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Abstract: Empirical techniques to assess market comovements are numerous from cointegra-

tion to dynamic conditional correlations. This paper uses the fractal properties of asset returns

and presents estimations of Markov switching multifractal models [as MSM] to give new insights

about short and long run dependencies in stock returns. The main advantage of the model is to

allow for the derivation of several indicators of comovements on heterogenous lasting horizons.

Empirical applications are performed for four stock indices (CAC DAX FTSE NYSE) at daily

frequency between 1996 and 2008.

keywords : Multivariate volatility models, Markov switching multifractal model, transmission,

comovements.

JEL Classi�cation : C32 F36 G15

Résumé: Les techniques empiriques pour rendre compte des comouvements sont nombreuses,

de la cointégration aux modèles de corrélations dynamiques. Cet article utilise les propriétés

fractales des rendements d�actifs �nanciers et présente des estimations de modèles markoviens

multifractals à changements de régimes [MSM] pour dériver de nouveaux indicateurs concernant

la dépendance de court et long terme entre indices boursiers. Le principal avantage du modèle est

de permettre la dérivation d�indicateurs de comouvements sur des horizons de durées hétérogènes.

Des applications empiriques sont e¤ectuées pour quatre indices (CAC DAX FTSE NYSE) à

fréquence journalière entre 1996 et 2008.

Mots-Clé : Modèles multivariés de volatilité; Modèles de Markov switching multifractals;

transmission; comouvements.

Classi�cation JEL : C32 F36 G15
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Non Technical Summary

Recent developments in �nancial markets have shown the importance for market participants

of the measure of risk and of comovements.

The following paper develops several new indicators for assessing volatility and comovements

between stock markets from long-run to the very short-term dependence. Several techniques in

econometrics have already been developed such as cointegration, multivariate volatility models

or dynamic conditional correlations. A new set of indicators is derived from a Markov-Switching

Multifractal model [MSM] in a bivariate form as initiated by Mandelbrot et al. (1997) and Calvet

et al. (2006).

The use of fractal mathematics as a tool relies on the simple idea that dependence may di¤er

and occur at di¤erent horizons. This straightforward idea stems from the diversity of investors

and the diversity of information they react to. For instance, some investors may react to the

regular disclosure of accounting information or the publication of national statistics, while others

may react to a fall in a foreign market or to the �buy dynamics� observed on a speci�c asset.

This leads to dependencies at di¤erent frequencies, which may a¤ect price dynamics di¤erently.

The MSM model clearly improves the view of this strata structure of investment decisions and

enables us to disentangle the links between markets at several horizons that are endogenously

determined.

This paper presents an empirical application for four indices between 1996 and April 2008:

CAC, FTSE, DAX and NYSE. A structure of three superimposed cycles is estimated by the

model. The NYSE appears to be the most resilient with a very short-term cycle of 15 days,

while European markets�shortest cycles are between 20 and 47 days. The medium-term cycle

varies from 47 days for the NYSE to 101 days for the FTSE. Finally the longest cycle is around

146 days for the NYSE and up to 392 days for the CAC.

The �rst indicator is the probability of crisis. This is de�ned as the probability of being in

the highest state of volatility on the considered market for all horizons. The second indicator

is the probability of extreme comovements, de�ned as the probability of being in crisis for one

market, knowing that another market is in crisis. Finally long-term high volatility cycles are

derived and correspond to the highest state of volatility at the longest horizon.

The main �nancial crises are detected by the model: the Asian crisis, the Russian crisis,
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March 2000, 11 September, the US accounting scandals, the Second Iraq War and January 2008.

Note that in 2007 the subprime crisis is not considered as a crisis since the long-term volatility

component did not jump to a high value. However, the short- and medium-term components

moved to high volatility, which weakened the market and increased the threat of a crisis occurring.

This crisis is �nally witnessed during the Black Monday, January 21, 2008.

Extreme comovement phenomena have evolved over time in the sample and di¤er between

markets. They appear very strong in the euro area between France and Germany and less

pronounced but strong in Europe (i.e. between the UK and France or the UK and Germany).

Finally, extreme comovement probability conditional on the United States appears stronger for

the UK than for France and Germany. However, overall, US comovements conditional on other

markets appear quite erratic and sudden when it occurs.

Lastly, we consider long-term cycles of volatility. It appears that the Asian crisis is a key

event in the sample since it generated, until the end of 2003, a long-term high volatility cycle.

This is observed for all markets. However the period from 2004 until the end of 2006 is remark-

ably characterised by a very low volatility long-run cycle. However, as mentioned previously,

2007 appears to be a transition period with a rise in the short- and medium-term component of

volatility. This has clearly weakened the long-term low volatility cycle and made market partici-

pants more vigilant about market price dynamics. Finally, 2008 has opened a new high volatility

long term cycle.
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Résumé non technique

La dynamique récente des marchés �nanciers a de nouveau rappelé l�intérêt des partici-

pants de marchés pour les mesures du risque et de comouvements. Le présent papier développe

plusieurs nouveaux indicateurs pour rendre compte de la volatilité et de ses comouvements entre

marchés depuis la dépendance de long terme jusqu�à la dépendance de court terme. De nom-

breuses techniques en économétrie ont déjà été développées : cointégration, modèles multivariés

hétéroscédastiques, modèles de corrélations dynamiques. Une nouvelle série d�indicateurs est

dérivée d�un modèle multifractal à régime markovien [MSM], dans sa forme bivariée, initiée par

Mandelbrot et al. (1997) et Calvet et al. (2006).

L�utilisation des mathématiques fractales repose sur l�idée simple que la dépendance peut

di¤érer et se produire à di¤érents horizons. Ceci est une conséquence directe de la diversité

des investisseurs sur les marchés ou des di¤érentes incitations informationnelles. Par exemple,

certains investisseurs réagissent aux publications comptables, alors que d�autres arbitrent à haute

fréquence entre les marchés. Ainsi sont obtenues des dépendances à di¤érentes fréquences qui

a¤ectent les dynamiques de prix de façon hétérogène.

Le modèle MSM améliore clairement cette vision en strates du marché et nous permet de

dénouer le court du long-terme sur les marchés pour les di¤érents horizons qui sont déterminés

de façon endogène. Le papier présente une application empirique pour quatre indices entre 1996

et avril 2008 : CAC, FTSE, DAX and NYSE. Une structure de trois cycles superposés est estimée

par le modèle. Le NYSE apparaît être le plus résilient avec un court-terme de l�ordre de 15 jours,

alors que les cycles courts des marchés européens sont entre 20 et 47 jours. Le cycle de moyen-

terme est autours de 47 jours pour le NYSE jusqu�à 101 jours pour le FTSE. Finalement, le plus

long terme est de 146 jours pour le NYSE jusqu�à 392 jours sur le CAC.

Le premier indicateur est une probabilité de crise. Ceci est dé�ni comme la probabilité d�être

dans un état haut de volatilité sur tous les horizons. Le second indicateur est la probabilité

de comouvements extrêmes. Ceci est dé�ni comme la probabilité d�être en crise sur un marché

conditionnellement à ce que l�autre marché soit en situation de crise. En�n, les cycles de long-

terme de forte volatilité sont tirés du modèle et correspondent à l�état haut de la volatilité sur

la fréquence la plus basse.

5



Les principales crises �nancières sont détectées par le modèle : la crise asiatique, la crise russe,

mars 2000, le 11 septembre, les scandales de la comptabilité aux Etats-Unis, la guerre en Irak et

janvier 2008. Notons qu�en 2007, la crise dite des "subprimes" n�est pas considérée comme une

crise car la composante de long terme de la volatilité est restée dans un état de basse volatilité.

