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Abstract

We propose a new methodology for the analysis of impulse response functions in VAR or VARMA

models. More precisely, we build our results on the non ambiguous notion of innovation of a

stochastic process and we consider the impact of any kind of new information at a given date t

on the future values of the process. This methodology allows to take into account qualitative or

quantitative information, either on the innovation or on the future responses, as well as informa-

tions on filters. We show, among other results, that our approach encompasses several standard

methodologies found in the literature, such as the orthogonalization of shocks (Sims (1980)), the

“structural” identification of shocks (Blanchard and Quah (1989)), the “generalized” impulse re-

sponses (Pesaran and Shin (1998)) or the impulse vectors (Uhlig (2005)).

Keywords: impulse response functions, innovation, new information.

JEL Codes: C10, C32.

Résumé

Nous proposons une nouvelle approche pour l’analyse des fonctions de réponse dans les modèles

VAR et VARMA. Nos résultats sont fondés sur la notion, non ambiguë, d’innovation d’un proces-

sus stochastique. Plus précisément, nous considérons l’impact d’une ”nouvelle information” sur

l’innovation à la date t sur les valeurs futures du processus. Cette méthodologie permet de con-

sidérer les informations quantitatives ou qualitatives, soit sur l’innovation ou les futures réponses

des processus, ainsi que les informations sur des filtres linéaires des processus. Nous montrons,

entre autre, que cette approche généralise plusieurs approches standard de la littérature, comme

l’orthogonalisation des chocs (Sims (1980)), l’identification ”structurelle” des chocs (Blanchard et

Quah (1989)), les fonctions de réponse ”généralisées” (Pesaran et Shin (1998)) ou les ”impulse

vectors” (Uhlig (2005)).

Mots-clé: Fonctions de réponse, innovation, nouvelle information.

Codes JEL: C10, C32.
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Non-technical summary

Since the seminal paper by Sims (1980) a large literature has been devoted to the definition of

shocks and impulse response functions in VAR or VARMA models. A point of this literature is

related to the notion of orthogonalized shocks while another important one (see Blanchard and

Watson (1986), Bernanke (1986) and Blanchard and Quah (1989) for instance), discusses the defi-

nition of “structural” shocks. Finally, a third one uses a statistical or “agnostic” approach, either

in a bayesian way (“impulse vectors”, Uhlig (2005)) or in a classical way (“generalized” impulse

functions, Pesaran and Shin (1998)).

In this paper we propose a new methodology for the analysis of impulse response functions in

VAR or VARMA models, pushing as far as possible this statistical approach. For that purpose,

we build our results on the non ambiguous notion of innovation of a stochastic process. Then, we

consider the impact of any kind of new information regarding this innovation at a given date t on

the future values of the process.

We consider three important cases depending on the feature of the information. First, we consider

the “full information case”, where we have a unique value for the innovation. Second, we consider

the “continuous limited information case”, that is when the new information has a continuous

probability distribution. Third, we study the “discrete limited information case” where the new

information includes discrete functions, like sign functions, on either the innovation itself, or on an

impulse vector of interest or on a responses. This general setting is then used to consider shocks

on a filter of the vector of interest and responses of a filter.

We show, among other results, that our approach encompasses several standard methodologies

found in the literature, such as the orthogonalization of shocks (Sims (1980)), the “structural”

identification of shocks (Blanchard and Quah (1989)), the “generalized” impulse responses (Pesaran

and Shin (1998)) or the impulse vectors (Uhlig (2005)).
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1 Introduction

The pioneering paper by Sims (1980) has triggered a large literature on the definition of shocks and

impulse response functions in VAR or VARMA models. A part of this literature is devoted to the

notion of orthogonalized shocks while another important one, initiated by Blanchard and Watson

(1986), Bernanke (1986) and Blanchard and Quah (1989), discusses the definition of “structural”

shocks. Finally, a third one uses a statistical or “agnostic” approach, either in a bayesian way

(Uhlig (2005)) or in a classical way (Pesaran and Shin (1998)).

