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Abstract
A general formulation of Mixed Proportional Hazard models with K random
effects is provided. It enables to account for a population stratified at K differ-
ent levels. We then show how to approximate the partial maximum likelihood
estimator using an EM algorithm. In a Monte Carlo study, the behavior of
the estimator is assessed and I provide an application to the ratification of ILO
conventions. Compared to other procedures, the results indicate an important
decrease in computing time, as well as improved convergence and stability.
Keywords: EM algorithm, penalized likelihood, partial likelihood, frailties,
duration analysis.
JEL Classification: C13, C14, C41.

Résumé
Nous présentons une formulation générale d’un modèle de mélange de hasards
proportionnels à K effets aléatoires. Elle permet la prise en compte d’une
population stratifiée à K niveaux différents. Nous montrons ensuite comment
approcher l’estimateur du maximum de la vraisemblance partielle par un al-
gorithme EM. Le comportement de cet estimateur est étudié dans une étude
Monte Carlo et nous fournissons également une application à la ratification des
conventions de l’OIT. Comparativement aux autres procédures, nos résultats
indiquent une baisse importante des temps de calcul ainsi qu’une amélioration
de la convergence et de la stabilité de l’algorithme.
Mots-clés: Algorithme EM, vraisemblance pénalisée, vraisemblance partielle,
effets aléatoires, modèles de durées.
Classification JEL: C13, C14, C41.
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Non-technical summary
It is generally not reasonable to assume that we observe all the determinants
leading to a transition from one state to another, and many studies in duration
analysis take account of the heterogeneity that exist among agents but that is
unobserved to the analyst. It is generally modeled using a random effect. Ap-
plications handling a single random effect, and thus an heterogeneity located at
only one level, are common in econometrics, biometrics and demography. How-
ever, the possibility of omitted variables with group structure at different levels
arises in several data generating processes. Ignoring some of the unobserved
heterogeneity can lead to substantial biases (see Pakes, 1983, Moulton, 1986,
and Gouriéroux and Peaucelle, 1990, for some case studies in linear models).
Furthermore, accounting for unobserved heterogeneity at different levels can be
a matter of importance in applied work, e.g. when studying child mortality or
the spread of a disease. However, multiple unobserved heterogeneity raises some
awkward problems, as it involves multidimensional integrals which typically do
not admit analytical expressions. No more than two levels of clustering are
handled in the literature (see Manda and Meyer, 2005, Yau, 2001 and Sastry,
1997, among others).

In this paper, I present a Mixed Proportional Hazard (MPH) model with
K random effects.2 A general EM algorithm is then proposed to approximate
the estimator. We show how the estimation of a single model with K effects
can be restated in the estimation of K models, each with a single frailty. This
simplification enables us to use quick and stable numerical procedures. We also
detail how to recover the variance of the estimates. Finally, we compare our
algorithm with an accelerated one developed by Sastry (1997) on simulated and
real data. Our procedure exhibit a strong decrease in computing time, and an
improved stability.

2Mixed Proportional Hazard models with K random effects allow the unobserved charac-
teristics to be located at K different levels. For example, it allows the sample to be divided
in clusters and sub-clusters K times.
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Résumé non-technique
Tous les déterminants des transitions entre deux états ne sont généralement
pas observés, et la plupart des études utilisant des modèles de durés prennent
en compte l’hétérogénéité qui n’est pas observée par l’analyste mais qui existe
entre les agents. Elle est généralement modélisée au moyen d’un effet aléa-
toire. Les applications comprenant un effet aléatoire, et donc une hétérogénéité
située à un unique niveau, sont courantes en économétrie, biostatistique et dé-
mographie. Toutefois, la possibilité de variables omises dont les valeurs dif-
férent pour des groupes d’observations intervient dans de nombreux processus
générant des données. Ne pas prendre en compte une part de l’hétérogénéité
non observée peut amener à des biais substantiels (voir Pakes, 1983, Moulton,
1986, et Gouriéroux and Peaucelle, 1990, pour des modèles linéaires). De plus,
l’évaluation de l’hétérogénéité non observée se trouvant à différents niveaux peut
être pertinente dans les applications, par exemple lors de l’analyse de mortal-
ité infantile, ou bien de la propagation d’une épidémie. Toutefois, la présence
d’une hétérogénéité non observée multiple soulève plusieurs problèmes, car elle
implique l’évaluation d’intégrales multiples qui n’admettent généralement pas
de solution analytique. Il n’y a pas plus de deux niveaux qui soient étudiés
simultanément dans la littérature (voir Manda and Meyer, 2005, Yau, 2001 et
Sastry, 1997, parmi d’autres).

Dans ce papier, nous présentons un modèle de mélange de hasards pro-
portionnels à K effets aléatoires.3 Nous proposons ensuite un algorithme EM
général pour approcher l’estimateur du maximum de vraisemblance. Nous
montrons comment l’estimation d’un modèle à K effets peut se ramener à
l’estimation de K modèles impliquant chacun un unique effet aléatoire. Cette
simplification nous permet d’utiliser des procédures numériques rapides et sta-
bles. Nous montrons également comment approcher la variance de l’estimateur.
Finalement, nous comparons sur des données simulées et réelle notre algorithme
avec l’algorithme EM accéléré développé par Sastry (1997). Notre procédure
conduit à une baisse importante des taux de calcul, et à une amélioration de la
stabilité.

