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Abstract

This paper compares the GDP forecasting performance of alternative factor mod-

els based on monthly time series for the French economy. These models are based

on static and dynamic principal components. The dynamic principal components are

obtained using time and frequency domain methods. The forecasting accuracy is eval-

uated in two ways for GDP growth. First, we question whether it is more appropriate

to use aggregate or disaggregate data (with three disaggregating levels) to extract the

factors. Second, we focus on the determination of the numberof factors obtained ei-

ther from various criteria or from a fixed choice.

Keywords: GDP forecasting; Factor models; Data aggregation.

JEL Classification: C13; C52; C53; F47.

Résumé

Cet article compare les performances en prévision du PIB de différents modèles à

facteurs dynamiques appliqués à un ensemble de données mensuelles représentatives

de l’économie française. Les composantes principales dynamiques sont obtenues à

partir de modèles estimés dans les domaines temporel et spectral. Les résultats en

prévision du taux de croissance du PIB sont évalués sous deuxangles différents. Dans

un premier temps, nous déterminons empiriquement s’il est plus approprié d’utiliser

des données agrégées ou désagrégées pour extraire les facteurs communs (nous con-

sidérons trois niveaux de désagrégation). Dans un second temps, nous nous intéressons

à l’impact sur la prévision du choix du nombre de facteurs, soit en utilisant des critères

statistiques, soit en fixant ce nombre de manière ad-hoc.

Mots-clés: Prévision du PIB; Modèles à facteurs dynamiques; Aggrégation.

Codes JEL: C13; C52; C53; F47.
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Non-technical summary

Policy-makers and analysts are continually assessing the state of the economy.

However, the most comprehensive measure of economic activity, namely GDP, is only

available on quarterly basis with a delay of around 45 days, and often with significant

revisions. In this respect, governments and central banks need to have an accurate and

timely assessment of GDP growth rate for the current and the next quarters in order to

provide a better and earlier analysis of the economic situation.

Recent works in the econometric literature consider the problem of summarizing

efficiently a large set of variables (financial, hard and softdata, aggregated and disag-

gregated, ...) and using this summary for a variety of purposes including forecasting.

Works in this field have been carried out in a series of recent papers by Stock and Wat-

son (1999, 2002a, 2002b), Forni, Lippi, Hallin and Reichlin(2000, 2001, 2004, 2005),

Doz, Giannone and Reichlin (2006, 2007) or Giannone, Reichlin and Small (2008).

Factor analysis has been the main tool used in summarizing the large datasets. Under

the factor model approach each time series is represented asthe sum of two orthogonal

components: the common component, which is strongly correlated with the rest of the

panel and is a linear combination of the factors, and the idiosyncratic component. The

common component of the time series is driven by a few underlying uncorrelated and

unobservable common factors.

In this paper, we compare the GDP forecasting performance ofalternative factor

models based on monthly time series for the French economy. These models are based

on static and dynamic principal components. The dynamic principal components are

obtained using time and frequency domain methods. The forecasting accuracy is eval-

uated in two ways for the GDP growth. First, we question whether it is more appropri-

ate to use aggregate or disaggregate data (with three disaggregating levels) to extract

the factors. Second, we focus on the determination of the number of factors obtained

either from various criteria or from a fixed choice.

From this application on the French GDP growth rate, we can conclude that com-

plex dynamic models with strongly disaggregated data base do not necessarily lead to

the best forecasting results. Indeed, the simple static Stock and Watson (2002a) ap-

proach with an aggregated data base of 20 series lead to comparable forecasting results

when using a disaggregated data base of 140 series with a dynamic model. Moreover,

we empirically show that the use of Bai and Ng (2002, 2007) tests would lead to unef-

ficient forecasting results and that the inclusion of a higher number of factors improves

the performances.

3



Résumé non-technique

Les décideurs politiques et les analystes économiques et financiers cherchent à

évaluer de manière continue les fluctuations de l’économie.Toutefois, la mesure la

plus complète de l’activité économique, à savoir le PIB, n’est disponible que sur une

fréquence trimestrielle et avec environ 45 jours de délai. Par conséquent, les gou-

vernements et les banques centrales ont besoin d’avoir à leur disposition une évalu-

ation rapide et fiable du taux de croissance du PIB, pour le trimestre en cours et les

trimestres suivants.

Des travaux récents de la littérature économétrique ont considéré le problème de la

réduction de la dimension d’un grand ensemble de données (enquêtes d’opinion, activ-

ité économique, données financières, données agrégées et désagrégées par secteur ou

par pays ...) et de l’utilisation de ces variables synthétiques pour différents objectifs,

en particulier la prévision macroéconomique. Des travaux de recherche sur ce champ

d’application ont été menés par Stock et Watson (1999, 2002a, 2002b), Forni, Lippi,

Hallin et Reichlin (2000, 2001, 2004, 2005), Doz, Giannone et Reichlin (2006, 2007)

ou Giannone, Reichlin et Small (2008). L’analyse factorielle est le principal outil

utilisé dans ces travaux pour résumer un grand ensemble de données. Cette méthode

considère que chaque variable peut être représentée comme la somme de deux com-

posantes orthogonales: une composante commune, combinaison linéaire des variables

et fortement corrélée avec le reste des variables, et une composante idiosyncratique.

Dans ce document, nous comparons les performances en prévision du PIB français

de différents modèles à facteurs, statiques et dynamiques,appliqués à des données

mensuelles. La précision de la prévision est évaluée autourde deux axes. D’abord,

nous nous demandons s’il est plus approprié d’utiliser des données agrégées ou des

données désagrégées (avec trois niveaux de désagrégation). Ensuite, nous nous in-

téressons au choix du nombre de facteurs obtenu soit à l’aidede critères statistiques,

soit par déterminationa priori.

