may yield inconsistent portfolio weights, as compared to the expected utility maximiza-
tion. Even for moderate risk aversion levels, the difference between optimal weights may
exceed 5 percentage points (see also Figure 3). Worse, for A > 15, the weight allocated
to the Hong Kong index (o) is larger than 0.43 with the mean-variance criterion, but
does not exceed 0.34 with direct maximization of the expected utility. Even for moderate
risk aversion, the norm between the two optimization strategies is large (more than 0.1
for A > 5).

Interestingly, introducing skewness in the moment criterion barely improves the al-
location, suggesting that asymmetry is not the main source of departure from normality
(This result is confirmed in Table 2¢, that reports insignificant co-skewness parameters).
In contrast, the four-moment criterion provides a very good approximation of the ex-
pected utility. Even for large risk aversion, the two optimization strategies yield close
optimal weights, with the norm below 0.06 for all values of A.

The deficiency of the mean-variance criterion also transpires in the moments of the
portfolio return. This strategy is able to yield a slightly larger expected return than the
expected utility maximization, for all risk aversion levels, but at the price of a larger
variance, lower skewness, and larger kurtosis. As expected, the three-moment strategy
does not succeed in reducing the fat tails of the portfolio return significantly.

Finally, these results translate into a large opportunity cost of adopting sub-optimal
investment strategies. The inability of the mean-variance criterion to cope with higher
moments is found to cost more than 25 cents per dollar invested for all risk aversion
levels and as much as 52 cents for A = 2. The opportunity cost of the three-moment
strategy is significantly lower, to about 10 cents, while the cost of the four-moment

strategy does not exceed 2.5 cents per dollar invested.

14His data is sampled at the monthly frequency. In addition, he selected randomly ten stocks chosen
from the CRSP data set.
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5 Conclusion

In this paper, we address two related issues. First, we describe how the impact of non-
normality of returns on the allocation of assets may be easily measured in an expected
utility framework. In general, maximizing the expected utility results in rather cum-
bersome computations under non-normality. We use a Taylor series expansion to ap-
proximate the expected utility as a function of higher moments. Then, we compute the
optimal portfolio allocation in a very efficient way. A decisive advantage of this approach
is that it can be very easily applied even when the number of assets is large. This results
from the numerical stability of the asset-allocation problem regardless of the number of
assets.

Second, we consider the extent to which departure from normality is likely to affect
the optimal asset allocation when the CARA utility function is used. A number of
studies have measured the quality of the approximation of the expected utility by the
mean-variance criterion (Levy and Markowitz, 1979, Pulley, 1981, Kroll, Levy, and
Markowitz, 1984, Simaan, 1993). Other studies have described how higher moments may
be incorporated in the investor’s asset allocation problem using the PGP approach (Lai,
1991, Chunhachinda et al., 1999, Prakash, Chang, and Pactwa, 2003). But no previous
study had measured the gain of using a three-moment or a four-moment optimization
strategy for approximating the expected utility. For this purpose, we consider three
different data sets, containing returns with both moderate and large departures from
normality. We confirm previous empirical evidence (e.g., Kroll, Levy, and Markowitz,
1984) as well as theoretical arguments (Chamberlain, 1983) that, under moderate non-
normality, the mean-variance criterion provides a good approximation of the expected
utility maximization. Nevertheless, under large departure from normality (as found
in some stocks in mature markets or in some stock indices in emerging markets), the
mean-variance criterion may fail to approximate the expected utility correctly. In such
cases, the three-moment or four-moment optimization strategies may provide a good
approximation of the expected utility.

An obvious extension of this work is a conditional asset allocation. For this purpose,
a model for returns with asymmetry and fat tails should be estimated. This may be
done, for instance, in a GARCH framework, with a skewed Student-t distribution for
innovations, such as the model proposed by Hansen (1994) and extended by Jondeau and
Rockinger (2003a) for time-varying higher moments. In addition, co-moments may be
modelled using the approach developed by Sahu, Dey, and Branco (2001) and Bauwens
and Laurent (2002).
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Captions

Table 1: This table describes the data sets used to investigate the effect of higher

moments on the optimal asset allocation.