3Les modèle de mélange de hasards proportionnels à K effets aléatoires permettent à
l’hétérogénéité non observée d’être située à K niveaux différents. Par exemple, elle permet à
l’échantillon d’être divisé en groupes et sous groupes K fois.
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1 Introduction
In this paper, I propose a general framework to estimate mixed proportional
hazard models with a fixed number of risks, where unobserved heterogeneity is
modeled at different levels. This class of models allows the unobserved charac-
teristics to be located at different levels. If the random effects are nested, the
sample is divided in clusters, sub-clusters and so on.

As it is not reasonable to assume that we observe all the determinants leading
to a transition, many studies in duration analysis take account of unobserved
heterogeneity. Applications handling a single random effect are common in
econometrics, biometrics and demography. However, the possibility of omitted
variables with group structure at different levels arises in several data generating
processes. Ignoring some of the unobserved heterogeneity can lead to substantial
biases (see Pakes, 1983, Moulton, 1986, and Gouriéroux and Peaucelle, 1990, for
some case studies in linear models). Furthermore, accounting for unobserved
heterogeneity at different levels can be a matter of importance in applied work,
e.g. when studying child mortality or the spread of a disease. However, it raises
some awkward problems for inference, as it involves multidimensional integrals
which typically do not admit analytical expressions.

No more than two levels of clustering are handled in the literature. Manda
and Meyer (2005) consider a model in discrete time, Yau (2001) and Sastry
(1997) study two nested random effects with log-normal and gamma mixing
distributions, respectively. In this last study, inference is based on the Expec-
tation Maximization (EM) algorithm (see Dempster et al, 1977, for the first
general formulation). This algorithm is ideally suited for mixture models, due
to their missing data structure, and is used in numerous studies involving the
Cox model with one frailty, such as Clayton and Cuzick (1985), Gill (1985) and
Parner (1997).4

However, this theoretical attractivity it balanced by numerical drawbacks.
First, there are several cases of non-convergence in the literature. Bolstad and
Manda (2001) pointed out one case where the variance of the random effect
becomes large enough to raise numerical issues. Conversely, Lancaster (1990,
p. 267) described the case of an unbounded likelihood with a variance of the
unobserved heterogeneity tending to zero. Second, step E can have no analyt-
ical solutions and the expressions thus require an evaluation using numerical
integration or Monte Carlo methods.5 The EM algorithm typically asks for a
large number of iterations and thus involves a huge computational cost, even
for relatively simple models.

In this paper, I present a Mixed Proportional Hazard (MPH) model with K
random effects. We then use an EM algorithm for the inference, general to all
mixing distributions admitting a Laplace transform. We show furthermore how
to transform the estimation of a single model with K effects in the estimation
of K MPH models, each with a single frailty. This simplification enables us

4The term “frailty” is used as a synonym for random effect. It comes from the first studies
in this literature, which were on demography.

5The Monte Carlo EM (MCEM) algorithm is described in Wei and Tanner (1990).
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to use quick and stable procedures during the estimation. The EM algorithm
does not provide an estimate of the Information matrix, and we detail how to
recover it using Louis’ (1982) methodology. Finally, we compare the behavior
of our algorithm with the accelerated EM algorithm developed by Sastry (1997)
on simulated and real data.

Some papers have been published on related topics. Hybrid ML-EM algo-
rithm are provided in the one gamma frailty setting by Vu et al. (2001) and by
Vu and Knuiman (2002a) for a log-normal frailty. An extension to one shared
gamma random effect is provided in Vu and Knuiman (2002b) and the events
before entry are included in Vu (2003) and Vu (2004). In comparison, we focus
on the multiple frailties setting and devote a particular attention to gamma ran-
dom effects. Indeed, Abbring and Van den Berg (2006) show that the mixing
distribution among survivors converges to a gamma distribution and the model
described in this paper nest many common models as special cases.6

The remainder of the paper is organized as follows. Section 2 presents the
statistical model. Section 3 proposes the devoted estimation method. We com-
pare our estimator with the one detailed in Sastry (1997) in a Monte Carlo study
in Section 4, and in an illustrative application on the timing of ratification of
ILO conventions in Section 5.

2 Mixed Proportional Hazard model with ran-
dom effects

Individuals can move among a set of states, and a transition is a movement
from one state to another. We are focusing here on the state, or the sequence
of states, that are occupied and the times at which movements between them
occurred. When there is only a single state, econometricians usually call this
single spell data, whereas it is referred to as survival data in biometrics. When
we observe the duration of stay in a sequence of states, these are multiple spell
data. Individual histories can be observed through panel or retrospective sur-
veys. Let T ∗ denote the time elapsed in a given state. The investigator does not
observe T ∗ for every individual: some of them did not experienced any transi-
tion before the study ends and all one knows is that T ∗ is at least as great as the
observed duration. Let T denote the vector of the followup time and δ a vector
of indicators which are 0 if a transition is observed and 1 if the observation is
censored. We observe the pair (T, δ).