A partir des résultats obtenus sur le taux de croissance du PIB français, nous con-

cluons qu’un modèle à facteurs intégrant une dynamique complexe, ajusté à une grande

base fortement désagrégée, ne fournit pas nécessairement les meilleures prévisions. En

effet, l’approche simple de Stock et Watson (2002a) associée à une base de données

de 20 variables conduit à des résultats similaires à un modèle à facteurs dynamique

appliqué à 140 variables. De plus, nous montrons de manière empirique que les tests

de Bai et Ng (2002, 2007) peuvent mener à des résultats inefficaces en prévision et que

l’inclusion d’un nombre plus élevé de facteurs améliore lesperfomances.
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1 Introduction

Policy-makers and analysts are continually assessing the state of the economy. How-

ever, gross domestic product [GDP] is only available on quarterly basis with a delay of

1.5 months (45 days), and often with significant revisions. In this respect, governments

and central banks need to have an accurate and timely assessment of GDP growth rate

for the current and the next quarters in order to provide a better and earlier analysis of

the economic situation.

Economists and forecasters nowadays typically have accessto information scattered

through huge numbers of observed time series – hard and soft,aggregated and disag-

gregated, real and nominal variables.

Recent works in the econometric literature consider the problem of summarizing ef-

ficiently a large set of variables and using this summary for avariety of purposes

including forecasting. Works in this field have been carriedout in a series of recent

papers by Stock and Watson (1999, 2002a, 2002b), Forni, Lippi, Hallin and Reichlin

(2000, 2001, 2004, 2005), Doz, Giannone and Reichlin (2006,2007) or Giannone, Re-

ichlin and Small (2008). Factor analysis has been the main tool used in summarizing

the large datasets. Under the factor model approach each time series is represented as

the sum of two orthogonal components: the common component,which is strongly

correlated with the rest of the panel and is a linear combination of the factors, and

the idiosyncratic component. The common component of the time series is driven by

a few underlying uncorrelated and unobservable common factors. In the classic or

exact factor model, idiosyncratic components are mutuallyuncorrelated (orthogonal

idiosyncratic elements), limiting thus economic applications.

In traditional factor analysis, for a given size of the cross-sectionn (i.e. smalln), the

model can be consistently estimated by maximum likelihood.The literature has pro-

posed both frequency domain (Geweke, 1977; Sargent and Sims, 1977; Geweke and

Singleton, 1980) and time domain (Engle and Watson, 1981; Stock and Watson, 1989;

Quah and Sargent, 1992) methods. It is assumed that there is no cross-correlation

among the idiosyncratic components at any lead and lag. Thisassumptions allows for

identification of common and idiosyncratic components but represents a strong restric-

tion.

Recent advances in the theory of dynamic factor model [DFM] have generalized the

idea of factor analysis to handle less strict assumptions onthe covariance of the id-

iosyncratic elements (approximate factor structure) and proposed non-parametric esti-

mators of the common factors based on principal components,which is feasible forn
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large. They have shown that, under suitable technical conditions, it is possible to esti-

mate the dynamic factors consistently in an approximate dynamic factor model when

the time series (T) and cross-sectional (n) dimensions are large (Forni et al., 2000;

Stock and Watson, 2002a, 2002b). The extensions of DFM to largen can therefore be

viewed as a particularly efficient way of extracting information from a large number

of data series. Furthermore, these models differ from the classic factor model in that

they allow the idiosyncratic errors to be weakly serial and cross-sectional correlated to

some extent.

In their seminal papers, Stock and Watson (1999, 2002a, 2002b) [SW] show that, if

the data can be described by an approximate dynamic factor model, then under cer-

tain conditions (restrictions on moments and nonstationarity) the latent factors can be

estimated consistently by the principal components of the sample covariance matrix.

Stock and Watson (2002a) also provide conditions under which these estimated factors

can be used to construct asymptotically efficient forecastsby a second stage forecasting

regression in which the estimated factors are the predictors. Otherwise, their forecast

is based on a projection onto the space spanned by the static principal components of

the data. Thus, being based on an eigenvalue decomposition of the contemporaneous

covariance matrix only, their approach does not exploit thedynamic relations between

the variables of the panel.

To take into account a richer dynamic structure for the factor models, various exten-

sions1 to the static principal component estimators have been developed either in the

time domain or in the frequency domain2.

Doz et al. (2006, 2007) [DGR] propose the implementation of the common factors

as unobserved components in a state-space form. Factor dynamics is therefore mod-

elled explicitly. In Doz et al. (2007) they introduce a parametric time domain two-step

estimator involving principal components and Kalman filterto exploit both factor dy-

namics and idiosyncratic heteroscedacticity. In the first step, the parameters of a dy-

namic approximate factor are first estimated using a simple least squares on principal

components. In the second step, the factors are estimated via the Kalman smoother.

1See Reichlin (2003), Stock and Watson (2006), Breitung and Eickmeier (2006), Eickmeier and

Ziegler (2008) for a survey on factor models. Kapetanios andMarcellino (2004) and Schumacher (2007)

compare factor estimation techniques.
2Another dynamic factor model approach have been proposed byKapetanios (2004), Camba-Mendez

and Kapetanios (2005) and Kapetanios and Marcellino (2004), based on subspace algorithms for state-

space models, but it is not considered in this study. See Schumacher (2007) and Eickmeier and Ziegler

(2008) for a comparison of this approach with others dynamicfactor models.
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This procedure allows to consider dynamics in the factors and heteroskedasticity in the

idiosyncratic variance. In Doz et al. (2006) they suggest a quasi maximum likelihood

estimation [QML], in the sense of White (1980), for the approximate factor model in

large panels. They show that traditional factor analysis inlarge cross-sectionn is fea-

sible and that consistency is achieved even if the underlying data generating process is

an approximate factor model rather than an exact one. The misspecification error due

to the approximate structure of the idiosyncratic component vanishes asymptotically

for n andT large, provided that the cross-correlation of the idiosyncratic processes is

limited and that the common components are pervasive throughout the cross section

asn increases.