Table 2: Panel A of this table reports univariate summary statistics on returns.
Mean, Std, Sk, and XKu denote the mean, the standard deviation, the skewness, and
the excess kurtosis of returns, respectively. Standard errors are computed with the
GMM-based procedure proposed by Bekaert and Harvey (1997). JB, Omnibus, and
KS stand for the Jarque-Bera statistic (Jarque and Bera, 1980), the omnibus statistic
(Doornik and Hansen, 1994), and the Kolmogorov-Smirnov statistic for the test of the
null hypothesis of a normal distribution. QW(4) is the Box-Ljung statistic for serial
correlation, corrected for heteroskedasticity, computed with 4 lags. Under the null of
no serial correlation, it is distributed as a x*(4). LM(1) and LK(1) are the Engle
(1982) and Lee and King (1993) statistics for heteroskedasticity. Under the null of
no serial correlation of squared returns, the statistics are distributed as a x? (1) and
a N (0,1) respectively. Panel B of the table reports multivariate summary statistics
on returns. We present the non-redundant elements of correlation, co-skewness, and
co-kurtosis matrices. Standard errors are computed with a GMM-based procedure of
Bekaert and Harvey (1997). Omnibus, Small, and Mardia stand for the multivariate
omnibus statistic (Doornik and Hansen, 1994), and the statistics proposed by Small
(1980) and Mardia (1970) respectively. Under the null of multivariate normality, the
statistics are distributed as x? with 2n, 2n, and n(n+1)(n+2)/6+1 degrees of freedom,

respectively.

Table 3: This table reports statistics for optimal portfolios for several values of the
risk-aversion parameter A ranging from 1 to 20. We report the optimal weights («;,
i = 1, 2, 3); the absolute distance between portfolio weights obtained with moment-
based strategies (¢;) and with expected-utility maximization (), defined as norm =
S |di — af|; the first four moments of portfolio returns; and the opportunity cost 6,
defined by E[U (147, +0)] = E[U (1+75)] .

Figure 1: This figure displays the optimal weights obtained with the different opti-
mization strategies as a function of the risk-aversion parameter A\. Here the data consists
in three MSCI indices.

Figure 2: This figure displays the optimal weights obtained with the different opti-
mization strategies as a function of the risk-aversion parameter A. Here the data consists
in three components of the S&P100.

Figure 3: This figure displays the optimal weights obtained with the different opti-
mization strategies as a function of the risk-aversion parameter A\. Here the data consists

in three emerging markets indices.
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Data

Description of variables

Period

Frequency

Number of

observations
DS1 Returns for dollar-denominated MSCI stock-  From 1/1976 Weekly 1354
market indices for the main geographical areas to 12/2001
(North America, Europe, and Asia)
DS2 Returns for stocks included in the S&P100 From 1/1973 Weekly 1568
(Delta Air Lines, Gillette, and Southern) to 1/2003
DS3 Returns for emerging stock-market indices  From 2/1975 Monthly 336
(Hang Seng index for Hong Kong, KOSPI index  to 6/2002

for South Korea, and S.E.T. index for Thailand)

Table 1: Description of data sets under investigation



T=1355 North America Europe Asia
Panel A: Univariate statistics
Moments stat. s.e. stat. s.e. stat. s.e.
Mean 0.251 (0.055) 0.246 (0.058) 0.195 (0.083)
Std 2.094 (0.099) 2.031 (0.086) 2.595 (0.100)
SK -0.660 (0.342) -0.604 (0.316) -0.038 (0.123)
XKu 3.873 (2.137) 2.984 (1.819) 1.488 (0.292)
Normality tests stat. p-val. stat. p-val. stat. p-val.
JB 945.239 (0.000) 585.198 (0.000) 125.404 (0.000)
Omnibus 258.956 (0.000) 181.404 (0.000) 89.080 (0.000)
KS 1.529 a 1.759 a 1.710 a
Serial correlation
QW(4) 1.854 (0.763) 2.320 (0.677) 10.412 (0.034)
LM(1) 104.460 (0.000) 135.093 (0.000) 20.620 (0.000)
LK(1) 10.215 (0.000) 11.627 (0.000) 4.542 (0.000)
Panel B: Multivariate statistics
Correlation matrix stat. s.e. stat. s.e. stat. s.e. stat. s.e.
X, X5 X3
X1 1 0.526 (0.036) 0.327 (0.035)
X5 0.526 (0.036) 1 0.478 (0.025)
X3 0.327 (0.035) 0.478 (0.025) 1
Co-skewness matrix
X4 X7 x32 X1X
X1 -0.660 (0.342) -0.523 (0.329) -0.264 (0.128)
X5 -0.585 (0.338) -0.604 (0.316) -0.231 (0.117)
X3 -0.231 (0.207) -0.348 (0.168) -0.038 (0.123) -0.265 (0.189)
Co-kurtosis matrix
x® X5° x33
X1 6.873 (2.137) 4.376 (2.008) 1.716 (0.482)
X5 4.712 (2.164) 5.984 (1.819) 2.217 (0.393)
X3 2.956 (1.326) 3.027 (0.957) 4.488 (0.292)
X1X22 X1X32 Xz)(s2 X12X2
X1 4.449 (2.075) 2.645 (0.717)
X5 1.960 (0.668) 2.516 (0.561)
X3 2.404 (1.101) 2.540 (1.199)
Multivariate Normality test stat. s.e.
Omnibus 309.812 (0.000)
Small 287.877 (0.000)
Mardia 1229.963 (0.000)

