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Résumé

Dans ce papier, nous proposons une méthode de résolution de modèles non linéaires à
anticipations rationnelles dans lesquels les changements de régimes ou les chocs eux-même
peuvent être ”endogènes”, c’est-à-dire suivre des distributions de probabilités dépendant de
l’état de l’économie. Par une méthode de perturbation, nous trouvons des conditions de
détermination, i.e. des conditions d’existence d’un unique équilibre stable. Nous montrons
que ces conditions découlent directement des conditions correspondantes dans le modèle à
changements de régimes exogènes. Bien que ces conditions soient difficiles à vérifier dans
le cas général, nous donnons, dans le cas des modèles à changements de régimes purement
tournés vers le futur, des conditions de détermination faciles à calculer et une approximation
au premier ordre de la solution. Enfin, nous illustrons nos résultats avec un modèle de
Fisher de détermination d’inflation dans lequel la règle de politique monétaire change entre
les régimes selon une matrice de transition dépendant de l’état de l’économie.
Codes JEL : E32, E43

Mots clés :Méthodes de perturbations, politique monétaire, indétermination, changements
de régimes, DSGE.

Abstract

In this paper, we provide solution methods for non-linear rational expectations models
in which regime-switching or the shocks themselves may be ”endogenous”, i.e. follow state-
dependent probability distributions. We use the perturbation approach to find determinacy
conditions, i.e. conditions for the existence of a unique stable equilibrium. We show that
these conditions directly follow from the corresponding conditions in the exogenous regime-
switching model. Whereas these conditions are difficult to check in the general case, we
provide for easily verifiable and sufficient determinacy conditions and first-order approxima-
tion of the solution for purely forward-looking models. Finally, we illustrate our results with
a Fisherian model of inflation determination in which the monetary policy rule may change
across regimes according to a state-dependent transition probability matrix.
JEL classification: E32, E43

Keywords:Perturbation methods, monetary policy, indeterminacy, regime switching, DSGE.
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1 Introduction

Modern macroeconomic analysis explains economic fluctuations by micro-founding models
on the time-invariant behavior of economic agents. Such an assumption, however, appears to
be both questionable as a matter of principle, and problematic from an empirical standpoint
(Clarida et al., 2000). Recent papers (e.g., Svennson and Williams, 2009; Farmer et al., 2009b)
have thus relaxed the assumption of time-invariant behaviors by allowing recurring shifts in
structural parameters. Whereas these papers suppose state-invariant transition probabilities,
there is a priori no reason to assume independence between switches and the state of the
economy(Kim et al., 2008). The aim of this paper is to allow for state-dependent transition
probabilities in an otherwise standard non-linear rational expectations model.

We thus consider a class of non-linear discrete-time rational expectations models with both
discrete jump process, describing regime switching, and continuous stochastic processes, the
usual ”shocks”. Both processes may follow state-dependent probability distributions meaning
that the distribution of shocks as well as the probabilities of regime switches may depend
on the state of the economy. In this context, we find sufficient determinacy conditions, i.e.
conditions insuring the existence of a unique stable solution, and provide the first order Taylor
expansion of the solution. Our resolution strategy is based on perturbation approach as in
Woodford (1986) and Jin and Judd (2002). Our findings are fourfold.

First, we prove that determinacy conditions for non linear rational expectations models
with state dependent probability distributions of shocks and endogenous regime switching
is related to determinacy conditions for the underlying exogenous regime switching model
without shocks.

Second, by applying this result to the case of a one-regime model, we extend Woodford
(1986) results in a context of non-linear rational expectations model with state dependent
distributions of shocks. If the linearized model without shock admits only one stable solution
then there exists a unique stable solution for the original model in a neighborhood of the
steady state.

Third, we solve forward-looking regime switching model. We provide determinacy con-
ditions which are easily verifiable based on eigenvalues computation. We thus generalize
Farmer et al. (2009a) to multivariate forward-looking regime switching model. The state
dependence of transition probabilities does not modify determinacy conditions but can have
first order implication for the solution of the model.

Finally, we apply our method to a Fisherian model of inflation determination in which
the monetary policy rule may change across regimes according to a state-dependent jump
process. We find similar conditions to Farmer et al. (2009a) which extends Davig and Leeper
(2007). Finally, we simulate impulse response functions using the first order Taylor expansion
of the solution. For plausible set of parameters, we find that the endogenous nature of regime
switching can trigger significant impact to the level of inflation in each regime; on the other
hand, the simulations based on the endogenous regime switching model can also differ from
those of the exogenous regime switching due to the endogenous fluctuations of the transition
probabilities.

Related Literature Recent papers have challenged the empirical validity of models based
on time-invariant behavior of economic agents. For instance, several papers analyze the
sharp decreases in output and inflation volatility around the mid 80s’, the so-called ”Great
Moderation”, by allowing for time-varying economic behavior. Among the competing sources
of parameter changes, some papers have allowed for breaks in the variance of structural shocks
(Sims and Zha, 2006; Justiniano and Primiceri, 2008; Fernández-Villaverde et al., 2010; Liu
et al., 2010), others for shifts in the parameters of monetary policy rules (Clarida et al., 2000;
Lubik and Schorfheide, 2004).

Within the context of forward looking economic agents, the possibility of future shifts
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should alter the agents’ current decision rules (Sims, 1982) through what Leeper and Zha
(2003) call the expectations formation effects. Such shifts in expectations could alter the
determinacy conditions. However, the literature is rather mute on these conditions.