Forni et al. (2000, 2001, 2004, 2005) [FHLR] use dynamic principal component analy-

sis in the frequency domain to estimate large-scale factor models, where they estimate

the common factors based on generalized principal components in which observations

are weighted according to their signal-to-noise ratio. This model is also called general-

ized dynamic factor model [GDFM]. FHLR dynamic principal components are based

on the spectral density matrix (i.e. dynamic covariations in the frequency domain) of

the data and consequently are averages of the data weighted and shifted through time.

This method incorporates an explicitly dynamic element in the construction of the fac-

tors.

In the recent applied macro-economics literature, especially the macro-economic

forecasting literature, factor models with large dataset have received increasing atten-

tion 3. Literature has not yet reached a consensus between static and dynamic prin-

cipal component approaches. Using a large panel of US macroeconomic variables,

Stock and Watson (2006) and D’Agostino and Giannone (2007) find that SW and

FHLR methods perform similarly, while Boivin and Ng (2005) find that SW’s method

largely outperforms the FHLR’s and, in particular, they conjecture that the dynamic

restrictions implied by the latter method are harmful for the forecast accuracy of the

model. Schumacher (2007) finds mixed results between the SW and FHLR’s methods

in forecasting German macroeconomic variables. However, there little empirical com-

parison between the SW, FHLR and DGR methods in forecasting,except Barhoumi et

al. (2008).

3Moreover, various applications using DFM provided additional favorable evidence for the forecasting

accuracy of the factors models (e.g., Brisson et al., 2003; Camacho and Sancho, 2003; Artis et al., 2005;

Cheung and Demers, 2007).
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A feature stressed in recent applications of factor models is the use of data from

large panels. Because the theory is developed for largen and T, there is a natural

tendency for researchers to use as much data as are available. However, some studies

suggests thatn does not need to be extremely large for the principal components esti-

mator to give reasonably precise estimates (Watson, 2003; Bai and Ng, 2002; Boivin

and Ng, 2006)4. Therefore, from a forecasting point of view, we question whether

it is more appropriate to use aggregate or disaggregate data, with two disaggregating

levels, to extract the factors from various DFMs.

As suggested by Schumacher (2007), performance-based model selection as well as

information criteria are used for model specification. For the model selection using

information criteria, we use criteria by Bai and Ng (2002) and Bai and Ng (2007) for

the number of static and dynamic factors, respectively. We also consider aa priori

fixed choice of the number of factors, by increasing progressively this number, to

forecast GDP. The forecasting accuracy of alternative factor models introduced above

is discussed in this paper.

2 Factor models

2.1 The strict factor model

In the factor model framework, variables are represented asthe sum of mutually or-

thogonal unobservable components: the common component and the idiosyncratic

component. The common component is driven by a small number of factors common

to all the variables in the model. The idiosyncratic component is driven by variable-

specific shocks. In anr-factor model each element of a vectorXt = [x1t , ...,xnt]
′

can be

represented as:

xit = λi1F1t + ...+ λir Frt + ξit , t = 1, ...,T (1)

= λ
′

iFt + ξit

whereλi = [λi1, ...,λir ]
′

, Ft is a vector ofr common factors such thatFt = [F1t , ...Frt ]
′

andξt = [ξ1t , ...,ξnt]
′

is a vector ofn idiosyncratic mutually uncorrelated components.

More compactly, the model (1) can be rewritten as:

4Watson (2003) found that the marginal gain (in terms of forecast mean-squared error) from increasing

n beyond 50 appears less substantial. Bai and Ng (2002) found that in simulations, the number of factors

can be quite precisely estimated withn as small as 40 when the errors are iid. Boivin and Ng (2006)

showed that, in simulations and the empirical examples, thefactors extracted from as few as 40 series

seem to do no worse, and in many cases, better than the ones extracted from 147 series.
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Xt = ΛFt + ξt, (2)

whereΛ is the loading matrix such thatΛ = [λ1, ...,λn]
′.

In the framework of a strict factor model, it is also assumed that ξt is a serially un-

correlated vector such thatE(ξt) = 0 and for any giveni, E(ξit ξit ′) = 0 if t 6= t ′ and

E(ξit ξit ′) = σ2
i otherwise. In addition, it is assumed thatE(Ft) = 0 andE(FtF

′

t ) = Ω
and that the factors are uncorrelated with the idiosynchractic noise. From these as-

sumptions it follows that:

E(XtX
′

t ) = ΛΩΛ
′

(3)

It can be shown that the least-squares estimate of the loading matrixΛ is also the prin-

cipal components (PC) estimate.

In traditional factor analysis, for a small size of the cross-sectionn, the model can

be consistently estimated by maximum likelihood. The literature has proposed both

frequency domain and time domain methods. In frequency domain, Sargent and Sims

(1977) and Geweke (1977) were the first to propose a dynamic factor model. They

obtain parameter estimates by maximizing the spectral likelihood function. In time

domain, Engle and Watson (1981) propose the use of Fisher scoring to maximize the

likelihood in the time domain and apply this method to a one-factor model. Watson

and Engle (1983) and Quah and Sargent (1993) adopt the expectation-maximization

(EM) algorithm of Dempster et al. (1977) to estimate a factormodel5.

2.2 Approximate factor model

The fairly restrictive assumption of the strict factor model can be relaxed if it is as-

sumed that the numbern of variables tends to infinity (Chamberlain and Rothshield,

1983; Connor and Korajczyk, 1986, 1988, 1993; Stock and Watson, 2002a; Bai 2003).