Cependant, les composantes de court et moyen-terme ont migré vers un état de forte volatilité ce

qui a fragilisé le marché et augmenté la menace d�une crise. Cette crise est �nalement observée

durant le lundi noir du 21 janvier 2008.

Les phénomènes de comouvements extrêmes ont évolué au cours du temps et di¤èrent entre

les marchés. Ils apparaissent très forts en zone euro entre la France et l�Allemagne, et moins

prononcés mais forts en Europe (i.e. entre le Royaume-Uni et l�Allemagne ou la France). En-

�n, la probabilité de comouvements extrêmes conditionnelle au NYSE est plus forte pour le

Royaume-Uni que pour la France et l�Allemagne. Les comouvements pour le marché améri-

cain, conditionnellement aux autres marchés apparaissent erratiques et soudains lorsqu�ils se

produisent.

Finalement, sont considérés les cycles de long terme de la volatilité. Il apparaît que la crise

asiatique est un événement clé sur l�échantillon car a généré jusqu�en 2003 un cycle de forte

volatilité sur le long terme. Ceci est observé sur tous les marchés. Néanmoins, la période 2004-

2006 est remarquablement caractérisée par une très faible volatilité de long terme. Cependant,

comme mentionné précédemment, 2007 apparaît comme une année charnière avec une hausse des

composantes de court et moyen-terme. Ceci a fragilisé le cycle de long terme de basse volatilité

et augmenté la vigilance des participants de marché. En�n, 2008 a ouvert un nouveau cycle de

forte volatilité de long terme et ce à partir du lundi noir.
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1 Introduction

This article proposes a new set of indicators gauging comovement risk and volatility spillovers

between �nancial prices. Derived from the bivariate Markov-Switching multifractal model of

asset returns initiated by Calvet et al. (2006) these indicators latter described are :

� the volatility cycles or periods;

� a crisis probability;

� a probability of extreme comovements;

� and probabilities of long term high (or low) volatility cycles.

Quantitative methods for assessing risk transmission and comovements are numerous in the

literature. Kasa (1994) through cointegration analysis using Johansen (1992) tests tries better

understanding stock market integration. In this strand of cointegration analysis, Kanas (1998)

performs a similar analysis. More recently, with the idea there exists several types of comovements

between markets (as Forbes and Rigobon (2002) dichotomy between integration and contagion),

Billio Lo Duca and Pellizon (2005) in a Vector Error Correction Mechanism (VECM) framework

introduce regime switching to address break in the integration process or contagion process. Idier

(2006), using as well a VECM framework, separates transmission between the �rst and second

moments by expanding the model with a multivariate General Auto Regressive Conditional

Heteroskedastic model, making the bridge between cointegration analysis and the wide class

of multivariate GARCH models. The use of multivariate GARCH model has also been widely

explored by researchers in assessing risk and volatility transmission (survey by Bauwens et al.

(2006) or Engle and Sheppard (2007)). From the Baba-Engle-Kraft and Kroner (as BEKK)

model to the Dynamic Conditional Correlation of Engle et Sheppard (2001) several improvements

have been introduced in these models as asymmetries or structural breaks. Recently, Billio and

Caporin (2005) have introduced a Markov switching DCC model with the main improvement that

correlations may jump assuming di¤erent states in correlations. Other approaches concerning

the use of high frequency data and realized volatilities or realized variance-covariance matrices

speci�cations have also been applied : the Heterogenous Autoregressive model of Corsi (2006)

7



or the paper by Bauer and Vorkink (2007) modelizing the realized Bipower variance matrices

issued from the work of Barndnor¤-Nielson and Shephard (2004).

In the strand of multivariate volatility models, a last class of speci�cations, recently developed

by Calvet, Fisher and Mandelbrot (1997), Calvet and Fisher (2001,2002,2004) or Calvet, Fisher

and Thompson (2006) uses the fractal properties of asset returns.

Fractal properties of asset returns may be related to information cascade occurrence on a

market. An information cascade is the disability of market agents to move �rst rationally. In

other words, once one �rst has moved randomly to a particular decision (for example buy an

asset), the others take into account this action to move subsequently. Since subsequent players

do not have any other information than witnessing this �rst move on the market, they draw

rationale incentives from this limited set of information to move on the market in the same

direction as the �rst agent. As an ex post consequence, buy the asset was rationale since the

market is now upward. The changes in the asset price are subsequently accelerating, since the

network of agents witnessing agents moves is growing.

Information on the market arrive very often and the population of market participants may

be very heterogeneous for certain classes of assets. As underlined by Zumbach and Lynch (2001),

from hedge funds with substantive positions to small individual traders, market moves are mo-

tivated by di¤erent types of information arrivals and launch relatively long or short periods of

volatility clustering. There is no uninformed traders moving on the market, but at least one ra-

tionale in a limited set of information to move on the market: information disclosure, statistics,

arbitrage between markets, market moves etc.

It is thus expected from an empirical model to consider this heterogeneity in news, and this

strata structure of information revelation in price processes. In this direction, fractal properties

of asset returns may be useful. More than thinking about time dependency in the evolution of

the market, it is more accurate to think in terms of frequencies. Statistics are published at a

regular frequency and the same, for example, concerning dividend distribution or �rm information

disclosure. Generally, it may be assumed that di¤erent types of traders, use di¤erent types of

information, at di¤erent frequencies, and so the market moves in terms of frequencies.

Calvet, Fisher and Mandelbrot (1997) have shown on exchange rate data that returns satis�ed

scale properties of fractal objects. From these observations, they have developed a Markov
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switching multifractal model taking into account these properties. To analyze risk transmission,

a Bivariate model has been developed, in a similar fashion to the univariate one. These models

always applied to exchange rate data give very satisfactory insight concerning comovements since

it estimates a strata structure of transmission cycles of di¤erent lengths. The model also exerts

a probabilistic structure on a wide range of volatility states that largely improves the view of

the nature and of the degree of transmission between returns. Concerning stock market prices,

Fillol (2003) analyses the fractal properties of asset returns for the French CAC40 index that

also satisfy fractal scale properties. Lux and Kaizoji (2007) studies the behavior of prices in

the Japan stock market using this model. However, empirical applications of this model, in his

bivariate form, stay relatively scarce.

Following the distinction of Forbes and Rigobon (2002) concerning integration and contagion,

the model estimates a probabilistic structure concerning the several cycles in prices. These cycles

organized as strata are an illustration of scale properties of fractal objects, and help distinguishing

long term versus short term links in index returns. The model thus allows for non discrimination

between short term comovements and long term comovement, but for a discrete scale of potential

shifts a¤ecting volatilities at di¤erent frequencies. Advantages are twofold. First, this graduation

in the di¤erent horizons is endogenous and not imposed by the model. Second, the structure

of the model results for a relatively reasonable number of parameters to a wide set of potential

volatility and comovement states.

An empirical application is done for four stock indices, CAC FTSE DAX and NYSE at

daily frequency from 01/01/1996 to 24/04/2008. In this paper the four indices are coupled to

each other in Bivariate Markov switching models. The estimations, by maximum likelihood,

permit to identify the di¤erent cycles, with di¤erent durations, state varying correlations and a

probabilistic structure concerning comovements. This allows for a new way to detect the crises,

that it is opposed to the long term cycles identi�ed in index returns. Finally it gives a complete

new set of indicators concerning links on several horizons between markets.