Table 2a: Statistics on weekly MSCI returns (DS1)



T=1568 Delta Air Lines Gillette Southern
Panel A: Univariate statistics
Moments stat. s.e. stat. s.e. stat. s.e.
Mean -0.021 (0.123) 0.175 (0.098) 0.097 (0.061)
Std 5.032 (0.272) 4,188 (0.263) 2.776 (0.116)
SK -0.888 (0.506) -1.347 (0.925) 0.197 (0.227)
XKu 8.240 (4.234) 16.875 (10.519) 4.264 (0.904)
Normality tests stat. p-val. stat. p-val. stat. p-val.
JB 4641.44 (0.000) 19077.67 (0.000) 1198.07 (0.000)
Omnibus 801.032 (0.000) 1674.067 (0.000) 503.176 (0.000)
KS 2.019 a 2.386 a 2.622 a
Serial correlation
QW(4) 4554 (0.336) 5.574 (0.233) 4.425 (0.352)
LM(1) 13.340 (0.000) 0.152 (0.697) 21.910 (0.000)
LK(1) 3.645 (0.000) 0.391 (0.348) 4.685 (0.000)
Panel B: Multivariate statistics
Correlation matrix stat. s.e. stat. s.e. stat. s.e. stat. s.e.
X1 X2 X3
X1 1 0.147 (0.033) 0.283 (0.035)
X5 0.282 (0.034) 1.000 0.234 (0.036)
X3 0.147 (0.033) 0.234 (0.036) 1.000
Co-skewness matrix
X4 X7 x32 X1X
X1 -0.888 (0.506) -0.472 (0.407) -0.130 (0.109)
X5 -0.237 (0.167) -1.347 (0.925) -0.179 (0.200)
X3 0.002 (0.100) -0.457 (0.446) 0.197 (0.227) -0.217 (0.185)
Co-kurtosis matrix
x® X5° x33
X1 11.240 (4.234) 6.687 (4.788) 0.984 (0.587)
X5 1.980 (0.809) 19.875 (10.519) 1.947 (0.946)
X3 0.256 (0.644) 6.459 (5.054) 7.264 (0.904)
XX 5’ X1X 3 X X3 XX,
X1 3.320 (1.970) 1.696 (0.397)
X5 1.361 (0.928) 3.673 (2.122)
X3 2,721 (2.119) 1.231 (0.899)
Multivariate Normality test stat. s.e.
Omnibus 2900.84 (0.000)
Small 2876.56 (0.000)
Mardia 14997.99 (0.000)

Table 2b: Statistics on weekly S&P100 stock returns (DS2)



T=336 Hong Kong South Korea Thailand
Panel A: Univariate statistics
Moments stat. s.e. stat. s.e. stat. s.e.
Mean 1.078 (0.438) 0.737 (0.497) 0.898 (0.602)
Std 8.698 (0.657) 7.861 (0.756) 9.834 (0.872)
SK -0.684 (0.304) 0.052 (0.380) 0.339 (0.194)
XKu 2.856 (1.066) 2.522 (1.159) 1.473 (0.391)
Normality tests stat. p-val. stat. p-val. stat. p-val.
JB 140.425 (0.000) 89.217 (0.000) 36.805 (0.000)
Omnibus 44,593 (0.000) 58.333 (0.000) 22.465 (0.000)
KS 1.300 a 1.126 a 1.214 a
Serial correlation
QW(4) 4.732 (0.316) 0.525 (0.971) 3.341 (0.503)
LM(1) 3.449 (0.063) 32.935 (0.000) 36.903 (0.000)
LK(1) 1.868 (0.031) 5.748 (0.000) 5.956 (0.000)
Panel B: Multivariate statistics
Correlation matrix stat. s.e. stat. s.e. stat. s.e. stat. s.e.
X1 X2 X3
X1 1 0.254 (0.064) 0.271 (0.067)
X5 0.254 (0.064) 1 0.228 (0.060)
X3 0.271 (0.067) 0.228 (0.060) 1
Co-skewness matrix
X4 X7 x32 X1X
X1 -0.684 (0.304) 0.088 (0.157) -0.097 (0.095)
X5 0.056 (0.166) 0.052 (0.380) 0.014 (0.079)
X3 -0.184 (0.152) 0.017 (0.091) 0.339 (0.194) -0.008 (0.085)
Co-kurtosis matrix
x® X5° x33
X1 5.856 (1.066) 0.776 (0.781) 0.855 (0.303)
X5 1.469 (0.427) 5.522 (1.159) 0.495 (0.249)
X3 1.826 (0.524) 0.298 (0.532) 4,473 (0.391)
XX 5’ X1X 3 X X3 XX,
X1 1.967 (0.360) 1.355 (0.247)
X5 0.446 (0.170) 1.227 (0.161)
X3 0.867 (0.243) 0.690 (0.196)
Multivariate Normality test stat. s.e.
Omnibus 151.654 (0.000)
Small 151.643 (0.000)
Mardia 307.998 (0.000)