First, it is possible to allow for (weak) serial correlationof the idiosyncratic errors.

Thus, the principal component estimator remains consistent if the idiosyncratic errors

are generated by stationary short-memory ARMA processes. However, persistent and

non-ergodic processes, such as the random walk, are ruled out. Second, the idiosyn-

cratic errors may be weakly cross-correlated and heteroskedastic. This allows for finite

“clusters of correlation” among the errors. Another way to express this assumption is

5The EM algorithm has the advantage that it is stable and it is sure to converge to an optimum.

However, Watson and Engle (1983) found that convergence is often slow.
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to assume that all eigenvalues ofE(ξtξ
′

t) = ∑ are bounded. Third, the model allows

for weak correlation between the factors and the idiosyncratic components.

2.2.1 Stock and Watson (2002)

In order to derive the factor, Stock and Watson (2002a, 2002b) [SW] use static princi-

pal component analysis. The aim of the static component analysis is to choose the

parameters and factor for the model (2) in order to maximize the explained vari-

ance of the original variables for a given smallr of factorsFt . Under some tech-

nical assumptions (restrictions on moments and nonstationarity), the column space

spanned by the dynamic factorsFt can be estimated consistently by the (static) princi-

pal components of the covariance matrix of theX’s. The principal component estima-

tor is computationally convenient, even for very largen. More precisely, we consider

Γ̂0 = (1/T)∑T
t=1XtX

′

t as an estimation of the contemporaneous variance-covariance

matrix of the vector of the time seriesXt. The aim of this approach is to findr linear

combinations of the time series datâFj,t = Ŝ
′

jXt for j = 1,...,r that maximize the vari-

ance of the factorŝS
′

j Γ̂0Ŝj . Due to the fact that the number of the factors should be

sufficiently small compared with the total number of time series, r � n, SW impose

the normalization̂S
′

j Ŝj = 1 for i = j and 0 fori 6= j.

Hence, the maximization problem can converted to an eigenvalue problem:

Γ̂0Ŝj = µ̂j Ŝj , (4)

whereµ̂j denotes thej-th eigenvalue and̂Sj its (N×1) corresponding eigenvector. As

before, after the calculation of the maximum ofn eigenvalues, they are ranked in de-

creasing order of magnitude and the eigenvectors accordingto ther largest eigenvalues

are weights on the static factors:

FSW
t = Ŝ

′
Xt , (5)

whereŜis the(n× r) matrix of stacked eigenvectorŝS= (Ŝ1, ..., Ŝr ). We need only one

auxiliary parameterr to derive the factors.

2.2.2 Dynamic Factor Models

To integrate dynamics in forecasting, SW propose to apply anautoregressive model

to the factors. Another way to proceed to take dynamics into account is to model

explicitly the dynamics of the factors Ft . More precisely, we assume that the dynamic

factor model representation is given by:

Xt = χt + ξt, (6)
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where the componentχt integrates a linear dynamic such that:

χt = A(L)Ft , (7)

whereA(L) is a (n× r) matrix describing the autoregressive form of ther factors. If

we assume that there exists a(n× q) matrix B(L) such thatB(L) = A(L)N(L) with

N(L) of dimension(r × q), then the dynamic factor is such thatFt = N(L)Ut where

Ut is a(q×1) independent vector containing the dynamic shocks. From equations (6)

and (7) it follows that the factor dynamics are described by:

A(L)Ft = B(L)Ut (8)

Equation (8) specifies a VAR(p) model for the factorFt with lag polynomialA(L) =
p

∑
i=1

AiLi. Ft is thus the(r ×1) vector of the stacked factors withr = q(p+1).

Doz et al. (2006, 2007)

In two successive papers, Dozet al. (2006, 2007) [DGR] proposed a dynamic fac-

tor model for a large set of data based on a state-space representation. More precisely,

DGR propose two approaches to estimate the dynamic factor model: the two-steps

approach (2007) and the QML approach (2006). We briefly present those estimation

methods below.

The two-steps approach consists in first estimating the parameters by principal compo-

nent. Then, in the second step, the factors are estimated viaKalman smoothing. DGR

(2007) cast the model into a state-space form with equations(6)-(7) referring to the

state equation and equation (8) referring to the space equation.

For a given number of factorsr and dynamic shocksq, the estimation proceeds in the

following two steps. In the first step, we estimateF̂t using principal component analy-

sis as initial estimate. Then, we estimateΛ̂ by regressingXt on the estimated factorŝFt .

The covariance matrix of the idiosyncratic componentsξ̂t = Xt − Λ̂F̂t denoted aŝ∑ξ is

also estimated. The estimation of a VAR(p) model for the factorŝFt yieldsÂ(L) and the

residual covariance of̂ςt = Â(L)F̂t denoted̂∑ς. To obtain an estimate ofN(L), given

the number of dynamic shocksq, DGR (2007) apply an eigenvalue decomposition of

∑̂ς. Let M be the(r × q)-dimensional matrix of the eigenvectors corresponding to

theq largest eigenvalues and let the(q×q)-dimensional matrixP contain the largest
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eigenvalues on the main diagonal and zero otherwise. Then the estimate ofN(L) is

N̂(L) = M×P−1/2.

In the second step, the coefficients and auxiliary parameters of the system of equations

(6), (7) and (8) are fully specified numerically. The model iscast into state-space form

and the Kalman smoother yields new estimates of the factors.