The following section presents the MSM model �rst in a univariate framework. The third

section presents the bivariate form and the derivations of the comovement indicators. Section

4 presents the empirical application of the MSM models for stock indexes. Finally section 5

concludes.
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2 The Univariate multifractal model of asset returns

2.1 The model

This modelisation combines persistent changes in the value of the asset and very short lasting

shifts. Major news are considered to have long lasting e¤ects while minor news are considered

short lasting in e¤ects. From Calvet and Fisher (2002), the returns are formalized as:

Rt =

0@ _

kY
k=1

Mk;t

1A1=2

�"t (1)

with � the unconditional standard error and " a residual following a standard Gaussian

distribution (0,1). Returns are speci�ed as the product of �k components Mk. These components

are drawn at each date from a binomial distribution taking values m0 2 [1; 2] and 2-m0 with

equal probability so that E(Mk) = 1, to guaranty a conservative mass measure. The binomial

distribution is considered to be state and time invariant : if an information arrival occurs, the

new multiplier Mk is drawn from the time invariant M binomial distribution but the Mk di¤er

in the occurrence of information arrivals, in other words in their frequency 
k. The index k,

corresponds to several horizons so that for k = 1, a short lasting shift is obtained while for

k = �k it is observed a long lasting shift. Horizons of each component is de�ned similarly as in

Calvet and Fisher (2004). The frequencies to which components actually jump, indexed by k,

are de�ned as:


k = 1� (1� 
1)b
(k�1)

(2)

where 
1 2 [0; 1] is the highest frequency of information arrivals (and so the shortest horizon)

and b 2]0; 1] so that 
k 2 [0; 1] for all k1 .

Some components Mk take a high value m0 quite often and come back to a low value m1 =2-

m0 while others may change and stay at a high level for longer time. The heterogeneity in

traders and news give a more complex dependency on the market than simple time dependency.

Publications of GDP bring a certain type of traders on the market during these days, with

a certain behaviour, which are not the same behaviors for example than people who trade in

1This di¤ers from the original model since here b 2]0; 1] for computationnal interest in bounding the b para-
meter.
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the European markets when the US market moves to a certain extent. A superposition of

di¤erent trading cycles is obtained with di¤erent shocks and di¤erent persistences. Low frequency

components can be attributed to biggest events in the market while highest frequency components

would be algorithm trading for example. It is not considered that people are informed or not

in the market, but that people are interested in di¤erent types of information and thus behave

di¤erently.

2.2 Univariate estimation procedure

Calvet and Fisher (2004) use a maximum likelihood optimization procedure to estimate the set

of parameters 
 = (m0; �; b; 
1) 2 R4. Since Mk follows a binomial distribution, it is obtained

2
_

k volatility states. A volatility state is de�ned as a vector mi = (M1; M2; :::M�k) of dimension �k:

Updating the probability state vector �t of elements �
j
t = Pr(Mt = m

j j R1;R2; :::Rt) consists

in recursively calculating the probabilities of the 2�k possible states in volatilities. The transition

matrix A of the Markov chain has elements aij de�ned as:

ai;j = Pr(Mt+1 = m
j jMt = m

i)

=

�kY
k=1

h
(1� 
k)=fmi

k=m
j
kg
+ 
k � Pr(M = mj

k)
i
; (3)

with = a variable taking value one if mi
k = m

j
k and zero otherwise. The conditional density

of returns in period t is

fRt
(R jMt = m

i) =

264
0@ _

kY
k=1

Mk;t

1A1=2

�

375
�1

� '

0BB@R�
264
0@ _

kY
k=1

Mk;t

1A1=2

�

375
�11CCA (4)

with ' the density of a standard Gaussian distribution (0,1). Considering the vector !t of

dimension 2�k of element fRt(R jMt = m
i) with i = 1 to 2�k: Calvet and Fisher (2004) show that

the updated probability �t+1 is obtained as:

�t+1 =
!(Rt+1) ��tA

[!(Rt+1) ��tA ] �0
; (5)
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and the log likelihood is:

ln(L(x1; :::xt j m0; �; b; 
1) =
X

ln(!(Rt):�t�1A) (6)

We notice that the vector �t in the estimation procedure is initialized in �0 such that �i0 =
�kY

k=1

Pr(Mt = m
i) for all i.

3 Market comovements and the bivariate MSM model

Market integration and stability analysis needs models that take into account internationally

transmitted information which may di¤er in e¤ects. It follows the strand in literature focused

in links between markets as Longin and Solnik (1995), Harris et al. (1995), Masih and Masih

(2001), Avouyi-Dovi and Netto (2003), Kearney and Poti (2005) or Kallberg and Pasquarello

(2007).

Each type of news can be characterized by the correlation in the components of the same

frequency k between several places. It may help understanding if very high level of comovements

for example is observed in transient components, or in the most persistent ones. This can be

linked with the usual distinction between integration and contagion, done in Forbes and Rigobon

(2002), with the major improvement that a graduate scale from the short common changes up to

persistent shifts is de�ned. To do so the MSM may be expressed as a bivariate binomial model

to analyze the links between two markets (Calvet et al.(2006)).

Let de�ne the vector of returns as xt =
�R�

t

R�
t

�
for markets � and �: The vector of the com-

ponents at the k-th frequency is Mk;t =
�M�

k;t

M�
k;t

�
: The period t volatility is characterized by the

(2,
_

k) matrix Mt =
�
M1;t;M2;t; :::M_

k;t

�
where

_

k is the index for the lowest frequency. Each

row stands for a market indexed by c={�; �}, while each column for a frequency k={1,2,...
_

k}.

Consistently with the previous section, the vector returns may be written as:

xt =

�
M�1=2

t

M�1=2

t

�
� "t (7)
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with * the Hadamard product, M c
t =

_

kY
M c
k;t

k=1

and " 2 R2 the vector of residuals which are

IID Gaussian (0,
P
) with X

=

0B@ �2� �"����

�"���� �2�

1CA : (8)

The �" 2 [0; 1] represents unconditional correlation between the residuals. It is the �rst source

of correlation between the two markets. A second source of correlation is the correlation between

jumps: in period t, each returns � or � may be hit by an information arrival at frequency 
k on

each corresponding k component. The correlation between information arrivals is represented by

a new � 2 [0; 1] coe¢ cient as follows.

Let consider the dummy variables D�
k and D

�
k which take values 1 if an information arrival

(jump) occurs on component k of series � or � and 0 otherwise.

The vector Dk =
�D�

k

D�
k

�
is speci�ed as IID and, as in Calvet et al. (2006), it satis�es few

conditions. The arrival vector needs to be symmetric which means that
�D�

k

D�
k

� d
=
�D�

k
D�
k

�
:

Then, to be consistent with the univariate case we set

Pr(D�
k = 1) = 
k = 1� (1� 
1)b

(k�1)
(9)

with 
1 2 [0; 1] is the highest frequency of jump and b 2]0; 1] so that 
k 2 [0; 1] for all k; and

Pr(D�
k = 1 j D

�
k = 1) = (1� �)
k + �: (10)

Then, in line with the previous univariate case, the componentM c
k;t is drawn from a binomial

distribution taking value mc and 2-mc with the same probability if an information arrival occurs

and stays constant otherwise, therefore:

M c
k;t

d
=M c

k;t�1 +D
c
k;t � (M �M c

k;t�1) (11)

where * is the Hadamard product and M the vector-component distribution.

Finally, a last parameter of the dependency structure is the correlation between M� and M�

under the bivariate binomial distribution M .
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The matrix (pi;j)k=Pr(Mk = (m
�
i ;m

�
j )) with i; j = fH;Lg for High and Low value is de�ned

as 264 pLL pLH

pHL pHH

375
k

=

264 1+��m
4

1���m
4

1���m
4

1+��m
4

375
k

(12)

where ��m 2 [0; 1] is the correlation between components of frequency k of series � and �.

Since it is set that the binomial distribution is the same for all component M c
k;t whatever is k,

or stage invariant as in the univariate case, the k index may be omitted.