In this paper we try to push as far as possible this statistical approach building our results on

the non ambiguous notion of innovation εt (say) of a stochastic process, that is to say, the difference

between the value of the process and its conditional expectation given its past. We consider the

impact of any kind of new information a(εt) (say) at a given date t on the future values of the

process. The key remark is that such an impact is characterized by a shock on the innovation at t

defined by its conditional expectation given the new information.

We will study three important cases depending on the properties of function a(.). We first consider

the “full new information” case where a(.) is one-to-one. Here we have a unique value for the

innovation and we show that the standard orthogonalized shocks, the impulse vectors introduced

by Uhlig (2005) and the structural shocks can be viewed as particular cases of such full information.

Second, we consider the case of “continuous limited new information” where a(.) is not one-to-

one and has a continuous probability distribution. This case includes the “generalized” impulse

response function introduced by Pesaran and Shin (1998), the case of a set of impulse vectors, but

also other informations on the subset of innovations. Third, we study the “discrete limited new

information” case where the new information includes discrete functions, like sign functions, on

either the innovation itself, or on an impulse vector or on a response. This general setting is then

used to consider shocks on a linear filter of the vector of interest and responses of a linear filter.

The paper is organized as follows. In Section 2 we define the new information response function.

In Section 3 this concept is applied to the full new information case, Section 4 is devoted to

the continuous limited new information case, while Section 5 deals with the discrete limited new

information one. In Section 6 we show how these results can be used to analyze shocks on a linear

filter and responses of a filter. Finally, Section 7 concludes and proposes further developments.
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2 Response to a new information on a function of a VAR innova-

tion

Let us consider a n-dimensional VAR(p) process Yt satisfying:

Φ(L)Yt = ν + εt (1)

where Φ(L) = I +Φ1L+ ...+ΦpL
p, L being the lag operator; εt is the n-dimensional Gaussian inno-

vation process of Yt with distribution N(0,Σ). We do not necessarily assume that Yt is stationary, so

we have to assume some starting mechanism, defined by the initial values (y′
−1, y

′

−2, ..., y
′

−p)
′ ≡ y−p.

By considering the recursive equations:

Yτ = ν − Φ1Yτ−1 − ... − ΦpYτ−p + ετ (2)

at τ = 0, ..., t and eliminating Y0, ..., Yt−1 we get a moving average representation of the form:

Yt = µt +

t∑

τ=0

Θτεt−τ (3)

where µt is a function of y−p and the sequence Θτ is such that:

(
p∑

i=0

ΦiL
i

)(
t∑

τ=0

ΘτL
τ

)
= I (4)

which implies,

Θ0 = I and

Θτ = −
τ∑

i=1

ΦiΘτ−i , τ ≥ 1 , (5)

with Θs = 0 if s < 0, Φ0 = I, Φi = 0 if i > p. Equation (5) provides a straightforward way to

compute recursively the matrices Θτ .

Denoting Yt = (Y ′

t , Y ′

t−1, ..., Y
′

t−p)
′, equation (3) implies:

E(Yt+h|Yt) − E(Yt+h|Yt−1) = Θhεt (6)

so Θhεt measures the differential impact of the knowledge of εt on the updating of predictions of

Yt+h between dates t − 1 and t.
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More generally, let us consider the differential impact on the prediction of Yt+h of a new information

a(εt), where a(.) is some function. This impact, also called impulse response function, is:

E(Yt+h|a(εt), Yt−1) − E(Yt+h|Yt−1)

= E
{
[E(Yt+h|εt, Yt−1) − E(Yt+h|Yt−1)]|a(εt), Yt−1

}

= E[Θhεt|a(εt), Yt−1]

= ΘhE[εt|a(εt)] . (7)

This means that the average impact on Yt+h of a new information a(εt) at time t is the same as

the one which would be implied by a shock δ = E[εt|a(εt)] on the innovation εt.

In the following, we will distinguish three important situations according to the properties of

the function a(.):

i) the “full new information” case, when a(.) is one-to-one.

ii) the “continuous limited new information” case, when a(.) is not one-to-one and when the

probability distribution of a(εt) is continuous (i.e., absolutely continuous with respect to the

Lebesgue measure).

iii) the “discrete limited new information” case, when the distribution of a(εt) has a discrete

component.