DGR (2006) propose a second approach based on quasi-maximumlikelihood [QML]

estimations of a dynamic approximate factor model6.The central idea is to treat the

exact factor model as a misspecified approximating model andanalyze the proper-

ties of the maximum likelihood estimator of the factors under misspecification, that is

when the true probabilistic model is approximated by a more restricted model. This

is a QML estimator in the sense of White (1980). Maximum likelihood is analyzed

under different sources of misspecification such as omittedserial correlation of the

observations, cross-sectional correlation of the observations and cross-sectional corre-

lation of the idiosyncratic components. They show that the effects of misspecification

on the estimation of the common factors is negligible for large sample size (T) and

the cross-sectional dimension (n). The estimator is then a valid parametric alternative

to principal components which can potentially produce efficiency improvements due

to the exploitation of the factor dynamics and the non sphericity of the idiosyncratic

components.

The model defined in equations (6), (7) and (8) can be cast intoa state-space form

with the number of states equal the number of common factorsr. For any set of pa-

rameters the likelihood can then be evaluated using the Kalman filter. Given the QML

estimates of the parametersθ of the model, the common factors can be approximated

by their expected value, which can be computed using the Kalman smoother.7

Throughout this paper, we attribute the following notationF2S
t to this first approach

andFQML
t for the second approach.

Forni et al. (2004, 2005)

To estimate the dynamic factors and their covariances, FHLR(2000, 2001, 2004,

2005) propose dynamic principal analysis in the frequency domain. The dynamic prin-

6Recently, Junbacker and Koopman (2008) propose new resultsfor the likelihood-based analysis of

the dynamic factor model. The estimation of the factors and parameter estimation is obtained by maxi-

mum likelihood and Bayesian methods using Markov chain Monte Carlo approach.
7The likelihood can be maximized via the EM algorithm which requires at each iteration only one run

of the Kalman smoother.
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cipal components are derived in order to maximize the commoncomponents’ variance

under orthogonality restrictions. The optimization leadsto a dynamic eigenvalue prob-

lem of the spectral density matrix of the vector of observed variables. The spectral

density matrix of the vector of observed variablesΣ(θ) of Xt is estimated using the

frequency domain representation of the time series. For each frequencyθ lying on

the interval[−π,π[, dynamic principal components are obtained through the dynamic

eigenvector and eigenvalue decomposition of the spectral density matrix8.

The common components are the orthogonal projections of thedata on the present,

past and future of theq dynamic principal components. The projection coefficients

of the common components,A(L), are the result of an inverse Fourier transform of

the first q dynamic eigenvectors. More precisely, this transformation translates the

results found in the spectral domain (dynamic eigenvectors) into a filter in the time

domainA(L). The frequency domain estimator yields a two-sided filter. Consequently,

problems arise at the end of the sample since future observations are needed to estimate

the common components. To solve this problem FHLR (2005) suggest a refinement of

their procedure that retains the advantages of the dynamic approach, while the common

component is based on a one-sided filter. Following this procedure, the factor space is

approximated byr static aggregates instead ofq dynamic principal components. These

r contemporaneous averages are however based on the information of the dynamic

approach.

The procedure consists in two steps. In the first step, it relies on the dynamic approach,

which delivers estimates of the covariance matrices of the common and idiosyncratic

component,Γ̂χ(θ) and Γ̂ξ(θ), through an inverse Fourier transform of the spectral

density matrices. The covariance of common components is obtained by

Γ̂χ,k(θ) =
1

2M +1

2M

∑
h=0

Σ̂χ(θh)e
ikθh (9)

for k = −M, . . . ,M. The covariance of idiosyncratic component can be obtainedac-

cordingly.

In the second step, this information is used to construct thefactor space byr con-

temporaneous averages, wherein the variables are weightedaccording to their com-

mon/idiosyncratic variance ratio obtained from the contemporaneous covariance ma-

trices estimated in the first step. Theser aggregates are the solutions from a gener-

alized principal component problem and have the efficient property of reducing the

8The eigenvalue-eigenvector decomposition also allows to split up the spectral density matrix into

a spectral density matrix of the common componentΣχ(θ) and spectral density matrix of idiosyncratic

componentΣξ(θ).
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idiosyncratic disturbances in the common factor space to a minimum, by selecting the

variables with the highest common/idiosyncratic varianceratio. The number of aggre-

gates is equal tor = q(p+ 1), which is the static rank of the spectral density matrix

of the common factors,p indicates the order of the lag operator inA(L) =
p

∑
i=1

AiLi for

equation (8).

FHLR (2005) stipulate that the maximization problem, in order to find ther aggregates,

can be represented as a generalized eigenvalue problem

Σ̂χ,0Ẑ j = µ̂j Σ̂ξ,0Ẑ j (10)

whereµ̂j denotes thej-th generalized eigenvalue,Ẑ j its (n×1) corresponding eigen-

vectors, and̂Σχ,0 and Σ̂ξ,0 are the contemporaneous variance-covariances of the dy-

namic and idiosyncratic components, respectively. Note that FHLR (2005) impose the

following normalizationẐ′
j Σ̂ξ,0Ẑi = 1 for i = j and 0 fori 6= j. Last, then eigenvalues

are ranked by in decreasing order of magnitude, the factors are obtained as the product

of r eigenvectors corresponding to the largest eigenvalues andthe vector of observable

variablesXt such as:

FFHLR
t = Ẑ′Xt (11)

whereẐ = (Ẑ1, ..., Ẑr) is the(n× r) matrix of the stacked eigenvectors.

3 Forecasting with factor model

In this section we compare the four previously factor estimation methods in order to

forecast the French GDP growth rate one-quarter ahead, by using the same data base

disaggregated for three various levels.