3.1 Comovements structure and typology

In this section comovement indicators are derived and discussed. These indicators are drawn from

the dependency structure of the model given by the parameters �; �" and �
�
m: The parameter

� gives the unconditional correlation between jumps on the markets. �" gives the unconditional

correlation between the residuals of the models. Finally, ��m gives the unconditional correlation

of the multipliers M�
k and M

�
k under the bivariate binomial distribution M.

3.1.1 Variances and conditional correlations

Contrary to the wide class of multivariate GARCH models where the �matrix is characterized by

time varying elements, the MSM accounts for a �xed elements matrix. Time varying correlations

in this framework are obtained from the dynamics of the states of the
_

k components. The

conditional covariance between returns is as follows:

Covt

�
x�t ; x

�
t

�
= �"����

_

kY
k=1

E
h
(M�

k;tM
�
k;t)

1
2

i
(13)

and the conditional variance for series c, c=f�; �g as:

V art(x
c
t) = �

2

cE(M
c
t ) (14)
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so that the correlations are written as

Corrt

�
x�t ; x

�
t

�
= �"

_

kY
k=1

E
h
(M�

k;tM
�
k;t)

1
2

i
�
E(M�

t )E(M
�
t )
� 1
2

(15)

These correlations are clearly supposed to be much less �exible than correlation issued from

pure time varying volatility models. Since the number of states is limited without pure time

dependency between correlations, it is expected these correlations on the one hand to present

some jumps (as components are jumping) but to be more rigid on a global perspective.

3.1.2 States Probabilities

Given the transition probability matrix A(see appendix A), each state may be assigned a prob-

ability �jt , for j=1 to d= 4
_

k :

�jt = Pr
�
Mt = m

j j Xt
�

(16)

with Xt � fxsgts=1 the history of past returns. �t is calculated recursively by Bayesian

updating as follows.

Let consider �t =
�
�1t ;�

2
t :::�

d
t

�
; the probability state determined for time t. The returns

in t+1 are observed and are assumed to follow a bivariate Gaussian density conditional on the

volatility state fxt+1(xt+1 jMt+1 = m
j) with variance covariance matrix Hj of this distribution:

Hj =

264 �2�M
�
t+1 �"����

�
M�
t+1M

�
t+1

�1=2
�"����

�
M�
t+1M

�
t+1

�1=2
�2�M

�
t+1

375 (17)

The updated probability is a function of actual returns and the history of past probabilities

is given by

�jt+1 =
f(xt+1) ��tA

[(f(xt+1) ��tA) �0]
(18)

with * the Hadamard product, � a (1� 4
_

k) vector of ones, A the transition matrix and f(xt+1) a

(1; 4
_

k) vector of elements fxt+1(xt+1 jMt+1 = m
j): The derivation of the comovement indicators

exploits this probabilistic structure.
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3.1.3 Periods

An indicator of interest is the more general notion of periods or cycles. The multifrequency

setting of the model allows for the identi�cation of the di¤erent superposed cycles in the asset

returns. This is de�ned as the inverse of the frequency of change 
k in the di¤erent lasting

components M c
k;t: While in the univariate case this is only the cycles of single series of returns,

in the bivariate cases it is the shared cycles between two series. It is de�ned as follows:

�k =
1�

1� (1� 
1)b
(k�1)� (19)

The number of cycles depends on the number of �k frequencies considered in the model. To

determine the optimal number of frequencies, the Vuong Test from Calvet and Fisher (2004) is

further applied as a selection model test.

3.1.4 Probability of extreme comovements

To latter identify crises and crises comovements between markets, joint probability to be in the

highest volatility state in two markets is of interest. It is de�ned as follows:

Pr(crisis)t = Pr(M�
1;t =::: M

�
�k;t = m

�
0 and M

�
1;t =::: M

�
�k;t
= m�

0 )

= �t:�1 (20)

with �1 a vector of dimension 4
_

k with dirac elements �1;i = 1nM�
1;t=:::M�

�k;t
=m�

0

o�1n
M�

1;t=:::M
�
�k;t
=m�

0

o
for i=1 to 4

_

k ; given that each component for a given series follows the same binomial distribution

taking high value mc0 for c={�; �} or low value 2-m
c
0. In this setting a crisis is identi�ed when

all components are at their highest values for all horizons.

Moreover, it is de�ned the conditional probability to be in a high state of volatility in market

� given that market � is in a high volatility state. This represents the conditional probability of
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extreme comovements between two markets and is de�ned as:

Pr(extreme comov)t = Pr(M�
1;t =::: M

�
�k;t = m

�
0 j M�

1;t =::: M
�
�k;t
= m�

0 )

=
Pr(M�

1;t =::: M
�
�k;t
= m�

0 and M
�
1;t =::: M

�
�k;t
= m�

0 )

Pr(M�
1;t =::: M

�
�k;t
= m�

0 )

=
�t:�1
�t:�2

(21)

with �2 a vector of dimension 4
_

k with dirac elements �2;i = 1nM�
1;t=:::M

�
�k;t
=m�

0

o for i=1 to 4_k :
This gives insights about how a market is in�uenced by the others and if high volatility states

are actually common between markets.

3.1.5 Long term cycles

Other indicators of interest are the long run cycles in volatility (high or low) that are shared

between returns. To identify the low common long run cycles in volatility, the states for which

the components with the lowest frequency of jump ( k = �k) for the two series have both a low

value 2�mc
0 are considered. It means that the series may be hit on shorter run cycles by shocks

but the longest cycle stays however low. This probability to be in a low long run cycle is thus

written as:

Pr(LLRC)t = Pr(M�
�k;t =M

�
�k;t
= 2�m�

0 )

= �t:�3 (22)

with �3 a vector of dimension 4
_

k with dirac elements �3;i = 1nM�
�k;t
=2�m�

0

o � 1n
M�

�k;t
=2�m�

0

o
and inversely, the probability to be in high long run volatility cycle is:

Pr(HLRC)t = Pr(M�
�k;t =M

�
�k;t
= m�

0 )

= �t:�4 (23)

with �4 a vector of dimension 4
_

k with dirac elements �4;i = 1nM�
�k;t
=m�

0

o � 1n
M�

�k;t
=m�

0

o: This
completely new set of indicators help understanding the nature of comovement and the e¤ects
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of several events on di¤erent markets.

3.2 The Maximum likelihood estimation

Calvet et al. (2006) develop a maximum likelihood optimization procedure to estimate the set of

parameters 
0 = (��; �� ;m�
0 ;m

�
0 ; b; 
1; �"; �; �

�) 2 R9. Since it is considered
_

k components, it is

obtained 4
_

k volatility states. This geometrical growth in volatility states makes the computation

quite heavy but take a very wide view of the di¤erent possible states in volatility. A GMM

alternative method as developed by Lux (2006) may also be applied.

The econometrician only observes the history of past returns Xt � fxsgts=1 and does not

observe the states of volatilities. The �t vector in empirical application, as in Calvet et al. (2006)

is initialized at its ergodic distribution and updated as presented previously. The logarithm of

the likelihood function is

l(x1:::xT ; 

0) =

TX
t=1

ln(f(xt j xt�1;xt�2; :::x1)) (24)

with

f(xt j xt�1;xt�2; :::x1) =
4

_
kX

j=1

f(xt jMt�1 = m
j) Pr(Mt�1 = m

j j xt�1;xt�2; :::x1)

so that the log likelihood is �nally

l(x1:::xT ; 

0) =

TX
t=1

ln(f(xt): (�t�1A)) (25)

4 Empirical applications

The dataset comprises four market indices : CAC, DAX, FTSE and NYSE. Daily prices are prices

at 3pm GMT when all considered markets are opened simultaneously. The sample spans 12 years

of market data from 01/01/1996 to 24/04/2008 at daily frequency. Univariate estimations of the

MSM model are �rst provided to give an insight concerning volatility cycles �k, frequencies 
k,

and sample correlations between the components. Then the bivariate model estimations are
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provided and discussed for each pair of indices. All the programs and routines are written using

the MatLab software and data are obtained from the Reuters datascope tick history database.