The literature on solving rational expectations models with time-varying parameters is
quite vast see e.g. the papers by Justiniano and Primiceri (2008) and Fernández-Villaverde
et al. (2010) on continuous changes or the papers by Davig and Leeper (2007, 2008), Farmer
et al. (2009b, 2010b), Cho (2009), Svennson and Williams (2009) on regime switching. Al-
though these papers provide deep analysis of the expectations, most of them deal with exoge-
nous law of motion, whereas it would be interesting to study state-dependent shifts for a
normative as well as a forecasting purpose. Under this respect Davig and Leeper (2008) is a
notable exception, as in this paper the authors allow for state-dependent monetary policy rule
parameters. Davig and Leeper’s approach relies on computational methods to solve rational
expectations models which imply both a high computational cost and the lack of analytical
results.

Other than Davig and Leeper (2008) very few papers deal with state-dependent transition
probabilities. We have to look at econometric literature to find significant contributions on
this subject. Following the seminal paper by Hamilton (1989), Filardo (1994) and Filardo
and Gordon (1998) estimate Markov switching regressions with time-varying transition prob-
abilities. More recently, Kim et al. (2008) propose a technique for estimating multivariate
models with endogenous regime switching - transition probabilities depend on endogenous
variables. However, these significant progresses cannot be replicated yet to estimate rational
expectations model with endogenous regime switching.

The absence of papers dealing with endogenous regime switching or state-dependent prob-
ability distributions in general in rational expectations context certainly stems from the fact
that seminal papers aiming atsolving rational expectations models (Blanchard and Kahn,
1980; Woodford, 1986, and so on) have developed a consistent framework only for exogenous
stochastic process. Dealing with endogenous regime switching thus requires to redefine the
concept of a solution and to provide an adequate theoretical framework.

Concerning the resolution of (exogenous) Markov switching models, the literature has
mainly focused on linear Rational Expectations models. In this class of models, we can
distinguish two main resolution techniques: the undetermined coefficient approach (Blake
and Zampolli, 2006; Davig and Leeper, 2007; Svennson and Williams, 2009) and a direct
approach (Farmer et al., 2010b). Our approach is closer to the undetermined coefficient
approach since both methods are equivalent when models are linear.

The characterization of the full class of solutions (the existence, the uniqueness and the
form of the solution) in the context of Markov switching models is a challenging task. Davig
and Leeper (2007) propose a simple determinacy condition in the context of forward-looking
Markov switching models. However, Farmer et al. (2010a) have casted doubts about their
results. Since this controversy, most of the literature has turned to the Mean Square Stability
concept (see Farmer et al., 2009b) following the influential book by Costa and R.Marques
(2005). This definition of stability is however incompatible with perturbation approach1 and
hence do not provide the adequate stability concept for solving non-linear Markov Switching
DSGE models with perturbation theory.

In fact, little attention has been paid to Markov switching non-linear rational expectations
models. One notable exception is Foerster et al. (2011). In this paper, the authors propose
a resolution technique aiming at solving this model by applying a perturbation approach.
Davig and Doh (2008) also solves a non-linear Markov Switching DSGE model by linearizing
it and then using undetermined coefficient approach. Nevertheless, none of these papers give
explicit arguments to apply the Implicit Function Theorem and prove that there exists a
unique ”stable” solution.

1Applying Implicit Function Theorem requires Banach spaces
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The remainder of the paper is organized as follows. Section 2 presents the class of model
we study as well as some probabilistic backgrounds. Then, we provide our main theoretical
results in Section 3. Finally, Section 4 illustrates our findings through an endogenous regime
switching Fisherian model of inflation determination.

2 Models

This section presents the class of models we consider in this paper and precise some proba-
bilistic background needed for our analysis.

Most of recent rational expectations macroeconomic models with regime switching can
be reduced to the following system:

Et[fst
(zt+1, zt, zt−1, γvt)] = 0. (1)

z is a vector of endogenous variables evolving in a bounded closed set F of Rn. v is a
multi-dimensional stochastic process evolving in a bounded domain V of Rp and γ is a scalar
evolving in ] −M,M [. st denotes the regime of the economy at date t and can take values
in {1, · · ·N} where N is the number of possible regimes. For any i ∈ {1, · · ·N}, fi is a
regular function from Rn×Rn×Rn×Rp to Rn and Et is the expectation operator given the
information available at time t, namely current and past shocks and regimes. In the literature,
the stochastic process v is assumed to follow a given probability distribution function (in most
cases, Gaussian distributions). In this case, we say that the shocks are exogenous. Similarly,
in Markov switching rational expectations literature, the authors assume the regime switching
to be purely exogenous. By contrast, we allow the distributions of regime switching and of
the shocks to depend on the state of the economy. This departure constitutes the core of this
paper.