Duration data can be studied using the widespread Cox proportional hazard
model and its extension, the MPH model. Van den Berg (2001) provides a
detailed survey where the MPH model is defined by the hazard function:

λi(t|Xi, v) = vλ0(t)λ1[Xi(t), β], (1)
6The result of Abbring and Van den Berg, 2006, requires the heterogeneity distribution to

be regularly varying at 0, as defined in Feller (1971). This requirement is weak and distribu-
tions such as the exponential, uniform, beta and all distributions with a mass point at 0 fulfill
it.
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where i is the individual index. The random effect v usually captures unob-
served characteristics specific to individual i, making him more or less prone to
experiment a transition. These unobserved characteristics may also be shared
by all the individuals within a group, and thus one realization v can be common
to several agents. The random effect is drawn from a probability distribution
such that Pr(0 < v < ∞) = 1. In the following, we assume that the mixing
distribution h(v;α) admits a known Laplace transform. A large variance of
a random effect means a tighter positive association among units of the same
group and greater differences between the groups defined at this level. The
baseline hazard λ0 is positive, common to all the observations and depends only
on the elapsed time. The function λ1 is also positive and called the “systematic
part of the hazard”. It depends on the explanatory variables which can be time
varying. We make the standard regularity assumption that the process Xi(t) is
absolutely continuous with respect to the Lebesgue measure.

Random effects are used to model unobserved characteristics common to
several individuals. The related observations are then sharing the same frailty
variable. Dependence among individuals can be settled at different levels, re-
quiring a model with several frailties. For example, a model involving 2 random
effects is well suited when the population is divided into clusters and each clus-
ter is divided into subclusters. We specify the following general hazard function
involving K frailties:

λj
ik(t) =

(
K∏

k=1

vj
k

)
λ0(t)λ1 [Xi(t), β] , (2)

where i is the cross-sectional unit index (i = 1, . . . , N), j (j = 1, . . . , Jk) is the
index of the group containing unit i, and k (k = 1, . . . ,K) is the level index.7

This flexible unobserved heterogeneity structure covers many uses and spe-
cial cases:

• Single random effect

λj
i1(t) = vj

1λ0(t)λ1 [Xi(t), β] . (3)

Units are correlated through vj
1. There is only one level and the model is

relevant in multiple spells settings, where each agent j experiences several
durations. The limiting case is reached when j = i, when each group is
made of one observation (single spell setting). In this case, the random
effect does not depict dependence, but overdispersion instead. Model (3)
contains the Cox model (Cox, 1972), as well as the shared frailty model (see
e.g. Vu and Knuiman, 2002a) as special cases. Identification is discussed
in Van den Berg (2001).

• Two nested random effects

λj
ik(t) = vj

1v
j′

2 λ0(t)λ1 [Xi(t), β] . (4)
7Since each unit belongs to a group, a complete notation would require the use of j(i).

Still, the simplified notation should not lead to any confusion.
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We extend model (3) to allow for 2 dependence levels. Model (4) is used in
demography to allow the survival to depends on the family the individual
belongs to, and on the community where the family is settled. In this case,
the random effects are nested. They are non-nested in studies where each
individual belongs to several groups. This involves studies on purchasing
behavior where a consumer can visit different shopping centers. As before,
one random effect can be defined to handle overdispersion. Identification
is shown in Horny et al. (2005).

Conditionally on the random effects and explanatory variables, the obser-
vations are assumed independent. If we assume the random effects to be inde-
pendent, we obtain the likelihood by taking the product of the frailty densities
hi(v

j
i ;αi) with the likelihood function conditional on the random effects, which

is the conditional hazard times the conditional survivor function:

L(α, β;T, d,X, v) =
N∏

i=1

{[(
K∏

k=1

vj
k

)
λ0(ti)λ1 [Xi(ti), β]

]1−δi

exp

[
−

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)λ1 [Xi(k), β] du

]
K∏

k=1

hk(vj
k;αk)

}
. (5)

The log-likelihood is:

lnL(α, β;T, d,X, v) = lnL1(α; v, d) + lnL2(β;T, d,X, v), (6)

where

lnL1(α; v) =
N∑

i=1

[
K∑

k=1

lnhk(vj
k, αk) + (1− δi)

K∑
k=1

ln vj
k

]
, (7)

lnL2(β;T, d,X, v) =
N∑

i=1

[
(1− δi) ln {λ0(ti)λ1 [Xi(ti), β]}

−

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)λ1 [Xi(u), β] du

]
. (8)

The maximum likelihood estimator does not have an analytical expression, but
it can be approximated using an EM algorithm.

3 Inference using an EM algorithm

Had the vj
k been observed, the evaluation of the maximum likelihood estimator

would have been straightforward. The EM algorithm proceeds in two steps. In a
first step, we compute the expectation of the likelihood conditional on the data
and the current estimates. This is maximized with respect to the parameters in a
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second step, and the procedure iterates between steps 1 and 2 until convergence
is achieved.