4.1 Univariate MSM

Index returns are computed as Rt = ln(Pt=Pt�1). The MSM(�k) model is estimated for �k = 1

to 8 by maximizing the likelihood derived in equation 6. This corresponds for each estimation

to a set of 2�k states in the volatility process. Tables 1-4 in appendix B present the eight model

estimations for each of the four series.

It is obtained (as in Calvet et al. (2006)) that component m0 are decreasing in the number of

frequencies. This is consistent with the idea that heterogeneity in volatility states is less required

with an increase in the number of states (i.e. frequencies). It also appears that the frequencies


k are lower than frequencies obtained in the exchange rate market by Calvet et al. (2006) so

that longer cycles are predominant.

A stabilization of the likelihood is observed from �k = 4 for all series. To formalize the

selection model procedure, a likelihood ratio test is performed to test systematically a model

with �k components against a model with �k + 1 components. This tests developed in Calvet and

Fisher (2004) is adjusted for correlations in the addends (Vuong-HAC test) and is presented in

appendix C.

The Vuong HAC tests to select the appropriate model gives the MSM(3) model as an optimal

choice. However, it is also tested MSM(3) for each index against the model with �k =5, 6, 7 and 8

(appendix C). The trade-o¤ between increasing the number of states in volatility by increasing �k

against selecting MSM(3) advocates for staying with �k = 3, with insigni�cant gains in likelihoods.

Peaks in volatility (Figure 1) are obtained for well-known dates identi�ed as major events

on �nancial markets. Concerning the subprime crisis, it mainly concerns the NYSE index while

the others in Europe are less impacted. Details will be given in the bivariate forms estimations.

Then the three periods (or volatility cycles) are computed as the inverse of the frequencies 
k

(Table 1).
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Figure 1: volatility MSM(3)

CAC DAX FTSE NYSE

�1 22.7 25.3 47.6 15.7

�2 93.8 95.0 101.3 47.7

�3 392.7 360.1 215.8 146.5

Table 1: Volatility cycles from MSM(3) in days

The shortest one is a cycle from 15 days (NYSE) up to 47 days (FTSE). The short run

resiliency of the NYSE index is thus the most e¢ cient. Short term is somehow between one and

2 months and a half. Medium term is between 3 and 5 months. Finally, long term is between 10

and 20 months.

This rises two questions. First of all, from a transmission perspective, are comovements
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e¤ectively higher in period of high volatility or not. Shocks are obtained on volatility at the

same date, but cycles in volatility are di¤erent. This means that if a shock in volatility increases

correlations at one point in time it should perturb comovements in the following days but in an

heterogenous way since the shock may be on a short lasting component, or on a long lasting one.

Second, if a shock hits di¤erent lasting components of volatility in two indexes, the resilience

to the shock becomes very di¤erent between places and a decrease in comovement should even

be observed after a sudden rise. Typically, it is expected that correlations between the NYSE

and the other indexes are weakened by this di¤erence in the length of the cycles. To �rst gauge

where transmission occurs, it is presented the correlations between the k̄ components obtained

from the decomposition derived form the MSM(3), for the four returns series.

Mcac1 Mcac2 Mcac3 Mdax1 Mdax2 Mdax3 M
ftse
1 M

ftse
2 M

ftse
3 M

nyse
1 M

nyse
2 M

nyse
3

Mcac1 1 0.69 0.36 0.86 0.60 0.34 0.79 0.63 0.46 0.74 0.75 0.53

Mcac2 0.69 1 0.71 0.62 0.92 0.67 0.79 0.89 0.79 0.54 0.79 0.85

Mcac3 0.36 0.71 1 0.33 0.76 0.98 0.57 0.78 0.92 0.33 0.56 0.82

Mdax1 0.86 0.62 0.33 1 0.64 0.34 0.72 0.59 0.45 0.69 0.65 0.49

Mdax2 0.60 0.92 0.76 0.64 1 0.77 0.69 0.82 0.79 0.48 0.68 0.83

Mdax3 0.34 0.67 0.98 0.34 0.77 1 0.54 0.75 0.90 0.32 0.52 0.80

M
ftse
1 0.79 0.79 0.57 0.72 0.69 0.37 1 0.88 0.70 0.72 0.86 0.72

M
ftse
2 0.63 0.89 0.78 0.59 0.82 0.75 0.88 1 0.90 0.58 0.81 0.89

M
ftse
3 0.46 0.79 0.92 0.45 0.79 0.90 0.70 0.90 1 0.43 0.65 0.90

M
nyse
1 0.74 0.54 0.33 0.69 0.48 0.32 0.72 0.58 0.43 1 0.80 0.54

M
nyse
2 0.75 0.79 0.56 0.65 0.68 0.52 0.86 0.81 0.65 0.80 1 0.79

M
nyse
3 0.53 0.85 0.82 0.49 0.53 0.80 0.72 0.89 0.90 0.54 0.79 1

Table 2: Correlations between components MSM(3)

Correlations (Table 2) are not surprisingly stronger between components of the same returns

series and also stronger at the same frequency between two di¤erent series. An interesting feature

observed is that correlations are higher for long term components (k=3): even if there are some

arbitrages on the shorter run (smaller correlations), there is convergence in the long run for
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market risk. This exactly show why it is important to consider several frequencies in the data

since results on market links may really depend on the frequency of the data used.

However, at this stage comovement are not explicitly implemented in the univariate models.

The bivariate model presented in section 3 is thus estimated for each pair of indices.

4.2 Bivariate MSM estimations and comovements structure

The previous section shows that for the four indexes, MSM(3) is optimal. Estimations and results

are thus provided in this section for this model. However, complete estimations of bivariate

models for �k=2 to 5 are presented in appendix D. Since it is estimated by pair, six models are

estimated. The following table gives estimations of bivariate MSM(3) models.

CAC-DAX CAC-FTSE CAC-NYSE DAX-FTSE DAX-NYSE FTSE-NYSE

m�0 1:419
(0:0175)

1:414
(0:0171)

1:426
(0:0186)

1:467
(0:0183)

1:470
(0:0166)

1:433
(0:0163)

�� 1:549
(0:0592)

1:556
(0:0589)

1:534
(0:0531)

1:715
(0:0646)

1:709
(0:0620)

1:285
(0:0693)

m�0 1:469
(0:0167)

1:436
(0:0181)

1:437
(0:0179)

1:435
(0:0176)

1:434
(0:0178)

1:432
(0:0192)

�� 1:716
(0:0620)

1:339
(0:0711)

1:257
(0:0543)

1:337
(0:0725)

1:264
(0:0577)

1:263
(0:0644)

b 0:253
(0:0718)

0:314
(0:0962)

0:278
(0:0961)

0:313
(0:102)

0:306
(0:082)

0:330
(0:086)


1 0:041
(0:0093)

0:032
(0:0095)

0:051
(0:0139)

0:033
(0:0083)

0:045
(0:0086)

0:044
(0:0125)

� 0:956
(0:482)

0:984
(0:487)

0:899
(0:461)

0:903
(0:437)

0:788
(0:614)

0:903
(0:453)

�" 0:909
(0:0031)

0:837
(0:0055)

0:784
(0:0077)

0:814
(0:0065)

0:787
(0:0077)

0:779
(0:0079)

lnL -7132.4 -6982.8 -7201.9 -7357.5 -7405.0 -6544.5

Table 3: Models estimations for bivariate MSM(3)

First, estimations of the componentm0 and � for each of the series are close to the estimations

in the univariate cases and stable across models. The estimations are constrained with �m*=1

because it is not rejected by the data. Calvet et al. (2006) always consider this constraint in

the estimation procedure as well for exchange rate data. Ex ante, for stock indexes, both types

of estimations (constraint and unconstraint) are performed. It is con�rmed even for stock prices

that is �m* not di¤erent from unity. Coming back to the model, the �m* parameter gives the

22



unconditional correlation of the multipliers M�
k = fm�

0 ; 2�m�
0 g and M

�
k = fm

�
0 ; 2�m

�
0g under

the bivariate binomial distribution M (equation 12). Therefore, it means that the probability to

be in instant t in two opposite states in these two places (for example very high volatility state

in � and very low volatility state in �) is null.