Let us precise the exact probability measures of shocks and regimes we consider. We
denote by ut ∈ {1, · · · , N} × V the concatenation of the current shock and regime: (st, vt).
M(U) is the set of measures on U and by U∞ = {1, · · · , N}∞ × V∞, the space of infinite
sequences ut = (ut, ut−1, · · · )2. We denote by B the set of functions Φ on {1, · · · , N}∞×V∞
such that, for all s ∈ {1, · · · , N}, the map v 7→ Φ(s, v) is continuous and such that (s, v) 7→
Φ(s, v) is bounded. We define Σ, the sigma field of U generated by the product of the
singletons {i ∈ {1, · · · , N}} and the Borel set of V . We consider a fixed map µγ :


µγ : B × U∞ → M(U)

(φ, st−1, vt−1) 7→ µγ(·, φ, ut−1)

µγ(s, v, φ, ut−1) =
N∑
i=1

hi(v, φ, ut−1)piγ(φ, ut−1)δi(s)
(2)

This measure is a combination of Lebesgue-continuous measure, hi, and mass-point mea-
sures. δi denotes the Dirac distribution in i. We suppose that piγ and hi for any i ∈ {1, · · · , N}
are smooth. We focus on this particular class of measures as they behave conveniently and
encompass a large class of economic models. We present some useful properties of this class
of measures in appendix A. It is worth noticing that we allow the measure of v to vary across
regimes as its probability measure depends on i in the sum. We assume that hi satisfies:∫

V

hi(v, φ, ut−1)dv = 1, ∀i ∈ {1, · · · , N}, ∀φ ∈ B, ∀ut−1 ∈ U (3)

We then recursively define the probability measure πγ(φ) on Σ∞, the infinite product of
Σ:

2For more details about this formalism, the reader can refer to Woodford (1986).
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πγ : B → M(U∞)
φ 7→ µ(·, φ) =

∏∞
k=0 µγ(ut−k, φ, ut−k−1) (4)

We can now define a stationary rational expectation equilibrium of model (1):

Definition 1. A stationary rational expectations equilibrium (s.r.e.e.) of model (1) is a
continuous function φ : U∞ → F such that:

1. ||φ||∞ = sup
U∞
‖Φ(ut)‖ <∞

2. If u is a U valued stochastic process associated with the probability measure πγ(φ) Then
E[fst(Φ(ut+1),Φ(ut),Φ(ut−1), γvt)|ut] = 0

Furthermore, this solution is a steady state if Φ is constant.

When shocks are exogenous (hi and pi invariant), the usual assumptions is to assume
”small” shocks (Woodford, 1986; Judd, 1996; Uhlig, 1999; Juillard, 2003, among others). In
this case, by perturbing the deterministic model (the model without any shock) one can prove
that, for shocks small enough, there is a unique s.r.e.e. of the non-linear model if there exists
a unique s.r.e.e. of the linearized model around a steady state (solution of the deterministic
model).

Such approach seems appropriate only in case of small regime switches. Foerster et al.
(2011) propose a resolution procedure based on perturbation approach around a steady state
to solve such regime switching models. However, in presence of large regime switches, this
approach seems unappropriate. That is the reason why we define a continuum of probability
measures, µγ , parameterized by the so-called scale parameter, γ ∈ [0, 1]. When γ is equal to
0, the continuous shocks disappear from the model (they hence become pure sunspot shocks)
and we assume that the probabilities, pi0, do not depend on φ - exogenous regime switching.
Consequently, γ = 0 corresponds to an exogenous regime switching model without shocks. γ
thus measures simultaneously the size of the shocks and the degree of endogeneity of regime
switching (the slope of the mass-point probabilities). We could have distinguished these two
dimensions without any substantial modification.

Finally, Implicit Function Theorem (IFT) applied to this continuum of probability mea-
sures will give us the existence and the uniqueness of a s.r.e.e. when the continuous shocks
are small enough and the regime switching is weakly endogenous3.

3 Solving Rational Expectations Models with perturba-
tion approach

In this section, we prove that there exists a unique s.r.e.e. of the model with small continuous
shocks and weakly endogenous regime switching (i.e. γ small enough) if the underlying ex-
ogenous regime switching model admits a unique solution [Theorem 1]. We show that, in the
absence of regime switching, this result extends Woodford (1986) result by allowing shocks’
distribution to be state-dependent [Theorem 2]. Then, we give existence and uniqueness
conditions for a non-linear endogenous regime switching model in a purely forward-looking
context [Theorem 3]. As the latter conditions are uneasy to check, we also give more strin-
gent but easy-to-check conditions [Proposition 1]. Finally, we illustrate this Proposition in
the context of linear endogenous regime switching model and compute the first order Taylor
expansion [Proposition 2].

3The exact definition of what ”small” means in this context is largely ignored by the literature and will be
the subject of further research.
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3.1 General result

We begin with a general theorem which results from Implicit Function Theorem (IFT) in
Banach Spaces (see Abraham et al., 1988, and section B.1 in the appendix). To apply this
latter, we define an operator N , whose zeros correspond to a s.r.e.e:

N (φ, γ) =
∫
U

fst(φ(uut), φ(ut), φ(ut−1), γvt)µγ(u, φ, ut)du (5)

As explained in section 2, we assume that the mass-point probabilities do not depend on
φ when γ is equal to 0. Thus:

N (φ, 0) =
N∑
i=1

pi0(ut)
∫
V

fst(φ(ist, vvt), φ(ut), φ(ut−1), 0)hi(v, φ, ut−1)dv (6)

This operator corresponds to a model with purely exogenous regime switching and the
shocks, v, are sunspot shocks. One may notice that transition probabilities can depend on
past regime and shocks. This thus encompasses Markov Switching models. Besides, even if
the shocks, v, are sunspots (do not appear in the model, fst

) their probability distribution
functions depend on the equilibrium, φ.

Theorem 1. We assume that there exists a continuous function φ0 : {1, · · · , N}∞ → F such
that

1. φ0 is a particular s.r.e.e. of the non-linear exogenous regime switching model without
shocks (γ = 0): N (φ0, 0) = 0

2. There exists a unique s.r.e.e of the linear exogenous rational expectations model

Et[A(st+1)xt+1] +B(st)xt + C(st)xt−1 = 0 (7)

where A(st), B(st) and C(st) depend on φ0 and correspond to the linearization of model
(5) in (φ0, 0).