3 Full new information

If a(.) is one-to-one, the average impact on Yt+h of the new information a(εt) = α is obviously

Θha−1(α). This simple situation contains the following well known cases: 1) the orthogonalized

shocks; 2) the Uhlig (2005)’s impulse vectors and 3) the structural shocks.

3.1 Orthogonalized shocks

Let us consider the lower triangular matrix P defined by Σ = PP ′ and the orthogonalized errors ξt

defined by εt = Pξt. The distribution of ξt is obviously N(0, I) and it is usual to consider a shock

ej on ξt, where ej is the jth column of the n × n identity matrix I (i.e a shock of 1 on ξjt and of 0
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on the other components). It is clear that the impact on Yt+h of such a shock is the same as the

shock δ = Pej on εt, namely ΘhPej , or ΘhP (j), where P (j) is the jth column of P . In particular,

the immediate impact on εt (or Yt) is P (j), so there is no immediate impact on the component Yit

if i < j, and the immediate impact on Yjt is Pjj (the (j, j) entry of P ).

If we want an immediate impact on Yjt equal to one, we can consider the lower triangular matrix

P̃ = PD−1, where D is the diagonal matrix (Pjj), and the vector ζt defined by ζt = Dξt or εt = P̃ ζt.

Now, a shock ej on ζt has the impact δ = P̃ (j) on εt (or Yt) and ΘhP̃ (j) on Yt+h. Also note that

(1) can be rewritten:

P̃−1Φ(L)Yt = P̃−1ν + ζt (8)

and since P̃−1 is lower triangular with diagonal terms equal to 1, (8) is the recursive form of the

VAR. So the average impact on Yt+h of a shock ej on ζt, could be obtained recursively from (8) by

computing Yt, Yt+1, ..., Yt+h with Ys = 0, s < t, ζt = ej and ζs = 0, s > t.

3.2 Uhlig (2005)’s impulse vectors

Uhlig (2005) defined an impulse vector γ ∈ R
n as the vector such that there exists a matrix A

verifying AA′ = Σ and admitting γ as a column. The set of vectors satisfying this definition can be

seen as all the possible shocks on εt implied by a shock ej on a “fundamental” error ηt satisfying

εt = Aηt and V (ηt) = I.

It turns out [see Uhlig (2005)] that those vectors γ are characterized by γ = Pβ, where P is

defined in Section 3.1, and β is a unit length vector of R
n. Equivalently, these vectors are such

that γ′P−1′P−1γ = 1 or γ′Σ−1γ = 1 and therefore, they are an hyperellipsöıd.

An impulse vector γ is a particular full new information on εt whose impact on Yt+h is Θhγ

and the set of all possible impacts on Yt+h coming from an impulse vector is ΘhPβ, where β is of

length one.

3.3 Structural shocks

A structural error is defined as a vector ηt satisfying εt = Aηt, with Σ = AA′, and, therefore

V (ηt) = I, like the “fundamental” vector considered in Section 3.2.
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Moreover, a structural error is uniquely defined by identification conditions which could be based

on short run restrictions, imposing for instance that an impact ej on ηt has no immediate impact

on εit, i.e. Aij = 0, or which could be based on long-run restrictions when Yt is non-stationary and

admits r cointegrating relationships. In the latter case, we can construct a vector Wt such that:

Wt =


∆Ỹt

Λ′Yt


 ,

where Ỹt is the subvector of Yt given by its first (n − r) rows, and Λ′Yt a r-dimensional vector of

cointegrating relationships, and such that Wt has a stationary VAR representation of the form:

Γ(L)Wt = Cν + Cεt

where C =


In−r 0

Λ′


.

The long run impact on the scalar components yit, i ≤ n−r, of a shock ej on ηt is [Γ−1(1)CA(j)]i

where A(j) is the jth column of A, and imposing that such long run impacts are zero may imply

identification [see Blanchard and Quah (1993) and Rubio-Ramirez, Waggoner and Zha (2008)]. In

any case, an information ej on ηt is a full information A(j) on εt.

4 Continuous limited new information

Let us now consider the case where a(.) is not one-to-one and a(εt) has an absolutely continuous

distribution. In this situation the new information a(εt) = α (say) does not define εt and we have to

compute δ = E[εt|a(εt) = α] in order to obtain the impact Θhδ on Yt+h. Since the event a(εt) = α

has probability zero, we have to find the conditional expectation in a continuous distribution context

and some examples are given below.