Turning to the comovement structure, estimated parameter � gives the unconditional corre-

lation between information arrivals (jumps) on markets (equation 10). Estimates are very high:

from 0.78 for DAX-NYSE to 0.98 between the CAC and the FTSE.

The unconditional correlations between the residuals, �", also appears quite high (equation

8). This correlation is the lowest for the NYSE whatever is the other index (around 0.76). A

ranking in market correlations is obtained. The highest ones are between two places sharing the

same currency (CAC-DAX). The second one in level is between European countries (FTSE-CAC

and FTSE-DAX). The last and lowest ones are between European places and the NYSE index.

4.2.1 Shared cycles and correlations between indices

From equation 19 it is calculated the shared volatility cycles for each pair. This gives one more

piece of information than previously since it is a shared cycle between the two considered indices.

CAC-DAX CAC-FTSE CAC-NYSE DAX-FTSE DAX-NYSE FTSE-NYSE

�1 24.3 30.6 19.2 30.2 21.9 22.7

�2 94.4 96.4 67.9 95.6 70.5 67.8

�3 371.1 305.5 242.7 304.5 229.2 204.5

Table 4: Volatility shared cycles length between indices (days)

The shared volatility cycles are the shortest one for the NYSE, whatever is the other index,

CAC, DAX or FTSE. Their length is closed from what is observed in the univariate case.

From the set of estimated parameters, the varying correlations are obtained. However, these

correlations are not strictly speaking "time varying" correlations as in the class of multivariate

GARCH models, but daily state dependent correlations. Figure 2 gives the historical evolution

of the varying correlations for each of the indexes obtained from equation 15.

Persistent changes in correlation states are more observed for the NYSE index than for

correlations between the CAC and the DAX ; correlations with the FTSE being an intermediate
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Figure 2: Bivariate MSM(3) Correlations

case. These correlations are quite rigid but exert some negative or positive sudden shocks driven

by jumps in the heterogeneous lasting volatility components.

4.2.2 Crises, extreme comovements and long term volatility cycles

Crises are detecting by an increase in the probability to be for both markets in the highest

volatility state de�ned by equation 20 (Figure 3).

Several periods of trouble are detected for all indices. The Asian crisis lasts two days and

all indices are concerned: 27/10/97 and 28/10/97. The Russian crisis in august 1998, starts a

weak con�dence period for market participants. Moreover this period is the period of crisis with

LTCM (Long term capital management), coupled with the three successive cuts in the fed funds
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Figure 3: Bivariate MSM(3) joint crisis probability

rate to avoid market fears (29/09; 15/10; 29/11). March 2000 is also observed with a pick in the

crisis probability at 0.82. The e¤ects of 09.11 are also detected by the probability crisis. Then,

the period between July the 15th 2002 and August the 10th 2002, is also characterized by high

common peaks in volatility and so a rise in the probability of joint crisis. This period is a trouble

period concerning the involvement of di¤erent countries (and particularly England) in the Iraqi

War II. It is also marked by the high volatility on the US market due to bankruptcy of large

companies as Wordcom and Anro and the beginning of the US accounting scandals. Finally, the

agreement from the US senate in October 2002 for the Iraqi war and the entry of troops in March

2003 in Iraq rise volatilities. We notice after this a very long period of very low probability crisis

until 2007. The end of 2007 and 2008 is marked by a peak in the probability of joint crisis, due

to the subprime episode. This peak appeared in the early 2008 when contagion really appeared

in the markets.

A complementary key feature of the model is to give the probability of volatility transmission

between markets. It is presented the conditional probabilities to be in the highest volatility state

on market � knowing that market � is in the highest volatility state (equation 21), de�ned as

the probability of crisis transmission. Figure 4 concerns the transmission phenomena involving
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the CAC index. All the remaining graphs are reported in the appendix E.
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Figure 4: Bivariate MSM(3) : Conditional probability of extreme comovements (50 days MA in
bold)

Structurally, it appears that conditional extreme comovement probability is higher between

European places. With the US, it is higher from the NYSE to the CAC than the reverse, which

is not surprising. However, we notice one particular negative shock in 1999, the year of the euro

area creation but this was transient. Concerning extreme comovement for the CAC conditional

on the NYSE, peaks are observed during trouble periods. This is con�rmed at the end of the

sample which is linked with the subprime crisis. This is also observed for the other indexes.

For the DAX conditional on the CAC, this is also strong except after August 2007 where a

huge break is obtained for the DAX with all other indices : this shows relative strength of the

German market to the recent events. This is notably due to the fact that �nancial industry is

not as weighted in the DAX than in other countries like France and United Kingdom ; and 2007

performances of the German economy was also better.

For the FTSE, extreme comovements are stronger conditional on the CAC than on the DAX,

and an intermediate case with the NYSE. However, on this market, the risk probability with the

three others is rising since 2005.
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From a long term perspective, and not only a crisis perspective, it is drawn the timing of

the long term cycles in volatility from equations 22 and 23. Long term cycles are captured by

the volatility components with the lowest frequency of jump. It thus corresponds to the longest

periods.

To analyze this, it is considered the probability for having a low value for both component

�k in market � and � and the probability to have a high value for both components �k. For each

pair of indices, Figure 5 gives the probability to be in a common long term high volatility cycle,

and the probability to be in a long term low volatility cycle. All graphs are reported in appendix

F.
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Figure 5: Bivariate MSM(3) : Probability of long term high volatility cycle

The probability of long term high common cycle for the pair of indices is very high in all

cases between end-1997 to end-2003. The probability to be in a common low volatility state is

high for the period 1994-1997 and 2003-2006. This is a new indicator about comovement and

help understanding historical evolution of common long term cycles in asset prices. It appears

that the Asian crisis had globally launched from 1997 a high volatility cycle.

Typically, the subprime crisis does not appear as a crisis before 2008 because it occurs during
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a long term low volatility cycle, and did not reverse this cycle to a high long term volatility cycle.

This is key since the only switch of short and medium term cycle do not generate on their own a

crisis since the long term cycle is still at the low level for volatility. However, in the early 2008,

the long term cycle has clearly jumped to the high value on all markets. The probability of crisis

transmission has jumped to unity for all cases. The contagion phenomena is clearly at the heart

of the 2008 crisis.

5 Conclusions

The paper presents the Multifractal Markov Switching model for index returns on four major

places: Paris, Frankfurt, London and New-York. From this empirical model, it is de�ned a set of

indicators that help understanding the nature of comovements, cycles and correlations. First, it

is de�ned a state varying correlation between indices that depends on a graduate scale of several

volatility states. From this, periods are de�ned and exert a three volatility cycles strata structure

of comovements. Then, from the probability structure assigned to these volatility scales, it is

calculated probabilistic indicators about crisis and long term cycles. A crisis is newly de�ned

as a rise in the joint probability in being in the highest state of volatility. In other words, it

corresponds when the three identi�ed cycles are respectively in their highest states. Extreme high

volatility comovements are then de�ned as a probability of highest volatility state conditional on

the volatility of another market.