Then there exists γ0 small enough such that, for any γ smaller than γ0, there exists a unique
s.r.e.e. of model (5) around φ0. Furthermore, the first Taylor expansion of the solution, φ(γ)
in γ is given by:

∀ut ∈ U, φ(γ)(ut) = φ0(st) + γDφN (φ0, 0)−1DγN (Φ0, 0) + o(γ)

Proof. This theorem is a direct application of IFT in Banach Space. See appendix B.1 for
more details.

Basically, this result shows that the weakly endogenous regime switching model has the
same properties than the exogenous one, and that the solutions are close. It derives very gen-
eral conditions of determinacy from properties of the model with exogenous regime switching.

In the context of no regime switching and exogenous shocks, this theorem is similar to
Woodford (1986), Theorem 2. The first hypothesis can usually be checked by hand and the
second hypothesis coincides with Blanchard and Kahn conditions of the underlying linearized
model. However, contrary to Woodford (1986), this theorem only gives sufficient conditions of
determinacy but is mute on the reciprocal. In addition, the solution, φ(γ), is not necessarily
recursive contrary to Jin and Judd (2002).

In most cases, these conditions are hardly verifiable. We thus derive two theorems from
Theorem 1 for which conditions 1. and 2. can be verified by algebraic computations. Firstly,
we show that in the absence of regime switching this theorem extends Theorem 2 by Woodford
(1986) [Theorem 2]. Secondly, we prove that this Theorem allows for solving non-linear
forward looking regime switching models [Theorem 3].
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3.2 Case I: state-dependent probability distribution in the absence
of regime switching

We first consider the model (5) in the absence of regime switching:

Et[f(zt+1, zt, zt−1, γvt)] = 0 (8)

where vt follows a continuous law, h(v, φ, vt−1), µγ = h. We assume that h is Lebesgue-
continuous and C1 according to its second component.

Let us assume that there exists a steady state of the model 8 when γ = 0. We denote it
by z̄ and will call it the deterministic steady state. Thus, z̄ satisfies f(z̄, z̄, z̄, 0) = 0.

Theorem 2. If the Blanchard and Kahn conditions for the linearized model in z̄ are satisfied,
then, there exists γ0 > 0 such that for γ smaller than γ0, the model (8) has a unique s.r.e.e.
Furthermore, the first order expansion of this solution coincides exactly with the solution of
the linearized model.

Proof. The proof is quite similar to Woodford(1986,Theorem 2). It consists of an application
of Theorem 1 to continuous shocks around a deterministic steady state: φ0 = z̄. See appendix
B.3 for the detailed proof.

This theorem generalizes Woodford(1986,Theorem 2) to the case of shocks with state-
dependent probability distributions. In this context, what we call the Blanchard and Kahn
conditions is the fact that the number of explosive eigenvalues of the linearized model is
exactly equal to the number of endogenous variables (plus a rank condition). Amazingly,
neither the underlying linearized model nor the first order Taylor expansion of the solution
changes compared to the exogenous case.

3.3 Case II: endogenous regime switching in a forward-looking en-
vironment

Let turn to the regime switching model. We consider the following purely forward-looking
model.

Et[fst
(zt+1, zt, γvt)] = 0. (9)

We assume that the transition probability from regime i to regime j only depends on the
past value of endogenous variables, φ(ut−1). Thus, we assume that there exists a function
pij mapping F×]−M,M [ to [0, 1] such that:

∀ut ∈ U∞, pjγ(φ, (ist−1, vt)) = pij(φ(ut), γ)

Furthermore, we assume that the probabilities pij are smooth (C1) and constant for γ = 0
(pij(., 0) = p̄ij). We can check that the implied measure, µγ fits all the needed properties
described in Section 2.

As in the absence of regime switching, we assume that there exists a solution, φ0 of the
model when there is no shock. In addition, we suppose that this solution only depends on the
current regime, i.e., φ0(ist−1) = z̄i where (z̄1, · · · , z̄N ) is solution of the following equations,
for any i ∈ {1, · · · , N}:

N∑
j=1

p̄ijfi(z̄j , z̄i, 0) = 0

The existence of such equilibrium is ”reasonable” as (z̄1, · · · , z̄N ) is solution of a N × n
system.
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We define for (i, j) ∈ {1, · · · , N}2:

βi =
N∑
j=1

p̄ij∂2fi(z̄j , z̄i, 0) and Aij = p̄ij∂1fi(z̄j , z̄i, 0)

For convenience we assume that βi is invertible for any i ∈ {1, · · · , N} 4. We then can
define the useful operator series Ap:

Ap : φ 7→

(st, vt) 7→
∑

s2,··· ,sp

(−Asts1)β−1
s1 · · · (−Asp−1sp)β−1

sp
Fst · · ·Fs2Fspφ

 (10)

Where by convention, A0 = 1 and Fi denotes the expectation operator conditional to regime
i 5

Theorem 3. If the series of operators
∑
p
Ap is convergent, then there exists γ0 small enough

such that for any γ smaller than γ0, the model (9) admits a unique s.r.e.e., φ(γ).

Proof. See appendix B.4 for the proof.

This result leads to two remarks. First, we can extend this result to solve models with
”small” backward-looking component by introducing another scale parameter factoring in
the backward-looking component. We however are not able to find explicit determinacy
conditions for endogenous regime switching model with any backward-looking components.
Yet, the convergence of

∑
Ap is hard to check in practice. We thus give tighter but easy-to-

check conditions ensuring the convergence of the series
∑
Ap.