4.1 Pesaran-Shin (1998) “generalized” impulse response functions

Pesaran and Shin (1998) considered the case where a(εt) ≡ εjt. In the Gaussian case, the compu-

tation of E[εt|εjt = α] is straightforward and we get:

E [εit|εjt = α] =
Σij

Σjj

α

7



In particular if α = 1, the immediate impact δ = E[εt|εjt = 1] is Σ(j)Σ−1
jj where Σ(j) is the

jthcolumn of Σ.

4.2 New information on a set of individual innovations

If a(εt) ≡ εK
t , where εK

t is a K-dimensional subvector of εt containing any εjt with j ∈ K and

K ⊂ {1, . . . , n}, we have to compute δ = E[εt|ε
K
t = α].

Again, in the Gaussian case we immediately get:

δ = ΣKΣ−1
KKα

where ΣK is the matrix given by the columns Σ(j) of Σ such that j ∈ K and ΣKK is the variance-

covariance matrix of εK
t .

For instance, if the new information is εjt = 1 and εkt = 0, the ith component of δ (i 6= j and

i 6= k) will be the coefficient of εjt in the theoretical regression of εit on εkt and εjt.

4.3 Information defined as the set of impulse vectors

As we have seen in Section 3.2, the set of impulse vectors is Γ =
{
γ ∈ R

n : γ′Σ−1γ = 1
}

or equiva-

lently Γ = {γ ∈ R
n : γ = Pβ, β′β = 1} where P is for instance the lower triangular matrix satisfying

Σ = PP ′.

If the new information is εt ∈ Γ, i.e. ε
′

tΣ
−1εt = 1, that is if a(εt) = ε′tΣ

−1εt and α = 1, we have to

compute E[εt|εt ∈ Γ].

Since εt = Pξt, with ξt ∽ N(0, I) and E[εt|εt ∈ Γ] = PE[ξt|ξ
′

tξt = 1], we have by symmetry

E[εt|εt ∈ Γ] = 0. Therefore, the new information εt ∈ Γ has no impact in average on Yt+h.

Additional sign constraints will be considered in Section 5.5.

5 Discrete limited new information

5.1 Definition of the new information

Let us now consider the case where the distribution of a(εt) has a discrete component. More

precisely we assume that a(.) =


a1(.)

a2(.)


, where a1(εt) has a continuous distribution and a2(εt) is
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valued in a finite set α2 = {α21, ..., α2L}. In this case the conditional distribution of any component

εit of εt given a1(εt) = α1 and a2(εt) = α2j ∈ α2 is obtained by the conditional distribution of εit

given a1(εt) = α1 restricted to the set a2(εt) = α2j . In other words:

P (εit ∈ S|a1(εt) = α1, a2(εt) = α2j) =
P (εit ∈ S, a2(εt) = α2j |a1(εt) = α1)

P (a2(εt) = α2j |a1(εt) = α1)
.

Note that simulations in this conditional distribution of εt given a1(εt) = α1 and a2(εt) = α2j

can be obtained by simulating independently a sequence in the conditional distribution of εt given

a1(εt) = α1 and keeping the first simulation ε̃t satisfying a2(ε̃t) = α2j . It is a simple rejection

algorithm. The conditional expectation E[g(εt)|a1(εt) = α1 and a2(εt) = α2j ], where g is some

given function, can be approximated by the empirical mean of g(ε̃s
t ), s = 1, ..., S and where ε̃s

t are

obtained by keeping the simulation satisfying a2(ε̃t) = α2j in a sequence of independent simulations

in the conditional distribution of εt given a1(εt) = α1. However, in some cases explicit forms of

such conditional expectations are available.