This is a main contribution of the MSM model for identifying crises, comovements and long

run dependency since the number of cycles, and the volatility states are not imposed. Moreover

a probabilistic structure is estimated which is more accurate in assessing the degree and the

nature of commonality during periods of trouble.

The model has detected several joint crises (end 1997, August and September 1998, September

2001, July 2002, October 2002, March 2003 and January 2008) occurring during a high long term

volatility cycle. From the model it is shown that between 1996 and 2007, three long term cycles

are detected: 1996-1997 and 2003-2007 are both predominantly low volatility long term cycles

and 1997-2003 a high one. However, 2008 appears as a start in a new high volatility long term

cycle, this launched by the identi�ed January 2008 crisis. Conditional probabilities of extreme
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comovements have also been de�ned, which give the potential risk for one market to move in

crisis time with another market. These features have shown how for example the DAX index

has resisted to troubles during 2007 perturbations, even if one main reason is the low �nancial

industry weighting in the German index compared to others.

To a methodology perspective, it would be interesting in further research to recover a stronger

time dependency in the correlations and the MSM model. This would lead to an intermediate

model coupling time varying correlations and the speci�cation of the returns based on the product

of several long lasting components. To summarize, the use of this empirical model gives a set

of new indicators about comovements, other than correlations and complements views about

market integration, market comovements and crisis.
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Appendix A. Transition matrix

The probability that one piece of information arrives at the same time on both market is

given by

d11;k = Pr(D
�
k;t = 1 = D

�
k;t) = Pr(D

�
k;t = 1 j D

�
k;t = 1):Pr(D

�
k;t = 1) (26)

and similarly for the probability that only one piece of information arrives on one of the

two markets, and no information arrival on both market. These di¤erent probabilities give the

following dk matrices, with element dij;k where i=D�
k;t and j=D

�
k;t:

dk =

264 d11;k d10;k

d01;k d00;k

375 =
264 [(1� �)
k + �] 
k (1� 
k) (1� �)
k
(1� 
k) (1� �)
k [1� 
k(1� �)] (1� 
k)

375 (27)

Since it is considered a bivariate binomial model, it is obtained for each k that the random

vector Mk;t can take four possible states: sk1 =
�
m�
0 ;m

�
0

�
; sk2 =

�
m�
0 ;m

�
1

�
; sk3 =

�
m�
1 ;m

�
0

�
;

sk4 =
�
m�
1 ;m

�
1

�
with mc

1 = 2 �mc
0: The dk matrix allows for the calculation of the transition

matrix Tk of the multipliers vector Mk;t =
�M�

k;t

M�
k;t

�
where each element is de�ned as

tij = Pr(s
k
t+1 = s

k
j j skt = ski ) (28)

with i; j = f1; 2; 3; 4g: All calculations give:

Tk =

0BBBBBBB@

	k �k-
�
d00;k +

d01;k
2

�
�k-

�
d00;k +

d01;k
2

�
	k-(d00;k + d01;k)

	k-
�
d00;k +

d01;k
2

�
�k �k-(d00;k + d01;k) 	k-

�
d00;k +

d01;k
2

�
	k-

�
d00;k +

d01;k
2

�
�k-(d00;k + d01;k) �k 	k-

�
d00;k +

d01;k
2

�
	k-(d00;k + d01;k) �k-

�
d00;k +

d01;k
2

�
�k-

�
d00;k +

d01;k
2

�
	k

1CCCCCCCA
(29)

with

	k = d00 + d01 + d11

�
1 + ��m
4

�
�k = d00 + d01 + d11

�
1� ��m
4

�
:

Finally, depending on the choice of
_

k, the number of frequencies in the model, the volatility
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state transition matrix of asset returns A with elements (aij) with 16i,j64
_

k is given by:

aij = Pr(St+1 = S
j j St = Si)

with S=
�
s1; s2; :::; s

_

k
�
; the vector of frequency states so that the number of states grows

geometrically with the number of frequencies.
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Appendix B. Univariate model estimations

_

k =1 2 3 4 5 6 7 8

mCAC0 1:649
(0:017)

1:542
(0:016)

1:421
(0:018)

1:391
(0:018)

1:341
(0:017)

1:336
(0:023)

1:337
(0:024)

1:388
(0:019)

�CAC 1:572
(0:043)

1:636
(0:046)

1:546
(0:056)

1:389
(0:065)

1:508
(0:073)

1:314
(0:061)

1:138
(0:053)

2:428
(0:021)

bCAC _ 0:212
(0:11)

0:238
(0:095)

0:387
(0:118)

0:564
(0:126)

0:586
(0:142)

0:528
(0:100)

0:365
(0:130)


CAC 0:022
(0:0057)

0:021
(0:0057)

0:044
(0:0118)

0:037
(0:011)

0:029
(0:0125)

0:029
(0:0139)

0:033
(0:0133)

0:037
(0:012)

lnL -4782.3 -4697.3 -4690.1 -4687.4 -4686.5 -4686.9 -4688.0 -4689.0

Table 1: MSM(k) estimations by MLE for the CAC index

_

k =1 2 3 4 5 6 7 8

mDAX0 1:686
(0:015)

1:598
(0:015)

1:469
(0:014)

1:389
(0:0189)

1:395
(0:014)

1:352
(0:019)

1:346
(0:022)

1:355
(0:017)

�DAX 1:760
(0:043)

1:677
(0:037)

1:716
(0:0529)

1:592
(0:097)

1:988
(0:135)

1:801
(0:103)

1:139
(0:069)

2:817
(0:187)

bDAX _ 0:081
(0:0569)

0:262
(0:108)

0:432
(0:127)

0:403
(0:093)

0:581
(0:104)

0:499
(0:097)

0:489
(0:092)


DAX 0:018
(0:0046)

0:030
(0:0041)

0:039
(0:0099)

0:039
(0:0117)

0:040
(0:014)

0:035
(0:0135)

0:044
(0:0157)

0:043
(0:0170)

lnL -4991.7 -4883.7 -4872.0 -4872.4 -4873.6 -4872.1 -4873.0 -4874.4

Table 2: MSM(k) estimations by MLE for DAX index

_

k =1 2 3 4 5 6 7 8

mFTSE0 1:676
(0:015)

1:553
(0:017)

1:438
(0:015)

1:412
(0:022)

1:349
(0:021)

1:331
(0:029)

1:295
(0:029)

1:296
(0:034)

�FTSE 1:171
(0:029)

1:353
(0:041)

1:378
(0:060)

1:170
(0:044)

1:213
(0:076)

1:079
(0:070)

1:041
(0:088)

1:188
(0:109)

bFTSE _ 0:326
(0:141)

0:468
(0:225)

0:491
(0:168)

0:574
(0:132)

0:610
(0:127)

0:642
(0:127)

0:667
(0:142)


FTSE 0:019
(0:0038)

0:021
(0:0068)

0:021
(0:009)

0:025
(0:0105)

0:031
(0:014)

0:032
(0:0151)

0:038
(0:017)

0:035
(0:0167)

lnL -4192.3 -4107.0 -4096.5 -4091.1 -4090.4 -4091.2 -4091.4 -4091.6

Table 3: MSM(k) estimations by MLE for FTSE index
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_

k =1 2 3 4 5 6 7 8

mNY SE0 1:663
(0:014)