3.1 Forecast equation

In order to evaluate the predictive content conveyed by the factor estimates, they have

to be implemented into a forecasting model. We use the four types of estimated factors

previously presented, namelyFSW
t , F2S

t , FQML
t andFFHLR

t , for prediction in a dynamic

model. In this paper, we focus on the one-step-ahead prediction of the French GDP

growth rate, denoted̂Yt+1. As for example in Forniet al. (2003a), Kapetanios and

Camba-Mendez (2004) or Schumacher (2007), we estimate the one-step-ahead pre-

dictor by using the following leading equation:

Ŷt+1 = β′Ft + φ(L)Yt , (12)
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whereFt is ther-vector of estimated factors obtained by using one of the four methods,

β = (β1, . . . ,βr)
′ is a coefficient vector of lengthr andφ(.) is a polynomial of order

p. Ther + p+1 parameters of the model, namely(β1, . . . ,βr ,φ0,φ1, . . . ,φp), are esti-

mated by ordinary least-squares.

In order to compare with the factor-augmented approach (equation (12)), we consider

two simple benchmark predictors. First, we use the naive predictor such that̂Yt+1 = Yt

and second the autoregressive predictor given by:

Ŷt+1 = ψ(L)Yt , (13)

Significant lags up to the 4th order with an associated probability of the t-stat of less

than 5% were kept in the AR(p) polynomialψ(.).

3.2 Data description

As one of our aim is to assess the effects of data disaggregation on forecasting perfor-

mances, we construct three different monthly data bases that we called small, medium

and large, starting from the same set of data for the French economy. The small data

base consists in 20 variables including hard data (manufacturing industrial produc-

tion index, consumer spending, new cars registrations, selling of industrial vehicles,

housing starts, imports and exports), soft data (industrial confidence index, consumer

confidence index, services confidence index, retail sales, European Commission sur-

veys on assessment of order-books levels for both domestic and foreign demand and

production expectations for the months ahead), financial data (French stock index,

long-term, short-term rate and housing interest rates) andprices (oil price and con-

sumer price index). Surveys in the industry and services areprovided by the Banque

de France and the consumer survey stems from Insee, the French national statistical

institute. From this small data base, we first decide to disaggregate soft data, when

possible, according to their various questions, instead ofusing composite index as in

the small data base. That is, we split the three confidence indicators (industry, services

and consumers) according to the first-level questions. By doing this, we extend the

base to 51 variables, denoted as the medium data base. Last, we decide to carry out a

sectoral disaggregation of the data when possible. For example, we split the industrial

sector into consumer goods, equipment goods, intermediategoods, agri-food goods

and car industry. The large data base consists thus in 140 variables. When necessary,

data have been differenced to avoid a non-stationary component. Last, data have been
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centered and standardized before entering the factor model.

For each data base (small, medium and large), we extract ther common factors by

using the four extraction methods previously described. Wefixed a priorir = 5 and we

will compare the effects of the number of factors on forecasting GDP, by comparison

with a pre-specified number of factors estimated with the Baiand Ng test (2002, 2007).

Moreover, as the explained variable, GDP growth rate, is quarterly, we average the

monthly estimated factors into quarterly factors in order to estimate the predicted value

through equation (12).

3.3 Forecasting results

Out-of-sample rolling forecasts are carried out to determine the predictive power of

each factor extraction method. The rolling forecasts have been implemented over the

period 2000q1-2007q4. Parameters of the model are re-estimated at each step when

new data are included in the learning set. Concerning the specification of the models,

we keep the statistically significant models as regards the number of autoregressive

lags and the number of factors involved in the leading equation (12), by using Student

tests on parameter estimates with a confidence level of 95 %. Moreover, we check the

robustness of the models by assuring that parameters are significant through time.

To assess the predictive accuracy, we use the classical rootmean-squared error (RMSE,

henceforth) criterion defined by the following equation:

RMSE(i) =

√
1
h

h

∑
t=1

(Yt+1−Ŷi
t+1)

2, (14)

wherei ∈ {SW,2S,QML,FHLR}, h is the number of quarters considered in the rolling

forecast exercise (h = 32 from Q1 2000 to Q4 2007),Yt is the true value of the GDP

growth rate. Note that we use as true values, the chain-linked values released in Febru-

ary 2008 by the quarterly national accounts of the French national statistical institute.

Results in terms of RMSE are presented in Table 1. This table also contains the op-

timal specification of the models (12), in the sense that all the presented models are

statistically significant. When several models have been found significant, we retain

the one providing with the lower RMSE. From those results, weconclude first that

factor-augmented models clearly outperform naive and autoregressive models, indi-

cating thus that the information conveyed by the factors is useful. Second, we observe
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Base Predictor RMSE AR lags Factors

Naive 0.5032

AR 0.4039 1,2

Small SW 0.2314 2,3 F1t F2t

2S 0.2474 2 F1t F2t

QML 0.2442 2 F1t F2t

FHLR 0.2466 2,3 F2t F4t F5t

Medium SW 0.2382 1 F1t F1(t−1) F3t F4t F5t

2S 0.2400 2 F1t F4t

QML 0.2631 2 F1t F4t

FHLR 0.2556 3 F1t F5t

Large SW 0.2357 2 F1t F2t F2(t−1) F5t

2S 0.2391 3 F1t F2t F5t

QML 0.2642 3 F1t F2t F5t

FHLR 0.2758 3 F2t F5t

Table 1:RMSEs for the 3 data bases and the four factor extraction methods over the period Q1 2000 -

Q4 2007

that the simplest method as regards parameter estimation, namely the SW approach,

always provides the best results for a given data base, although the difference with the

worst results is not huge (lower than 0.04 points). Modified Diebold-Mariano tests

of Harvey, Leybourne and Newbold (1997) have been carried out in order to test the

equality of forecast performances (see results in Table 2).With a confidence level

of 90%, we cannot conclude that results from SW approach are statistically different

from those of other approaches. This result appears interesting for practitioners in

search for parsimony and simplicity in modelling when they are in charge of providing

results on a regular and frequent basis. Third, we observe that the enlargement of the

data base does not have a strong impact on forecasting accuracy. For example, the

SW approach leads roughly to the same forecasting error, although the structure of the

model is changing with the base. Indeed, for the medium and large bases, a dynamic

is needed and higher factors are included. As regards the FHLR approach, the forecast

accuracy decreases when the data base widens, which is a striking result. To a certain

extent, the QML approach provides also with the same result.This results means that

filling the factor model with the largest as possible data setis not necessarily the best

strategy. This result is similar to those found in Bai and Ng (2002), Watson (2003) and

Boivin and Ng (2006). A limited choice of data, along with thechoice of the optimal

model in terms of specification in equation (12), can lead to similar or even best results.
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This latter remark leads us to question on the way to specify optimally the leading

equation (12). Especially, the numberr of factors to include is always questionable.