Durations specific to group j at stratification level k are denoted by Tjk, and
censoring indicators are denoted by δjk. If we assume all the random effects to
be independent, the E step at iteration (q) is the evaluation of:

Q
(
α, β;α(q), β(q)

)
= Q1

(
α;α(q), β(q)

)
+Q2

(
β;α(q), β(q)

)
, (9)

where

Q1

(
α;α(q), β(q)

)
=

N∑
i=1

(
K∑

k=1

E(q)
[
lnhk(vj

k, αk)|Tjk, δjk

]
+ (1− δi)

K∑
k=1

E(q)
[
ln vj

k|Tjk, δjk

])
, (10)

Q2

(
β;α(q), β(q)

)
=

N∑
i=1

(
(1− δi) lnλ0(ti)λ1 [Xi(ti, β]

−
K∏

k=1

E(q)
[
vj

k|Tjk, δjk

] ∫ ti

0

λ0(u)λ1 [Xi(u), β] du

)
, (11)

were E(q) denotes the expectation with respect to the structure describe by
(α(q), β(q)) These equations admit an analytical solution only in the case of a
single gamma random effect (see Clayton and Cuzick, 1985). Otherwise, the
expectations in (11) have to computed using numerical procedures.8

3.1 Inference with one gamma frailty
Define the risk set as the set of spells still not completed at any instant before
ti, denoted by Ri. Therneau et al. (2003) show that the estimates of a model
with one gamma frailty can be exactly obtained by maximizing the following
penalized partial likelihood:

lnLPPL(β, v, α1) = lnLPL(β, v)− 1
α1

J1∑
j=1

(ln vj − vj), (12)

where LPL(β, v) is the partial likelihood:

LPL(β, v) =
N∏

i=1

[
vjλ1 [Xi(u), β]∑

m∈Ri
vlλ1 [Xi(u), β]

]1−δi

. (13)

In a general penalized likelihood setting, 1/α is a smoothing parameter indicat-
ing the tradeoff between the fit to the data and smoothness of the fitted curve

8See Vu and Knuiman (2002b) for one log-normal frailty and Sastry (1997) for two gamma
frailties
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in the penalized likelihood. The solution maximizing the penalized partial like-
lihood above is equivalent to the EM solution for an MPH model with a gamma
frailty. As shown in de Montricher et al. (1975), this result relies on the choice
of the penalty function and does not hold if one uses as a penalty function the

quantity
∫∞
0

(
λ

(2)
0 (u)

)2

du, where λ(2)
0 (u) stands for the second derivative of the

baseline hazard, as done for example in Rondeau et al. (2003).

3.2 Inference with two or more frailties
Sastry (1997) specifies two gamma frailties and organizes the algorithm as fol-
lows. After the E step at iteration (q), function Q1 is optimized separately using
a sub-EM algorithm. Step M of iteration (q) is carried out afterward for all the
parameters. Using these sub-routines enables to achieve efficiency and speed
gains, and Sastry (1997) does not need to implement further acceleration tech-
niques such as the ones described for example in Meilijson (1989). However, his
approach is specific to two gamma frailties. Here, we propose a general approach
for models with K frailties whose distribution admits a Laplace transform.

We show in Appendix A that for all mixing distribution with a Laplace
transform:

E
[
vj

k|T, d
]

=
E
[
(vj

k)1+lkkjξ(−k)

]
E
[
(vj

k)1+lkkjξ(−k)

] , (14)

where:

ξ(−k) = E
[
(vj

k)1+lkkj . . .E
[
(vj

(k+1))
l(k+1)kj E

[
(vj

(k−1))
l(k−1)kj . . .E

[
(vj

2)
l2kjL(l1kj)

1

]]]]
,

(15)
and lkk′j is the number of transitions observed in the subcluster defined as the
intersection of the clusters at levels k and k′ containing unit i .

The M step asks for expression (9) to be maximised. An estimate of the
cumulative baseline hazard for fixed β is:

Λ̂(q)
0 (t) =

∑
ti<t

1− δi∑
m∈Ri

(∏K
k=1 v

l,(q)
k

)
λ1

[
Xi(ti), β(q)

] . (16)

3.3 Organisation of the EM algorithm
Consider the following algorithm. Let us denote by β(0) the estimates of a
model without random effects as starting values, and by β(q,k) the estimates of
the coefficient β at iteration q obtained by treating only the effect at level k as
random. Set the initial values αk = 1 and β(0) = β(0,k), ∀k. At iteration (q),
proceed as follows:

Step 1 Set k=1 and β(q) = β(q,1). Compute Q1

(
α1;α(q), β(q,1)

)
and maximise

it to obtain α(q+1)
1 .
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Step 2 Compute Q2

(
β;α(q+1)

1 , α
(q)
2 , . . . , α

(q)
K , β(q,1)

)
and maximise it to re-

cover β(q+1,1).

Step 3 Iterate between steps 1 and 2 until convergence.

Step 4 For k = 2, . . . ,K, iterate between steps 1 and 3 and recover α(q+1)
2 , . . . , α

(q+1)
K .

Step 5 Compute Q2

(
β;α(q+1)

1 , . . . , α
(q+1)
K , β(q)

)
and maximise it to recover

β(q+1).

Step 6 Iterate between steps 1 and 5 until convergence.

The β(q,k) are involved in Steps 1 and 2 to help the estimator of αk to converge.
One could think of going directly from Step 1 to Step 4. However, Q1 is a
function of β(q,k), iterating between steps 1 and 2 provides more stable estimates
α

(q+1)
k and reduces the number of iterations of the whole algorithm.

By profiling with respect to α
(q)
k′ , ∀k′ 6= k, this approach is equivalent to

alternately estimating K models involving each one random effect, the other
random effects being treated as offsets. One can thus rewrite the algorithm as
follows:

Step A Set k=1. Estimate model:

λj
i1(t) = vj

1

(
K∏

k=2

v
j,(q)
k

)
λ0(t)λ1

[
Xi(t), β(q,1)

]
. (17)

Recover vj,(q+1)
1 and β(q+1,1).