We fix an operator norm, |||.|||, onMn(R). We introduce the matrix Sp defined for p > 1
by:

Sp =

 ∑
(k1,··· ,kp−1)∈{1,··· ,N}p−1

|||Aik1β−1
k1
· · ·Akp−1jβ

−1
j |||


ij

(11)

and, by convention,
S1 =

(
|||Aijβ−1

j |||
)
ij

Proposition 1. If there exists an integer p such that all the eigenvalues of Sp lie inside the

unit circle, then the series
∞∑
p=0
Ap is absolutely convergent.

Proof. This proof is based on the sub-multiplicative property of any operator norms. We
develop the proof in Appendix C.

This Proposition leads to multiple remarks. First of all, in the absence of regime switching
the condition that S1 has no explosive eigenvalue exactly corresponds to Blanchard and Kahn
(1980) conditions. Secondly, if the model is univariate (n = 1), then checking the eigenvalues
of S1 is enough as Sp = Sp1 . Thirdly, the determinacy condition found by Farmer et al.
(2009a) in the Fisherian model of inflation determination coincides with our condition when
p = 1 (more details are provided in Section 4).

4This condition is the counterpart of the rank condition in standard DSGE model.
5 Fi is defined by:

Fi : φ 7→ Fiφ(st, vt) =

∫
V
φ0(ist, vvt)hi(v, φ, u

t−1).

We give details on these operators in appendix B.4.
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3.4 Case III: endogenous regime switching in a forward-looking and
linear environment

When a forward-looking regime switching model is linear, one may solve it for any size of the
shocks. Therefore, there is no necessity to assume small shocks. We thus present a refinement
of Theorem 3 in case of linear model (fi is linear for any i ∈ {1, · · ·N}). More explicitly, we
consider the following model:

AstEt(xt+1) +Bstxt + σCstvt = 0 (12)

where the probabilities of transitions from regime i to regime j are pij(γ, φ(ut−1)). Further-
more, we assume that shocks, vt, follow a first order Vectorial Auto-Regressive process:

vt+1 = Λvt + µt

Where µ follows a centered standardized truncated gaussian (whose p.d.f. is h). In this
special case, we can perform a simple perturbation approach assuming weakly endogenous
probabilities around the exogenous regime switching model with shocks.

Proposition 2. If
∑
Ap is convergent, then, for γ small enough, the model (12) admits a

unique s.r.e.e., φ(γ), satisfying:

φ(γ)(st, vt) = B−1
st
Rstvt + γB−1

st
R

N∑
j

∫
V

∂1pstj(0, RstB
−1
st

(Λvt + µ))µh(µ)dµ+ o(γ) (13)

where R is a matrix given by (29) in Appendix D.

Proof. This Proposition follows from Proposition 1. Proof is given in Appendix D.

The determinacy condition is exactly the same as Proposition 1. Equation (13) gives the
first order Taylor expansion of the unique s.r.e.e. of the model (12). The first term, B−1

st
Rvt,

is the exact solution of the exogenous regime switching model. The second term corresponds
to the first order wedge introduced by the state-dependence of transition probabilities. It
naturally depends on the sensitivity of the probabilities according to the endogenous variables.
The integral can be either computed by hands in simple example or numerically approximated
when the probabilities are too complex (e.g. not polynomial). We use this result in the
application described in Section 4.

4 A Fisherian model of inflation determination

Following Taylor (1993), economists often simplify the monetary policy behavior through an
invariant contingent rule. The monetary policy interest rate is then modeled as a weighted
sum of the deviation between inflation and the central bank’s inflation target, of an output-
gap and of a residual - the so-called monetary policy shock. This gross description succeeds
in explaining and analyzing monetary policy decisions. In this framework, some authors
(Woodford, 2003, among others) prove that the existence and uniqueness of a stable equi-
librium deeply depends on the ability of the central bank to react to inflation pressures.
Precisely, in a wide range of New Keynesian models, the existence of a determinate rational
expectations equilibrium is characterized by the Taylor principle, i.e. the ability of a central
bank to adjust its interest rate more than one-for-one with inflation.

Taylor (1999), Clarida et al. (2000) and Lubik and Schorfheide (2004) attribute the change
from a highly volatile regime in the 70s’ to a low volatile regime in the mid 80s’, the so-called
Great Moderation, to a switch from a passive (less than one-for one reaction to inflation)
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to an active (more than one-for one reaction to inflation) monetary policy regime. Thus it
seems crucial to be able to model such a shift in monetary policy regime and to understand
the implications in terms of determinacy.

Davig and Leeper (2007) provide necessary and sufficient conditions for determinacy in a
Fisherian model of inflation determination as well as in a simple linearized New-Keynesian
model both with Markov-Switching Taylor rule’s parameters. They establish the counterpart
of the Taylor principle in a Markov-Switching framework, they call it the long run Taylor
principle -a combination between the transition probabilities and the central bank’s reaction
to inflation parameters has to be greater than one.

Farmer et al. (2010a) have casted doubts on Davig and Leeper’s findings by providing a
counter-example - a set of policy parameters satisfying the determinacy conditions proposed
by Davig and Leeper but compatible with multiple bounded equilibria. In a companion paper,
Farmer et al. (2009a) proves that determinacy conditions for the Fisherian model consist of
a slightly modified version of the Davig and Leeper’s long run Taylor principle.

Proposition 2 gives determinacy conditions as well as the first order Taylor expansion of
the solution of the endogenous regime switching. As an illustration of endogenous regime
switching, we analyze macroeconomic implications of having a ”hawkish” central bank more
concerned by limiting inflation than preventing deflation.