In the econometrics literature, a classical answer to this issue consists in using the Bai

and Ng (2002, 2007) tests, who suggest information criteriato estimate consistently

the number of factors asn andT tend to infinity. The 2002 paper deals with static

factor models while the 2007 paper concerns dynamic factor models. To compare

the impact on forecasting accuracy of the choice of the number of factors in equation

(12), we consider first the tests of Bai and Ng (2002, 2007), then we adopt a naive

sequential approach which consists in using a rolling procedure among the factors and

in comparing the resulting RMSEs. We use a sequential approach that integrates first

only the first factor, then the two first factors, then the three first factors, etc. We do

not exceed five factors. In this experience, we present all the estimated models even

if the factors are not significant. Results are presented in Table 3. From this table,

it is noteworthy that the number of factors has a strong influence on the forecasting

accuracy. Indeed, it turns out that we cannot limit to the twoor three first factors as

generally invoked in the Bai-Ng tests. The application of those tests on our data lead

to retain only two factors for the small and medium bases and three factors for the

large base, both for static and dynamic approaches. Yet the inclusion of the 4th factor

may allow a strong reduction of the RMSE, for example for the FHLR method with

the small data base (0.3491 against 0.2701) or for the SW method with the medium

data base (0.3628 against 0.2757). Moreover, the 5th factormay also have a strong

influence on prediction as it is the case for all the methods when using the large data

base (e.g., 0.2783 for the 2S method against 0.2577 for the SWmethod). Therefore,

for the large data base, it seems that high orders factors maycontain a predictive power

and not include them in forecasting, as it is the case when using the Bai-Ng tests, may

lead to inaccurate results.

Base 2S QML FHLR

Small 0.2249 0.2627 0.1108

Medium 0.4675 0.1530 0.3087

Large 0.4343 0.1950 0.1295

Table 2:P-values of Modified Diebold-Mariano tests (Harvey, Leybourne and Newbold, 1997) against

the SW model, over the period Q1 2000 - Q4 2007 (h = 32 observations). If the P-value is lower than

the type I riskα equal to, for example, 0.05, it means that we can reject the null hypothesis of equality of

expected forecast performance with a riskα.
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Base Method F1t F1t , F2t F1t , F2t ,F3t F1t , F2t ,F3t ,F4t F1t , F2t ,F3t ,F4t ,F5t

Small SW 0.2473 0.2326 0.2332 0.2376 0.2361

2S 0.2694 0.2474 0.2510 0.2500 0.2492

QML 0.2627 0.2442 0.2478 0.2518 0.2512

FHLR 0.3716 0.3491 0.3523 0.2701 0.2508

Medium SW 0.3329 0.3628 0.3556 0.2757 0.2803

2S 0.2987 0.3013 0.2989 0.2488 0.2540

QML 0.3070 0.3104 0.3089 0.2708 0.2793

FHLR 0.3637 0.3628 0.3384 0.3404 0.2666

Large SW 0.3066 0.2559 0.2711 0.2649 0.2441

2S 0.2916 0.2778 0.2783 0.2803 0.2355

QML 0.2942 0.2825 0.2837 0.2863 0.2577

FHLR 0.3722 0.2881 0.3009 0.3003 0.2869

Table 3: RMSEs for the 3 data bases and the four factor extraction methods obtained by integrating

sequentially the five factors in the leading equation (over the period Q1 2000 - Q4 2007).

4 Conclusions

From this application on the French GDP growth rate, we can conclude that complex

dynamic models with strongly disaggregated data base do notnecessarily lead to the

best forecasting results. Indeed, the simple static Stock and Watson (2002a) approach

with an aggregated data base of 20 series lead to comparable forecasting results when

using a disaggregated data base of 140 series. Moreover, as acompanion result, we

empirically showed that the use of Bai and Ng (2002, 2007) tests would lead to uneffi-

cient forecasting results and that the inclusion of a highernumber of factors improves

the performances. Obviously, we do not claim that those results are general ones, but

it would be interesting to continue this line of empirical research, with other data bases

related to various countries, to check the robustness of ourfindings.

Further empirical research on this topic seems of great interest. For example, it would

be interesting for practitioners to carry out a true-real time exercise taking the avail-

ability of data into account as well as vintage data. Other ways to forecast have been

proposed in the literature on dynamic factor models, strongly associated with the fac-

tor extraction method (see Dias et al., 2008), for example byusing the Kalman filter.

It would be interesting to compare them with our global forecasting approach.
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Appendix A

In order to specify the number of factor Bai and Ng (2002, 2007) have suggested

information criteria that can be used to estimate the numberof factors consistently for

static and dynamic model factors asn andT tend to infinity.