Step B Perform Step 1 for k = 2, . . . ,K

Step C Estimate model:

λj
ik(t) =

(
K∏

k=1

v
j,(q+1)
k

)
λ0(t)λ1

[
Xi(t), β(q)

]
. (18)

Recover β(q+1).

Step D Iterate between steps A and C until convergence.

The gains of this approach are twofold: the E step is easier because it involves
fewer integrals and the M step is quicker as the optimisations are carried over
spaces with smaller dimensions.

The algorithms described above only require the mixing distribution to ad-
mit a Laplace transform, so that the expectations of the random effects can
be computed. In studies involving a single frailty setting, the gamma and log-
normal distributions are commonly used, as well as finite discrete distributions.
For all mixing distribution with a mass point at 0 or a finite positive limit at 0,
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Abbring and Van den Berg (2006) show convergence to a gamma distribution.
Approaches designed in a one gamma frailty setting can thus be implemented
within our EM algorithm, and we use the penalized partial likelihood maximiza-
tion described in Therneau et al. (2003) to perform steps 1 to 3, or equivalently
steps A and B.

Note that since the αi are treated as constants while estimating the coeffi-
cients, the standard errors of the β recovered in Step 5 or C are underestimated.
We use Louis’ (1982) approach, described in Appendix C, to evaluate the infor-
mation matrix on the last iteration of the EM algorithm. This can be written:

I = E [−H(α, β)|T, δ, v1, . . . , vI ]−Var [S(α, β)|T, δ] , (19)

where I is the observed information matrix, H the Hessian and S the score.
Details are given in Appendix B.

4 Monte Carlo Experiments
The aim of this Monte Carlo study is to compare the behavior of the algorithm
we propose with the behavior of the accelerated EM algorithm described in
Sastry (1997), for different sizes of groups and subgroups in presence of two
frailties. Our algorithm is hereafter referred to as Expectation Maximization
algorithm based on Penalized Likelihood (EMPL).

4.1 Sample design and starting values
For each setting, 200 samples were simulated. We consider samples of size 2000
with two levels of clustering, and we vary the number of spells per group and
subgroup accordingly. The smallest groups we design contain 10 observations
and the largest 100. Under 10 spells, it is unlikely that the other frailty is defined
at a finer level, and over 100, stratifying the baseline hazard is often preferred in
applications. Subgroup sizes go from 1 to 5, the largest value compatible with
groups of size 10.

We set E(vj
1)=E(vj

2)=1, Var(vj
1)=Var(vj

2)=0.5, consider a constant baseline
hazard and no censoring. Two standard gaussian covariates receive the coeffi-
cients βa = 1 and βb = −1, and there is no constant as it is not identified in a
partial likelihood setting.

As pointed out in Ng et al. (2004), convergence and thus computing time
of the EM algorithm is sensitive to the choice of starting values. We set them
at 1 for vj

1 and vj
2, 1 for α1 and α2, and the estimates of a standard Cox model

for the coefficients. All the fitting programs are designed under the R 2.0.1
software (Team, 2005), the inference using penalized partial likelihood calling
the function ‘coxph’ of the package ‘survival’. The source codes are available
upon request.
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4.2 Results
A preliminary comment is that the EMPL and accelerated EM does converge
for all samples. Furthermore, both provide the same estimated (α1, α2, β) up to
a thousandth. Indeed, the starting values are close enough to the true value and
both procedures are approximating the maximum likelihood. Both algorithm
have the same accuracy and we compare them on the basis of the computational
cost.

Computing time differ widely even when the estimators are applied to sam-
ples with the same clustering. In most cases, the ratio of the longest computing
time over the shortest for a given sample design is equal to 100 for the EMPL
and 500 for the accelerated EM. Table 1 reports the 25th, 50th and 75th centiles
of the computing times. Values are printed in italic when the accelerated EM
is quicker than the EMPL.

The EMPL algorithm is fast, with computing time quantiles generally far
under their counterparts for the EM algorithm. We notice it especially when
there are 20 durations or less per group: in this case, the third quartile for the
EMPL computing time is under the first quartile for the EM computing time.
This result of the EMPL algorithm being quicker than the EM does not hold in
presence of a single spell per subgroup with 20 spells or more per group.

Group and subgroup sizes have a mixed impact on the computing times of
the EMPL algorithm. First, these decrease monotonically with subgroup size.
However, computing times are not much influenced by the number of spells per
group. Due to this, a model with groups containing 10 spells and subgroups of
5 observations will be estimated much more quickly than a model where groups
contain 100 spells and subgroups 2 observations. By contrast, computing times
for the accelerated EM algorithm have an inverted ∪ profile with a maximum
around 4 spells per subgroup. The more subgroups there are, the more vj

2 have
to be evaluated at each iteration, which raises computing times until a threshold.
But more vj

2 also imply more information, which speeds up convergence after
the threshold.