4.1 The model

Consider a nominal bond that costs 1 at date t and pays off 1 + it at date t+ 1. Then, the
asset pricing equation for this bond can be written in log form as:

it = Et(πt+1) + rt (14)

where rt is the ex-ante equilibrium interest rate and evolves as

rt = ρrt−1 + vt

where ρ < 1 and vt is a zero-mean i.i.d bounded process. Monetary policy follows a simplified
Taylor rule, adjusting the nominal interest rate in response to inflation, where the reaction
to inflation evolves stochastically across regimes,

it = α(st)πt (15)

where st is the realized monetary policy regime and takes two values 1, 2. We assume
that:

α(s1) = α1, α(s2) = α2

We use the formalism introduced in section 3.4 and assume that the switching process follows
a Markov chain with transition probabilities pij = p(st = j|st−1 = i) depending on past
inflation, πt−1. To simplify the resolution and the exposition, we focus on probabilities
satisfying:

pij(πt−1) = p̄ij + γ(λ1
ijπt−1 + λ2

ijπ
2
t−1) (16)

Where λ1
ij and λ2

ij are two parameters reflecting the sensitivity of the probability, pij , to
inflation and γ is the scale parameter. For consistency,

∑
i p̄ij = 1 and

∑
i λ

1
ij =

∑
i λ

2
ij = 0.

Furthermore, we assume that γ is small enough to guarantee that the probabilities remain
between 0 and 1 (this obviously requires that p̄ij ∈ ] 0, 1 [ ).

As mentioned by Filardo (1994), endogenous regime switching as exemplified by equation
(16) allows for state-dependent duration of each regime. In our example, if λ1

11 is positive
and λ2

11 is zero then the average duration of regime 1 increases with the level of inflation.

11



4.2 The solution

We apply Propositions 1 and 2 to find determinacy conditions of the Fisherian model and a
first order Taylor expansion of the solution.

Proposition 3. If the policy parameters satisfy the following ”modified” Long Run Taylor
Principle:

|α1|.|α2|+ p22(1− |α1|) + p11(1− |α2|) > 1 (17)

Then there exists a unique s.r.e.e. for γ small enough and the solution satisfies:

πt = −rtΛst

αt
+ ργ[astr

2
t + bstvar(v)] + o(γ) if λ2

ij = 0 (18)

πt = −rtΛst

αt
+ ργ[cst

r3
t + dst

var(v)rt] + o(γ) if λ1
ij = 0 (19)

Where ast , bst , cst , dst and Λst are constant only depending on the contemporaneous regime
(see Appendix E for their expressions)

Proof. This Proposition is an application of Propositions 1 and 2. See appendix E for the
complete proof.

As emphasized by Theorem 3, the determinacy condition coincides with those of the
exogenous Markov switching model. Condition (17) is similar to determinacy condition by
Farmer et al. (2009a) but more stringent than Davig and Leeper (2007). Nevertheless, the
interpretation of equation (17) is qualitatively similar to those of the long-run Taylor principle
by Davig and Leeper (2007): there may exist a unique s.r.e.e. even if policy deviates from
the Taylor principle ”substantially for brief periods or modestly for prolonged periods”.

Equation (18) (Equation (19)) gives the first order Taylor expansion of inflation with
respect to the scale parameter when the probabilities are linear (quadratic resp.). The first
term exactly coincides with the solution of the model when probabilities are constant.

When probabilities are linear, the second term of Equation (18) stems from the expecta-
tions of the volatility. When the real interest rate shock is i.i.d., the solution is exactly the
solution of the exogenous model. The higher the variance of the real interest rate shock is,
the larger the state-dependence of probabilities matters. Furthermore, the presence of r2

t is
linked to the fact that the higher the shock today, the higher the expected volatility.

In the linear case, the wedge between the solution of the exogenous regime switching
model and the solution of the endogenous one does not depend on the sign of the shock
(Equation (18)) whereas this wedge is odd in the quadratic case and hence depends on the
sign of the shock, rt.

4.3 Numerical applications

Let us consider a central bank that can switch between an active monetary policy regime,
let us say, α2 = 2 and a ”neutral” regime in which monetary authority responds one to one
to inflation, α1 = 1. Furthermore, we assume the central bank to be more likely to choose
the active regime when inflation is high (λ1

11 < 0).
Table 4.3 shows the values of the parameters. In this calibration, a quarterly inflation of

1% (−1%) in addition to the steady-state inflation corresponds to a 8% decrease (increase,
resp.) in the probability to remain in regime 1. This situation may reflect a bias for fighting
inflation rather than deflation. In this case, the first approximation of inflation is:

When st = 1, πt = −0.44% + 4.5rt − 33.3r2
t

When st = 2, πt = −0.09% + 1.4rt − 4.0r2
t

12



Parameter Calibration
p11 0.8
p22 0.8
ρ 0.9√

var(v) 2%
λ1

11 -8
λ1

22 0
λ2

11 0
λ2

22 0

Table 1: Parameters calibration

As probabilities depend on the level of inflation, a positive and a negative shock will
not lead to an identical response. To illustrate this asymmetry, we plot Impulse Response
Functions to a positive and to a negative one-standard-deviation shock in Figures 1 and 2 in
Appendix F.