5.2 Quantitative informations and one sign information

Let us consider the case where a2(εt) = 1lR+(εjt) and a1(εt) = εK
t with K ⊂ {1, ..., n} such that

j /∈ K. Our purpose is to compute

E[εjt|ε
K
t = α, εjt > 0]

and

E[εit|ε
K
t = α, εjt > 0],

with i /∈ K and i 6= j. In both cases, explicit formulas are available.

i) Computation of E[εjt|ε
K
t = α, εjt > 0]:

the conditional distribution of εjt given εK
t = α is easily found; it is a Gaussian distribution

with mean µK
j α and variance (σK

j )2 (say) (where µK
j is a row vector). So E[εjt|ε

K
t = α, εjt > 0]
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is given by E[µK
j α + σK

j U |µK
j α + σK

j U > 0] where U ∽ N(0, 1). We find

E[εjt|ε
K
t = α, εjt > 0] = µK

j α + σK
j

φ

(
µK

j α

σK
j

)

Φ

(
µK

j
α

σK
j

)

= µK
j α + σK

j λ

(
µK

j α

σK
j

)
,

where φ and Φ are, respectively, the p.d.f and the c.d.f of N(0, 1), and λ(x) = φ(x)
Φ(x) is the

Mill’s ratio.

ii) Computation of E[εit|ε
K
t = α, εjt > 0]:

we first find the conditional expectation of εit given εK
t = α and εjt, which can be written as

µK
ij α + νK

ij εjt (say) and we get:

E[εit|ε
K
t = α, εjt > 0] = E

[
E
(
εit|ε

K
t = α, εjt

)
|εK

t = α, εjt > 0
]

= µK
ij α + νK

ij E[εjt|ε
K
t = α, εjt > 0]

= µK
ij α + νK

ij

[
µK

j α + σK
j λ

(
µK

j α

σK
j

)]
.

5.3 Quantitative informations and several sign informations

We still assume a1(εt) = εK
t , but now a2(εt) is the set of functions {1lR+(εjt), j ∈ J}, with J ⊂

{1, . . . , n} and K ∩ J = ∅.

We have to compute

E[εit|ε
K
t = α, εjt > 0, j ∈ J ], i ∈ J ,

and

E[εit|ε
K
t = α, εjt > 0, j ∈ J ], i /∈ K, i /∈ J .

i) Computation of E[εit|ε
K
t = α, εjt > 0, j ∈ J ], i ∈ J :

the joint conditional distribution of εJ
t given εK

t = α is Gaussian with mean µJKα and

variance-covariance matrix ΣJK (say) and we have to compute the mean of this normal

distribution restricted to the orthant (εjt > 0, j ∈ J) (see below).
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ii) Computation of E[εit|ε
K
t = α, εjt > 0, j ∈ J ], i /∈ K, i /∈ J :

E[εit|ε
K
t = α, εjt > 0, j ∈ J ] = E[E(εit|ε

K
t = α, εjt, j ∈ J)|εK

t = α, εjt > 0, j ∈ J ]

= µJK
i α + νJK

i E[εJ
t |ε

K
t = α, εjt > 0, j ∈ J ] .

Again the joint conditional distribution of εJ
t given εK

t = α is N(µJKα,ΣJK) and, as above, we

have to compute the mean of this normal distribution restricted to the orthant (εjt > 0, j ∈ J).

The restriction of a J−variate normal distribution N(m,Q) to the positive orthant is not

easily analytically tractable but it can be simulated either by the rejection algorithm men-

tioned above or by using the Gibbs algorithm, and therefore its mean can be computed by a

Monte Carlo method. The principle of the Gibbs algorithm is to start from an initial value

y0 = (y01, ..., y0J ) and to successively draw a new component in its conditional distribution

given the other components fixed at their more recent values. Since the conditional distribu-

tion of a component given the others is a univariate normal distribution restricted to R
+, its

simulation is straightforward. This algorithm is usually faster than the rejection algorithm.

5.4 Quantitative informations and sign informations on responses

The quantitative information is still εK
t = α but the sign information is related to some responses

at some horizons. More precisely the sign information is:

Θ
(j)
h

′εt > 0

where the pair (j, h) ∈ S ⊂ {1, . . . , n} × {1, . . . , n} and Θ
(j)
h is the jth column of Θh. In this case,

we have to compute:

E[εit|ε
K
t = α,Θ

(j)
h

′εt > 0, (j, h) ∈ S] ,

where i ∈ K = {1, ..., n} − K.