5 Ratification of the International Labour Orga-
nization (ILO) conventions

As an example with real, we apply the EMPL algorithm on real data reporting
the timing of the ratification of ILO conventions. The dataset is presented and
analysed in Boockmann (2001). The survival time represents the time between
the adoption of ILO conventions and their ratification by developing countries
over the period 1975-1995. They comprise 80 countries and 29 conventions for
a total of 228 ratifications. Horny et al. (2005) provide Bayesian estimates of a
Cox model with 2 non-nested random effects. The hazard function is written as:
λj

i2(t) = vj
1v

j
2λ0(t) exp[Xi(t)β], where vj

1 is a convention effect and vj
2 a country

effect. They estimate the model using a Bayesian approach based on partial
likelihood.
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Table 1: Computing time in seconds (Var(vj
1)=Var(vj

2)=0.50)
Number of spells Computing Time in seconds

Total Per Per EMPL EM
group subgroup

Q25 Median Q75 Q25 Median Q75

2000 100 5 18 22 29 55 110 187
4 22 24 35 88 176 561
3 30 32 48 31 76 201
2 55 74 83 30 87 213
1 120 173 181 30 41 56

50 5 19 27 34 98 163 313
4 24 35 38 93 184 467
3 33 49 58 72 159 401
2 68 78 84 31 94 227
1 156 175 181 37 45 60

40 5 16 22 30 87 159 385
4 26 39 46 126 218 574
3 34 51 52 72 158 401
2 57 72 83 39 105 216
1 144 155 171 30 37 44

20 5 20 29 37 174 284 510
4 38 44 58 260 445 723
3 45 52 61 225 359 583
2 58 66 79 120 251 457
1 138 150 158 48 73 136

10 5 18 32 45 511 722 1028
4 48 56 79 727 937 1403
3 54 58 77 676 955 1457
2 74 80 89 521 859 1485
1 151 162 181 137 229 311

Note: Italic entries indicate that accelerated EM is quicker than the EMPL.
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We estimate this model with gamma heterogeneity, using both the accel-
erated EM and the EMPL algorithm. Convergence was not achieved by the
accelerated EM algorithm. Indeed, the variances of both mixing distributions
increase progressively after each iteration of the sub-EM algorithms optimising
function Q1, characterized in equation (10). Finally, the algorithm collapses in
the M step while returning a coefficient tending to −∞. The whole process took
8 hours and a half. This convergence problem can be explained by the weak
amount of information available in the data. The sample is heavily censored with
only 5% of the durations ended by an observed transition. The sub-EM algo-
rithm involves approximation of the cumulative hazard by the semi-parametric
estimator of Nelson (1969), which is typically inefficient with so few transitions.
Conversely, the EMPL does converge. Computation took 66 seconds and the
results, reported in Appendix D, are close to the Bayesian estimates obtained
in Horny et al. (2005).

6 Conclusion
This paper presents an MPH model with K random effects. We show how to
estimate it using an EM algorithm in a general framework where we only require
the mixing distributions to have a known Laplace transform. We then recover
the information matrix using the approach of Louis (1982). The methodology is
semi-parametric as it relies on partial likelihood. The provided EMPL algorithm
is not only fast, but also simple and stable. We assess its properties in a Monte
Carlo study and in an illustrative application on the timing of ratification of
ILO conventions.

The computing times are notably reduced by using the EMPL algorithm,
thus not asking for speeding-up routines as the ones described in Meilijson
(1989) to be implemented in moderate size samples. The case of a random
effect defining groups of one spell is an exception and speed depends on the
size of the groups defined by the other frailties. Furthermore, the EMPL does
converge in some settings where the EM does not.

We assume that all the random effects are continuous. This assumption can
be questionable when the population at hand is divided only in a few groups
at the more aggregated levels. With 2 levels of heterogeneity, one possibility
is to switch to a fixed effects approach, stratifying the baseline hasard at the
broader levels and defining a frailty at the finest one, as proposed by Xue and
Brookmeyer (1996).
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A Derivation of E[vjk|T, d]

In this appendix, we derive the conditional expectations of vj
k for a given (j, k).

Let us denote by Cjk the set of the observations in cluster j defined at stratifi-
cation level k. We have:

f(vj
1, . . . , v

j
k, Tjk, δjk) =

∏
i∈Cjk

[(
K∏

k=1

vj
k

)
λ0(ti)λ1 [Xi(ti)]

]1−δi

exp

[
−

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)λ1 [Xi(u)] du

]
K∏

k=1

hk(vj
k;αk). (20)

Integrating over vj
1, we obtain:

f(vj
2, . . . , v

j
k, Tjk, δjk) =

 ∏
k∈Cjk

[(
K∏

k=2

vj
k

)
λ0(ti)λ1 [Xi(ti)]

]1−δi K∏
k=2

hk(vj
k;αk)


∫
V1

vlik1 exp

−( K∏
k=1

v

) ∑
k∈Cjk

∫ ti

0

λ0(u)λ1 [Xi(u)] du

h1(v;α1)dv, (21)

where lik1 is the number of transitions observed in the group obtained as the
intersection of the two clusters defined at stratification levels k and 1 and con-
taining unit i. We can rewrite this expression as:

f(vj
2, . . . , v

j
k, Tjk, δjk) =

 ∏
k∈Cjk

[(
K∏

k=2

vj
k

)
λ0(ti)λ1 [Xi(ti)]

]1−δi K∏
k=2

hk(vj
k;αk)


(−1)lik1L(lik1)

1

( K∏
k=2

vj
k

) ∑
k∈Cjk

∫ ti

0

λ0(u)λ1 [Xi(u)] du

 , (22)

where L(lik1)
1 is the lik1-th derivative of the Laplace transform of a non-negative

random variable v1, defined as:

L1(s) =
∫
V

exp(−sv)dH(v), (23)
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where s ≥ 0. Integrating over vj
2 and omitting the argument of the Laplace

transform, we obtain:

f(vj
3, . . . , v

j
k, Tjk, δjk) =

 ∏
k∈Cjk

[(
K∏

k=3

vj
k

)
λ0(ti)λ1 [Xi(ti)]

]1−δi K∏
k=3

hk(vj
k;αk)


(−1)lik1

∫
V2

vli2jL(lik1)
1 h2(v, α2)dv

=

 ∏
k∈Cjk

[(
K∏

k=3

vj
k

)
λ0(ti)λ1 [Xi(ti)]

]1−δi K∏
k=3

hk(vj
k;αk)


(−1)lik1E2

[
(vj

2)
lik2L(lik1)

1

]
.