Table 2c: Statistics on monthly emerging stock-market returns (DS3)



Portfolio weights Norm Moments of portfolio return Opportunity

A a, a, as Hp g,’ s, K" cost
Panel A: Direct optimization
1 0.607 0.393 0.000 - 0.249 1822 -0.858 8.166 -
2 0.537 0.463 0.000 - 0.249 1806 -0.863 8.184 -
5 0.489 0.498 0.013 - 0.248 1.794 -0.858 8.158 -
10 0.443 0440 0.117 - 0.242 1.751 -0.824 8.076 -
15 0.421 0.418 0.161 - 0.240 1.744  -0.800 7.944 -
20 0.401 0.406 0.194 - 0.238 1.742 -0.778 7.802 -
Panel B: Taylor expansion up to order 2
1 0.608 0.392 0.000 0.002 0.249 1822 -0.858 8.165 0.000
2 0.538 0.462 0.000 0.003 0.249 1806 -0.863 8.185 0.000
5 0.495 0502 0.003 0.020 0.248 1800 -0.860 8.153 0.002
10 0.455 0.448 0.098 0.039 0.243 1.757 -0.833 8.120 0.002
15 0.441 0430 0.129 0.064 0.242 1749 -0.819 8.054 0.002
20 0435 0421 0.144 0.099 0.241 1746 -0.810 8.011 0.002
Panel C: Taylor expansion up to order 3
1 0.607 0.393 0.000 0.000 0.249 1822 -0.858 8.166 0.000
2 0.537 0.463 0.000 0.000 0.249 1806 -0.863 8.184 0.000
5 0.491 0.498 0.011 0.004 0.248 1.795 -0.859 8.158 0.001
10 0.448 0.441 0.111 0.012 0.243 1.753 -0.827 8.093 0.001
15 0.433 0.420 0.148 0.027 0.241 1.745 -0.808 8.000 0.001
20 0.424 0.408 0.168 0.051 0.240 1743 -0.796 7.932 0.001
Panel D: Taylor expansion up to order 4
1 0.607 0.393 0.000 0.000 0.249 1822 -0.858 8.166 0.000
2 0.537 0.463 0.000 0.000 0.249 1806 -0.863 8.184 0.000
5 0.490 0.498 0.013 0.000 0.248 1.794 -0.858 8.158 0.000
10 0.445 0.440 0.116  0.003 0.242 1.752 -0.825 8.081 0.000
15 0.426 0.419 0.156 0.011 0.240 1.744 -0.803 7.968 0.000
20 0.413 0.407 0.180 0.028 0.239 1742 -0.788 7.874 0.000

Table 3a: Optimal allocation for weekly MSCI returns (DS1)