The conditional distribution of εK
t given εK

t = α is Gaussian and the previous expectation can be

computed by a Monte Carlo method based on the rejection principle, that is, by using simulations

in this distribution and keeping them if they satisfy the inequality constraints.
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5.5 Impulse vector and sign information on responses

Uhlig (2005) considered the case where the information is εt ∈ Γ, the set of impulse vector, i.e.

ε′tΣ
−1εt = 1, and sign informations on responses: Θ

(j)
h

′εt > 0, (j, h) ∈ S.

The conditional expectation

E[εit|ε
′

tΣ
−1εt = 1,Θ

(j)
h

′εt > 0, (j, h) ∈ S]

can still be computed by a Monte Carlo method. Indeed the conditional distribution of εt given

ε′tΣ
−1εt = 1 is the image by P of the conditional distribution of ξt given, ξ′tξt = 1, where ξt ∽ N(0, I)

which is the uniform distribution on the unit sphere. So, the method is a follows:

• draw ξ from N(0, I)

• compute ξ̃ = ξ

(ξ′ξ)1/2

• compute ε̃ = P ξ̃

• keep the simulation if Θ
(j)
h

′ε̃ > 0, (j, h) ∈ S.

The expectation are obtained from the empirical means of the retained simulations.

6 Shocks on a filter and responses of a filter

6.1 Shocks on a filter

In some situations, the relevant information is on a linear filter of the basic variables. For instance,

in macro-finance models of the yield curve, this filter may be a term premium or an expectation

variable (see Jardet, Monfort, Pegoraro (2009)).

Let us consider a filter Ỹt = F (L)Yt, where F (L) = (F1(L), ..., Fn(L)) is a row vector of polynomials

in L. The innovation of Ỹt at t is ε̃t = F (0)εt, and therefore an information on ε̃t, defined by

ã(ε̃t) = α, can be written as ã[F (0)εt] = α or a(εt) = α (say). This means that, an information on

ε̃t can be viewed as an information on εt and it can be treated as in the previous framework. Let

us consider some examples.

If the information is ε̃t = 1 and εjt = 0, j = 1, ..., n − 1, the impact on Yt+h is Θhδ, where
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δ = E[εt|ε̃t = 1, εjt = 0, j = 1, ..., n − 1] is equal to (0, ..., 0, 1/Fn(0)).

If the information is ε̃t = 1, the impact on Yt+h is Θhδ, where

δ =
cov(εt, ε̃t)

V (ε̃t)

=
ΣF ′(0)

F (0)ΣF ′(0)

If the information is ε̃t = 1 and εjt = 0, the impact on Yt+h is Θhδ where the ith component δi is

the coefficient of ε̃t in the theoretical regression of εit on ε̃t and εjt (in particular δj = 0).

6.2 Response of a filter

Similarly, we might be interested in the response of a linear filter to some new information. If

we consider the univariate filter Ỹt = G(L)Yt, we can compute the impact on Ỹt+h of a new

information a(εt) = α at t. Indeed, since the impact on Yt+h is ΘhE[εt|a(εt) = α], the impact on

Ỹt+h is obviously G(L)ΘhE[εt|a(εt) = α] where the lag operator L is operating on h and where

Θs = 0 if s < 0.

7 Conclusions and Further Developments

The results of this paper has been derived in the Gaussian case. If the distribution is no longer

Gaussian and if function a(.) is linear the results are still valid if we replace the notion conditional

expectation by the notion of linear regression. If a(.) is non linear, the conditional expectation

E[εt|a(εt) = α] might be approximated by Monte Carlo and kernel techniques.

The results could be also extended to VARMA(p,q) models Φ(L)Yt = µ+Ψ(L)εt by computing the

Θh in the following way

Θτ = Ψτ −

τ∑

i=1

ΦiΘτ−i

with Φi = 0 if i > p, Ψτ = 0 if τ > q and Θs = 0 if s < 0, (Φ(0) = I, Ψ(0) = I).

The sign constraints could be replaced by more general information sets tackled by Monte Carlo

methods, for instance imposing that some innovations belong to some intervals.

The extension to the nonlinear framework (see Gallant, Rossi, Tauchen (1993), Koop, Pesaran,

Potter (1996), Gourieroux and Jasiak (2005)) is less obvious and could be the objective of further

research.
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