(24)

By further integrations, we can show that:

f(vj
k, Tjk, δjk) =

 ∏
k∈Cjk

[
vj

kλ0(ti)λ1 [Xi(ti)]
]1−δi

hk(vj
k;αk)

 (−1)lik1

EK

[
(vj

K)likK . . .E(k+1)

[
(vj

(k+1))
lik(k+1)E(k−1)

[
(vj

(k−1))
lik(k−1) . . .E2

[
(vj

2)
lik2L(lik1)

1

]]]]
.

(25)

To make equations shorter, let us denote:

ξ(−k) = EK

[
(vj

k)likK . . .E(k+1)

[
(vj

(k+1))
lik(k+1)E(k−1)

[
(vj

(k−1))
lik(k−1) . . .

E2

[
(vj

2)
lik2L(lik1)

1

]]]]
. (26)

Thus:

E
[
vj

k|T, d
]

=

∫
Vk
vf(v, T, d)dv∫

Vk
f(v, T, d)dv

=

∫
Vk
v1+likkξ(−k)hk(v, αk)dv∫

Vk
vlikkξ(−k)hk(v, αk)dv

=
Ek

[
(vj

k)1+likkξ(−k)

]
Ek

[
(vj

k)likkξ(−k)

] . (27)
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B Evaluation of the Information Matrix
Using equations from (6) to (8), the gradient vector is made of:

∂ lnL
∂αk

=
N∑

k=1

∂ lnhk

∂αk
(vj

k;αk), (28)

∂ lnL
∂β

=
N∑

k=1

[
δi
∂ lnλ1

∂β
[Xi(u);β]−

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)
∂λ1

∂β
[Xi(u);β]

λ1 [Xi(u);β] du

]
.

(29)

The last term in (19) is the variance of the score, conditional of the observed
data. To be computed, it asks for the mixing distributions to be specified and
we present in detail the case of gamma mixing distributions in Appendix C.

The first member in (19) is the expected information matrix, conditional on
the full data. The Hessian is:

H(α, β) =
(
H11(α) 0

0 H22(β)

)
, (30)

where:

H11(α) =
N∑

i=1

∂2 lnhk

∂αk∂α′k
(vj

k, αk), (31)

H22(β) =
N∑

i=1

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)
∂2λ1

∂β∂β′
[Xi(u);β]λ1 [Xi(u);β] du.

(32)

The expected information matrix, conditional on the full data, can be evaluated
once EM algorithm converged. We have thus:

E [−H(α, β)|T, d, v1, . . . , vK ] = −H
(
α(∗), β(∗)

)
, (33)

where α(∗) and β(∗) are the estimates at the last iteration of the algorithm.

C Computation of the Information Matrix with
Gamma Heterogeneity

Evaluating the information matrix (19) requires the expectation of the second
derivative matrix H(α, β) and the conditional variance of the gradient vector
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S(α, β). The Hessian is presented in equation (30) and the block H11(α) is a
diagonal matrix whose element (i,i) is, in case of gamma heterogeneity:

H11(i, i) = J

(
1
αk

− ψ′(αk)
)
, (34)

where ψ is the digamma function. The bloc H22(β), characterised in (32), does
not depend on the choice of the unobserved heterogeneity distribution.

The score vector in equations (28) and (29) becomes in presence of gamma
mixing distribution:

∂ lnL
∂αk

=
K∑

k=1

[
lnαk + 1 + ψ(αk)− vj

k + ln vj
k

]
, (35)

∂ lnL
∂β

=
I∑

i=1

[
δiXi(ti)−

(
K∏

k=1

vj
k

)∫ ti

0

λ0(u)Xi(ti) exp [Xi(u)β] du

]
.

(36)

The variance of the gradient vector conditional on the observed data requires
the computation of Var

(
vj

k|T, d
)
, Var

(
ln vj

k|T, d
)
, Var

[(∏K
k=1 v

j
k

)
|T, d

]
and

Cov
(

∂ ln L
∂β , ∂ ln L

∂αk
|T, d

)
to be computed. These are evaluated from density:

f(vj
k|T, d) =

f(vj
k, T, d)

f(T, d)

=
f(vj

k, T, d)∫
Vk
f(v, T, d), dv

. (37)

The numerator is equation (20), which becomes in presence of gamma hetero-
geneity:

f(vj
1, . . . , v

j
K , T, d) =

 ∏
k∈Cjk

(
K∏

m=1

vj
l

)
λ0(ti)λ1[Xi(ti)]δi


exp

−( K∏
m=1

vj
m

) ∑
k∈Cjk

∫ ti

0

λ0(u)λ1[Xi(u)]du


K∏

m=1

ααm
m

Γ(αm)
(vj

m)αm−1 exp(−αmv
j
m)

=Kj
k

(
K∏

m=1

(vj
l )

lmjk+αm−1

)
exp

[
−

K∑
m=1

αmv
j
m

−

(
K∏

m=1

vj
m

) ∑
k∈Cjk

∫ ti

0

λ0(u)λ1[Xi(u)]du

]
,

(38)
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where:

Kj
k =

K∏
m=1

ααm
m

Γ(αm)

∏
i∈Cjk

λ0(ti)λ1[Xi(ti)]δi . (39)

We deduce:

f(vj
k, T, d) =

∫
V1

. . .