The upper left graph shows the Impulse Response Function of a one-standard deviation
shock, vt, to the real interest rate, rt, at date t = 7. The bottom left graph displays the
response of inflation when the regime is fixed and endogenous (in thick lines) or fixed and
exogenous (in dashed line). The fixed exogenous regime switching case coincides with Davig
and Leeper responses, while the endogenous regime case brings new results. When the shock
is positive - Figure 1- the inflation responses are smaller than the exogenous regime inflation
responses in both regimes. This result stems from the negative contribution of the variance
to the level of inflation. Nevertheless, the quadratic terms (in r2

t ) do not significantly matter
in these observed differences. On the contrary, when the shock is negative, the responses in
the endogenous case are larger (in absolute value). Altogether, these results are consistent
with the fact that monetary authority is more likely to switch to the active monetary regime
when inflation is large and thus has a more stabilizing policy when facing inflationary shocks
rather than deflationary ones.

We finally plot (upper right) the share of the active monetary policy regime starting from
the ergodic distribution of probabilities. We first notice that the ergodic distribution is not
equally distributed among regimes as the variance term matters in the level of inflation even
in the absence of shock. Second, as probabilities are state-dependent, the share of regime 2 is
time-varying after a shock to the economy. Consequently, the average responses of inflation
to a shock on the real interest rate is not the mean of the two fixed-regime responses. This
can be seen in bottom right of figures 1 and 2 which display the average responses in the
endogenous and the exogenous regime switching cases. Thus, endogenous fluctuations of
probabilities generate significant effects in addition to the asymmetrical reaction mentioned
before.
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APPENDIX

A Measures µγ

We study stochastic process, u = [s, v] with the following conditional probability distribution:

µγ(s, v, φ, ut−1) =
N∑
i=1

hi(v, φ, ut−1)piγ(φ, ut−1)δi(s)

Where we assume that:

• piγ is C1 according to its first argument and γ 7→ piγ is C1.

• For any φ ∈ B and ut−1 ∈ U∞, hi(·, φ, ut−1) is an integrable function on V . hi is also
C1 according to its second argument.

• For any ut ∈ U∞, φ 7→ hi(v, φ, ut−1) is C1.

The measure µγ(·, φ, ut−1) can be seen as a continuous linear form on B and we write abu-
sively

∫
U
µγ(u, φ, ut−1)Ψ(u)du =< Ψ, µγ > even if this measure is not Lebesgue-continuous

in general.

Lemma 1. 1. For any Ψ ∈ B, for any γ ∈ [0, 1] and for any ut−1 ∈ U∞, φ 7→
∫
U

Ψ(u)µγ(u, φ, ut−1)du
is C1.
We abusively denote by

∫
U

Ψ(u)Dφµγ(u, φ, ut−1)(φ̂)du its differential at φ applied to φ̂.

2. It exists C > 0, such that for any Ψ in B for any γ ∈ [0, 1], for any ut−1 ∈ U∞, for
any φ and φ̂ of norm equal to 1,

|
∫
U

Ψ(u)Dφµγ(u, φ, ut−1)(φ̂)du| ≤ C‖Ψ‖∞

3. For any Ψ ∈ B, for any φ and for any ut−1 ∈ U∞, γ 7→
∫
U

Ψ(u)µγ(u, φ, ut−1)du is
C1([0, 1]).

Proof. We first check that µγ satisfies 1. Fix Ψ ∈ B, γ ∈ [0, 1] and ut−1 ∈ U∞, we compute:

< Ψ, µγ(u, φ, ut−1) >= γ

N∑
i=1

piγ(φ, ut−1)
∫
V

hi(v, φ, ut−1)Ψ([i v])dv

φ 7→< Ψ, µγ(u, φ, ut−1) > is derivable; indeed, this function is the sum of the product of
derivable function and an integral which is C1 by dominated convergence theorem.
Then, we check that 2. is satisfied.

< Ψ, Dφµγ(u, φ, ut−1)(φ̂) >= γ

N∑
i=1

Dφp
i
γ(φ, ut−1)(φ̂)

∫
V

Dφh
i(v, φ, ut−1)(φ̂)Ψ([i v])dv

and

| < Ψ, Dφµγ(u, φ, ut−1)(φ̂) > | ≤ (
N∑
i=1

N∑
i=1

sup |||Dφp
i
γ(., .)||| sup ‖||Dφhγ(., ., .)|||)‖Ψ‖∞

Finally, we verify 3.

< Ψ, µγ(u, φ, ut−1) >= γ

N∑
i=1

piγ(φ, ut−1)
∫
V

hi(v, φ, ut−1)Ψ([i v])dv

As we suppose that for any i ∈ [1, N ], γ 7→ piγ is C1 then γ 7→< Ψ, µγ(u, φ, ut−1) > is
also C1.
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These properties imply that the model as a whole is smooth enough to apply Implicit
Function Theorem. Obviously, when measures are state-invariant, these two properties are
immediate for any measures. We notice that point 2. can be interpreted as the fact that
Dφµγ(u, φ, ut−1)(φ̂) is a distribution of order 0 uniformly bounded. Point 3. guarantees that
the measures µγ are a C1 path between µ0 and µ1 and hence we can apply perturbation
method around γ = 0.

B Proof of Theorems 1,2 and 3

B.1 Proof of Theorem 1

In this part, we prove Theorem 1. The proof is a consequence of implicit function theorem
applied to operator N . First, we recall the Implicit Function Theorem(IFT).