On the one hand, we determine the number of static factorsr for SW by using the

criterion ICp1 of Bai and Ng (2002) given by:

ICp1 = ln(V(r,F))+ r.g(n,T), with g(n,T) =

(
n+T
nT

)
ln

(
nT

n+T

)
,

whereg(n,T) is a penalty function9 andV(r,F) measures the goodness-of-fit and is

given by the following sum of squared residuals:

V(r,F) =
1

nT

n

∑
i=1

T

∑
t=1

(Xt −ΛFt)
2 ,

and depends on the estimates of the static factors and the number of factors. If the

number of factorsr increases, the variance of the factors also increases and the sum

of squared residuals decreases. The estimated number of factors r̂ is obtained from

minimizing this information criterion, which reflects the trade-off between goodness-

of-fit and overfitting.

On the other hand, the number of dynamic shocksq for dynamic principal compo-

nent estimation of the factors and the state-space model is determined by information

criterion proposed by Bai and Ng (2007). This criterion is obtained by taking the esti-

mated static factors as given and then by estimating a VAR(p) model on these factors,

wherep is determined by the Bayesian information criterion (BIC).Then, they com-

pute a spectral decomposition of the(r × r) residual covariance matrix̂ΓU and extract

ĉ j the j-th ordered eigenvalue, whereĉ1 � ĉ2 � ...ĉr � 0. Then, fork= 1, ..., r−1, they

compute

D̂k =

(
ĉk+1

∑r
j=1 ĉ j

)1/2

where eacĥDk represents a measure of the marginal contribution of the respective

eigenvalue, under the assumptions thatΓ̂U = 0 and thatck = 0 for k� q. In practice,

the set of admissible numbers of dynamic factors is chosen through the following

boundary K=
{

k : D̂k ≺ m/min
[
n

2
5 ,T

2
5

]}
. The number of dynamic factors is given

by q̂= min{k∈ K}. In our application, we follow the Bai and Ng (2007) Monte Carlo

results and we usem= 1.0.
9Bai and Ng (2002) proposed two others criteria, ICp2 and ICp3, where the penalty function is defined

asg(n,T) =
( n+T

nT

)
lnC2

nT and(lnC2
nT/C2

nT), respectively, withC2
nT = min{n,T}.
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Appendix B

1. Small data base

The small data base consists in 20 variables including:

A Prices: (1) Consumer price index (Insee); (2) Oil price Brent (Datastream).

B Financial data: (1) Rate of return on the long-term Government loans (monetary and financial

statistics); (2) Treasury bonds with maturity of 13 weeks (monetary and financial statistics); (3)

Reference rate of the regulated loans in housing (monetary and financial statistics); French stock

index CAC40 (Datastream).

C Soft data: (1) Business sentiment indicator in industry (BdF); (2) Consumer sentiment indicator

(Insee); (3) Services sentiment indicator (BdF); (4) Assessment of order-book levels (Eurostat);

(5) Assessment of export order-book levels (Eurostat); (6)Production expectations for the months

ahead (Eurostat); (7) Changes in retails sales (Insee).

D Hard data: (1) Household consumption in manufactured goods (Insee);(2) Industrial production

index (Insee); (3) Exportations (Insee); (4) Importations(Insee); (5) Industrial car registrations

(CCFA); (6) Declared housing starts (Ministry of Equipment).

2. Medium data base

For the medium data base, some soft data are disaggregated according to their various questions

rather than using composite index. The disaggregated soft data are:

C1 Business survey in industry: (1) Order book by working week; (2) Total order book level;

(3) Foreign order book level; (4) Change in total orders fromprevious month; (5) Change in

delivery from previous month; (6) Change in foreign orders from previous month; (7) Change in

production of finished goods from previous month; (8) Changein prices of finished goods from

previous month; (9) Change in inventory of finished goods from previous month; (10) Change

in staff levels from previous month; (11) Production forecast for the next month; (12) Inventory

of finished goods forecast for the next month; (13) Inventoryof commodities; (14) Inventory of

finished goods; (15) Forecast staff level for the next month;(16) Capacity utilization rate.

C2 Consumer confidence survey: (1) Personal financial position past change; (2) Personal financial

position outlook; (3) Living standards in France past change; (4) Living standards in France

(outlook); (5) Timeliness of major purchases; (6) Personalfinancial position present level; (7)

Future saving capacity; (8) Timeliness of saving; (9) Unemployment (outlook); (10) Prices (past

change); (11) Prices (outlook).

C3 Services activity survey: (1) Changes in activity compared with the previous month; (2) Changes

in prices compared with the previous month; (3) Changes in staff level compared with the previous

month; (4) Cash flow situation; (5) Activity for the coming month; (6) Changes in price over the

coming months; (7) Changes in staff level over the coming months.

3. Large data base

For large data base a sectorial disaggregation is applied for some data when possible.
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A11 Consumer price index. Each price data defined in A(1) is disaggregated as: (1) Agri-food; (2)

Tobacco; (3) Manufactured goods; (4) Energy; (5) Services.

C11 Business survey in industry. Each soft data defined in C1 is disaggregated as: (1) Intermediate

goods; (2) Capital goods; (3) Automotive industry; (4) Consumer goods; (5) Agri-food industries.

C71 Changes in retails sales. Each soft data defined in C(7) is disaggregated as: (1) New cars; (2)

Old cars; (3) Textiles and clothing; (4) Furnitures; (5) Shoes; (6) Household electrical goods; (7)

Electronics; (8) Hardware shops; (9) Watches and jewellers; (10) Agri-foods excluded meat; (11)

Books and papers; (12) Meat.

D11 Household consumption. Each hard data defined in D(1) is disaggregated as: (1) Cars;(2)

Textile and leather; (3) Other manufactured goods; (4) Furnishing; (5) Household electrical; (6)

Electronics.

D12 Industrial production index . Each hard data defined in D(2) is disaggregated as: (1) Intermedi-

ate goods; (2) Capital goods; (3) Automotive industry; (4) Consumer goods; (5) Energy products.
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