Portfolio weights Norm Moments of portfolio return Opportunity

A a, a, as Hp g,’ s, K" cost
Panel A: Direct optimization
1 0.000 0.635 0.365 - 0.146 3.059 -1.271 19.121 -
2 0.000 0.434 0.567 - 0.131 2.666 -0.887 14.614 -
5 0.016 0.291 0.694 - 0.118 2528 -0.488 10.814 -
10 0.081 0.187 0.733 - 0.102 2466 -0.294 9.034 -
15 0.107 0.120 0.773 - 0.094 2479  -0.155 7.971 -
20 0.126  0.067 0.808 - 0.087 2513 -0.058 7.331 -
Panel B: Taylor expansion up to order 2
1 0.000 0.647 0.354 0.023 0.147 3.088 -1.283 19.274 0.233
2 0.000 0.449 0.551 0.032 0.132 2.688 -0.929 15.070 0.129
5 0.013 0.325 0.661 0.069 0.121 2548 -0.593 11.718 0.117
10 0.074 0.259 0.667 0.146 0.108 2473 -0.509 10.716 0.140
15 0.093 0.238 0.669 0.235 0.104 2459 -0.478 10.307 0.154
20 0.103 0.228 0.670 0.323 0.103 2454 -0.463 10.103 0.149
Panel C: Taylor expansion up to order 3
1 0.000 0.636 0.364 0.003 0.147 3.063 -1.272 19.141 0.029
2 0.000 0.436 0.564 0.006 0.131 2.670 -0.894 14.695 0.022
5 0.013 0.302 0.685 0.022 0.119 2536 -0.516 11.059 0.033
10 0.072 0.221 0.708 0.068 0.106 2468 -0.381 9.719 0.052
15 0.089 0.185 0.726 0.130 0.101 2461 -0.305 9.047 0.056
20 0.095 0.162 0.743 0.191 0.098 2464 -0.249 8.622 0.043
Panel D: Taylor expansion up to order 4
1 0.000 0.635 0.365 0.000 0.146 3.059 -1.271 19.122 0.002
2 0.000 0434 0.566 0.001 0.131 2.666 -0.888 14.625 0.003
5 0.016 0.294 0.691 0.007 0.118 2.530 -0.497 10.894 0.010
10 0.079 0.203 0.718 0.034 0.103 2464 -0.341 9.376 0.024
15 0.102 0.160 0.738 0.079 0.097 2461 -0.255 8.600 0.029
20 0.117 0.131 0.752 0.130 0.093 2467 -0.200 8.136 0.021

Table 3b: Optimal allocation for monthly S&P100 stock returns (DS2)



Portfolio weights Norm Moments of portfolio return Opportunity

A a, a, as Hp g,’ s, K" cost
Panel A: Direct optimization
1 1.000 0.000 0.000 - 0.416 8.106 -0.652 5.526 -
2 0.757 0.000 0.243 - 0.264 6.792 -0.441 4.802 -
5 0.532 0.024 0.445 - 0.112 6.114 -0.133 3.724 -
10 0.393 0.129 0.479 - -0.022 5.846 -0.070 3.139 -
15 0.334 0.170 0.497 - -0.077 5.815 -0.034 2.959 -
20 0.300 0.194 0.506 - -0.108 5.818 -0.015 2.883 -
Panel B: Taylor expansion up to order 2
1 1.000 0.000 0.000 0.000 0.416 8.106 -0.652 5.526 0.000
2 0.787 0.000 0.213 0.060 0.282 6.924 -0.478 4.933 0.516
5 0.580 0.026 0.394 0.101 0.141 6.196 -0.217 3.950 0.385
10 0.476 0.114 0.410 0.168 0.037 5914 -0.179 3.460 0.328
15 0.448 0.138 0.414 0.229 0.009 5864 -0.164 3.332 0.298
20 0.439 0.146 0.415 0.277 0.000 5850 -0.158 3.291 0.276
Panel C: Taylor expansion up to order 3
1 1.000 0.000 0.000 0.000 0.416 8.106 -0.652 5.526 0.000
2 0.763 0.000 0.237 0.013 0.268 6.819 -0.449 4831 0.107
5 0.554 0.006 0.440 0.044 0.134 6.182 -0.139 3.822 0.150
10 0.434 0.089 0477 0.083 0.022 5912 -0.081 3.305 0.122
15 0.393 0.101 0,505 0.136 -0.009 5.888 -0.038 3.171 0.099
20 0.376 0.087 0.537 0.213 -0.014 5922 0.003 3.151 0.091
Panel D: Taylor expansion up to order 4
1 1.000 0.000 0.000 0.000 0.416 8.106 -0.652 5.526 0.000
2 0.758 0.000 0.242 0.001 0.264 6.794 -0.442 4.804 0.009
5 0.534 0.024 0.442 0.006 0.114 6.118 -0.138 3.736 0.019
10 0.402 0.128 0.470 0.019 -0.015 5.847 -0.083 3.168 0.025
15 0.353 0.167 0.480 0.038 -0.064 5.808 -0.056 3.001 0.022
20 0.329 0.187 0.484 0.057 -0.088 5.801 -0.043 2.934 0.012

Table 3c: Optimal allocation for monthly emerging stock-market returns (DS3)
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Figure 3a. Weight on Hong Kang
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Figure 2a. Weight on Delta Air Lines
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