1:526
(0:015)

1:436
(0:018)

1:379
(0:020)

1:348
(0:022)

1:422
(0:024)

1:293
(0:018)

1:438
(0:021)

�NY SE 1:165
(0:028)

1:234
(0:037)

1:227
(0:070)

1:161
(0:0615)

1:072
(0:0558)

1:159
(0:059)

1:039
(0:085)

2:04
(0:168)

bNY SE _ 0:558
(0:52)

0:323
(0:119)

0:349
(0:112)

0:497
(0:121)

0:377
(0:129)

0:597
(0:082)

0:252
(0:120)


NY SE 0:043
(0:008)

0:030
(0:014)

0:063
(0:022)

0:108
(0:046)

0:092
(0:046)

0:058
(0:017)

0:112
(0:051)

0:069
(0:026)

lnL -4018.5 -3959.8 -3952.1 -3950.5 -3951.2 -3952.2 -3949.7 -3953.7

Table 4: MSM(k) estimations by MLE for NYSE index

Appendix C. HAC Vuong Test

CAC DAX FTSE NYSE

#k LRstat c.v prob LRstat c.v prob LRstat c.v prob LRstat c.v prob

2vs1 1.575* 0.464 0.99 2.00* 0.51 0.99 1.471* 0.504 0.99 0.94* 0.382 0.99

3vs2 0.193* 0.235 0.92 0.21* 0.24 0.93 0.204* 0.216 0.96 0.134* 0.164 0.92

4vs3 0.049 0.111 0.77 0.007 0.136 0.53 0.065 0.151 0.76 0.035 0.111 0.69

5vs4 0.009 0.083 0.58 0.023 0.046 0.79 0.016 0.089 0.62 0.019 0.048 0.74

6vs5 0.008 0.04 0.62 0.028 0.072 0.74 0.001 0.046 0.49 0.058 0.081 0.88

7vs6 0.015 0.024 0.84 0.012 0.023 0.82 0.006 0.062 0.56 0.027 0.049 0.53

8vs7 0.026 0.097 0.67 0.003 0.03 0.51 0.003 0.0034 0.92 0.072 0.103 0.87

3vs5 0.011 0.101 0.664 0.003 0.138 0.498 0.108 0.153 0.787 0.0175 0.112 0.61

3vs6 0.003 0.127 0.52 0.055 0.154 0.721 0.094 0.169 0.778 0.002 0.124 0.49

3vs7 0.012 0.138 0.554 0.042 0.165 0.763 0.091 0.155 0.844 0.044 0.105 0.76

3vs8 0.038 0.110 0.714 0.041 0.136 0.698 0.087 0.142 0.845 0.028 0.062 0.77

HAC�V uong test. Null Hypothesis: models are equivalent:
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Appendix D. Bivariate model estimations

C AC -DA X C AC -F T S E C AC -N Y SE DA X -F T S E DA X -N Y SE F T SE -N Y SE

m10 1:544
(0:018)

1:542
(0:018)

1:543
(0:018)

1:596
(0:0176)

1:598
(0:0179)

1:555
(0:017)

�1 1:642
(0:051)

1:637
(0:0485)

1:644
(0:049)

1:678
(0:038)

1:681
(0:041)

1:355
(0:047)

m20 1:596
(0:0162)

1:553
(0:0174)

1:526
(0:0181)

1:558
(0:0171)

1:527
(0:0182)

1:526
(0:0179)

�2 1:677
(0:038)

1:351
(0:0468)

1:228
(0:0418)

1:347
(0:044)

1:219
(0:044)

1:232
(0:042)

b 0:129
(0:061)

0:262
(0:139)

0:311
(0:151)

0:157
(0:0803)

0:196
(0:097)

0:395
(0:174)


1 0:026
(0:004)

0:021
(0:0048)

0:026
(0:0056)

0:026
(0:0056)

0:032
(0:0053)

0:025
(0:0059)

� 0:949
(0:480)

0:988
(0:491)

0:891
(0:427)

0:789
(0:365)

0:713
(0:400)

0:922
(0:453)

�" 0:905
(0:003)

0:840
(0:0052)

0:787
(0:0072)

0:811
(0:0069)

0:782
(0:0073)

0:781
(0:0068)

lnL -7251.3 -7011.9 -7242.6 -7442.0 -7470.7 -6571.1

Bivariate MSM(2)

C AC -DA X C AC -F T S E C AC -N Y SE DA X -F T S E DA X -N Y SE F T SE -N Y SE

m10 1:389
(0:018)

1:392
(0:0168)

1:385
(0:0187)

1:388
(0:0177)

1:389
(0:0163)

1:381
(0:017)

�1 1:391
(0:067)

1:387
(0:063)

1:399
(0:068)

1:591
(0:083)

1:594
(0:082)

1:209
(0:059)

m20 1:389
(0:018)

1:404
(0:024)

1:424
(0:0188)

1:388
(0:026)

1:423
(0:021)

1:424
(0:0194)

�2 1:592
(0:089)

1:175
(0:0588)

1:064
(0:042)

1:202
(0:074)

1:065
(0:043)

1:065
(0:0422)

b 0:413
(0:078)

0:428
(0:079)

0:415
(0:083)

0:432
(0:093)

0:440
(0:090)

0:424
(0:098)


1 0:038
(0:0091)

0:032
(0:0076)

0:045
(0:0113)

0:037
(0:0103)

0:045
(0:0117)

0:044
(0:0112)

� 0:966
(0:479)

0:982
(0:487)

0:893
(0:432)

0:912
(0:436)

0:826
(0:402)

0:927
(0:454)

�" 0:908
(0:0034)

0:838
(0:0054)

0:783
(0:0087)

0:810
(0:006)

0:783
(0:0074)

0:776
(0:0067)

lnL -7094.7 -6971.1 -7198.2 -7340.2 -7385.5 -6538.1

Bivariate MSM(4)
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C AC -DA X C AC -F T S E C AC -N Y SE DA X -F T S E DA X -N Y SE F T SE -N Y SE

m10 1:343
(0:021)

1:340
(0:0193)

1:329
(0:019)

1:421
(0:029)

1:349
(0:0163)

1:340
(0:021)

�1 1:514
(0:088)

1:505
(0:074)

1:473
(0:090)

1:902
(0:111)

1:505
(0:068)

1:178
(0:072)

m20 1:423
(0:024)

1:350
(0:021)

1:360
(0:022)

1:352
(0:021)

1:358
(0:021)

1:359
(0:022)

�2 1:91
(0:102)

1:215
(0:067)

1:080
(0:072)

1:221
(0:067)

1:081
(0:076)

1:081
(0:078)

b 0:512
(0:081)

0:570
(0:098)

0:507
(0:091)

0:527
(0:096)

0:521
(0:096)

0:514
(0:077)


1 0:030
(0:0083)

0:031
(0:0091)

0:056
(0:019)

0:031
(0:009)

0:056
(0:016)

0:055
(0:015)

� 0:925
(0:458)

0:977
(0:518)

0:909
(0:446)

0:879
(0:445)

0:867
(0:410)

0:935
(0:449)

�" 0:908
(0:0031)

0:836
(0:0063)

0:791
(0:0067)

0:816
(0:0058)

0:789
(0:008)

0:784
(0:0073)

lnL -7128.9 -6951.8 -7184.0 -7356.7 -7374.2 -6523.8

Bivariate MSM(5)

Appendix E. Conditional extreme comovements
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Figure 6: Bivariate MSM(3) : conditional probability of extreme comovements (50 days MA in
bold)
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Appendix F. Long run volatility cycles
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Figure 7: Bivariate MSM(3) : Probability of long term low volatility cycle
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