∫
Vk−1

∫
Vk+1

. . .

∫
VK

f(vj
1, . . . , v

j
K , T, d)dv

j
1 . . . dv

j
K

=Kj
k(vj

k)lijk+αk−1 exp(−αkv
j
k)
∏
n 6=k

∫
Vn

(vj
n)lnjk+αn−1

exp

−αnv
j
n −

(
K∏

m=1

vj
m

) ∑
k∈Cjk

∫ ti

0

λ0(u)λ1[Xi(u)]du

 dvj
n.

=Kj
k(vj

k)lijk+αk−1 exp(−αkv
j
k)
∏
n 6=k

[
αn +

(
K∏

m=1

vj
m

)
∑

k∈Cjk

∫ ti

0

λ0(u)λ1[Xi(u)]du

]−lnjk−αn

Γ(lnjk + αn − 1). (40)

Hence:

f(vj
k|T, d) =

(vj
k)pijk exp(−αkv

j
k)
∏

n 6=k

[
αn +

(∏K
m=1 v

j
m

)∑
i∈Cjk

Λi

]−1−pijn

∫
Vk
vpijk exp(−αkv)

∏
n 6=k

[
αn +

(∏K
m=1 v

j
m

)∑
i∈Cjk

Λi

]−1−pijn

dv

,

(41)
where pijk = lijk + αk − 1 and Λi =

∫ ti

0
λ0(u)λ1[Xi(u)]du. The quantities

Var
(
vj

k|T, d
)

and Var
(
ln vj

k|T, d
)

are computed with the first and second order
moments, approximated by Monte Carlo simulations from (41). We deduce
Var
[(∏K

k=1 v
j
k

)
|T, d

]
and Cov

(
∂ ln L

∂β , ∂ ln L
∂αk

|T, d
)
:

Var

[(
K∏

k=1

vj
k

)
|T, d

]
= E

[(
K∏

k=1

(vj
k)2
)
|T, d

]
− E

[(
K∏

k=1

(vj
k)

)
|T, d

]2

=

{
K∏

k=1

E
[
(vj

k)2|T, d
]}

−
K∏

k=1

{[
E
(
vj

k|T, d
)]2}

(42)

Evaluating Cov
(

∂ ln L
∂β , ∂ ln L

∂αk

∣∣∣T, d) asks for Cov
(∏K

k=1 v
j
k, v

j
k − ln vj

k|T, d
)
, that
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is:

Cov

(
K∏

k=1

vj
k, v

j
k − ln vj

k|T, d

)

=E

[(
K∏

k=1

vj
k

)(
vj

k − ln vj
k

)
|T, d

]
− E

[
K∏

k=1

vj
k|T, d

]
E
[
vj

k − ln vj
k|T, d

]

=E

∏
k′ 6=k

vj
k′ |T, d

E
[(
vj

k

)2

− vj
k ln vj

k|T, d
]

− E

∏
k′ 6=k

vj
k′ |T, d

(E [vj
k|T, d

]
E
[
vj

k − ln vj
k|T, d

])

=

∏
k′ 6=k

E
[
vj

k′ |T, d
][Var(vj

k|T, d)− Cov(vj
k, ln v

j
k|T, d)

]
.

(43)
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D Results for the ratification of ILO conventions
Table 2 reports the Bayesian estimates provided in Horny et al. (2005) and the
results of the EMPL.

Table 2: Estimates of the β parameters
Variable Bayes EMPL

Coef. S.d Coef. S.d

Cost
Real GDP per capitaa 3.81 1.40 3.03 1.39
Real GDP per capita, -3.19 1.51 -2.41 1.51
squared
No explicit update 1.39 0.27 1.26 0.37
Own past ratification 1.62 0.36 1.52 0.38
if explicit update
Populationb -0.02 0.05 -0.03 0.05
Internal pressure
Democracy 0.34 0.15 0.29 0.15
Left majority -0.69 0.31 -0.62 0.31
Vote against convention:
Government -0.22 0.23 -0.08 0.24
Employers 0.38 0.20 0.28 0.21
External pressure
Development aidc -7.65 2.05 -8.56 2.16
Worldbank loansc 2.00 1.55 3.15 1.57
IMF creditsc 3.96 1.95 3.68 1.98
Exportsc -0.79 1.30 0.27 1.06
Exports into industrialized -0.18 3.66 -2.54 3.80
countriesc

Exports into industrialized -0.77 3.48 0.52 3.71
countriesc (non oil exporting
countries)
Non oil exporting country 0.25 0.68 -0.01 0.71

Note: Bold entries are significant at the 5% level. a. 1985
international prices, in $10 000. b. hundred milions.
c. percent of GDP.
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