Theorem 4. [Abraham et al. (1988)] Let E,F,G be 3 Banach spaces, let U ⊂ E, V ⊂ F
be open and f : U × V → G be Cr, r ≥ 1. For some x0 ∈ U , y0 ∈ V assume Dyf(x0, y0) :
F → G is an isomorphism. Then there are neighborhoods U0 of x0 and W0 of f(x0, y0) and
a unique Cr map g : U0 ×W0 → V such that, for all (x,w) ∈ U0 ×W0

f(x, g(x,w)) = w

We denote by S the set of functions Φ : {1, · · ·N}∞ × V∞ 7→ Rn such that:

• For all s ∈ {1, · · ·N}∞, Φ(s, ·) is continuous on V∞.

• Φ is bounded on {1, · · ·N}∞ × V∞

Thus, we check that:

1. B with the norm ‖‖∞, and R with || are Banach spaces.

2. N is C1 on B×]−M,M [.

3. Φ0 satisfies N (Φ0, 0) = 0.

4. DΦN (Φ0, 0) is invertible.

The first point is immediate, B with the norm ‖‖∞ is a Banach space as a product of Banach
spaces. Point 2. results from the following lemma.

Lemma 2. (Φ, γ) 7→ N (Φ, γ) is C1 for Φ ∈ B and γ ∈]−M,M [

Proof. For any Φ ∈ B, the function γ 7→ N (Φ, γ) is C1 by regularity of piγ and f . For
the differentiability in Φ, we check that Φ 7→ N (Φ, γ) is differentiable, with continuous
differential:

N (Φ, γ) =
N∑
i=1

piγ(Φ, ut−1)
∫
V

f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)hi(v,Φ)dv

Φ 7→
∫
V
f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)hi(v,Φ)dv is differentiable by regularity

of f , hi, and Lebesgue’s dominated convergence Theorem. It results from the differentiability
of Φ 7→ piγ(Φ, ut−1) that Φ 7→ N (Φ, γ) is differentiable and moreover:

DΦN (Φ, γ)H =
N∑
i=1

∂1p
i
γ(Φ, ut−1)H(st−1, vt−1)

∫
V

f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)hi(v,Φ)dv
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+
N∑
i=1

piγ(Φ, ut−1)
∫
V

∂1f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)H(ist, vvt)hi(v,Φ)dv

+
N∑
i=1

piγ(Φ, ut−1)
∫
V

∂2f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)H(st, vt)hi(v,Φ)dv

+
N∑
i=1

piγ(Φ, ut−1)
∫
V

∂3f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)H(st−1, vt−1)hi(v,Φ)dv

+
N∑
i=1

piγ(Φ, ut−1)
∫
V

f(Φ(ist, vvt),Φ(st, vt),Φ(st−1, vt−1), st, γvt)H(st−1, vt−1)∂2hi(v,Φ)H(st−1, vt−1)dv

Thus, (Φ, γ) 7→ DΦN (Φ, γ)H is continuous on B×]−M,M [.

Points 3. and 4. result from assumptions of Theorem 1. We end the section with the
following result, showing that the regularity of µγ implies that the differential of the operator
behaves as the differential of an operator where the probabilities are exogenous.

Lemma 3. Under assumptions of Theorem 1, the differential DφN (φ0, 0) satisfies:

DφN (φ0, 0)H =< ∂1f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(·St, ·vt), µ0(·, φ0, u
t−1) > +

< ∂2f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st, vt), µ0(·, φ0, u
t−1) > +

< ∂3f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st−1, vt−1), µ0(·, φ0, u
t−1) >

Proof. We compute:

DφN (φ0, 0)H =< ∂1f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(·St, ·vt), µ0(·, φ0, u
t−1) > +

< ∂2f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st, vt), µ0(·, φ0, u
t−1) > +

< ∂3f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0)H(st−1, vt−1), µ0(·, φ0, u
t−1) >

+ < f(φ0(·st, ·vt), φ0(st, vt), φ0(st−1, vt−1), 0), Dφµ0(u, φ0, u
t−1)H(st−1, vt−1) >

Since φ0 does not depend on v, the last term is zero.

B.2 Notations

We introduce some notations, useful for the following. Fix a function φ0 ∈ B, we define the
operators Fi, for i ∈ {1, · · ·N} and L on B.

Fi : H 7→ ((st, vt) 7→
∫
V

H(ist, vvt)hi(v, φ0, s
t, vt)dv)

L : H 7→ ((st, vt) 7→ H(st−1, vt−1)

Equation (3) imply that Fi and L have the following straightforward properties.

1. FiL = 1

2. ‖|Fi‖| = 1 and ‖|L‖| = 1

Point 1. and point 2. are classical results in theory of operators on sequences. The first
result is obtained by straightforward computation. The second follows from the fact that:

∀H ∈ B, ‖LH‖ = ‖H‖, ‖FiH‖ ≤ ‖H‖

and the last inequality is an equality if H is constant.
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B.3 Proof of Theorem 2

This part is devoted to the proof of Theorem 2. We show that N satisfies points 1. and 2.
of Theorem 1. Here, there is no discrete part, thus we omit the dependence in st and the
indexation in i. The function φ0 is the constant φ0(vt) = z̄. By construction, Φ0 satisfies:

N (φ0, 0) = f(z̄, z̄, z̄, 0) = 0

We introduce the operator F associated to φ0. Due to Lemma 2, N is differentiable and
according to Lemma 3, we compute:

DΦN (Φ0, 0)h = ∂1f(z̄, z̄, z̄, 0)Fh+ ∂2f(z̄, z̄, z̄, 0)h+ ∂3f(z̄, z̄, z̄, 0)Lh

Thus, following Woodford (1986) and Klein (2000), we will show that this operator is
invertible when BK conditions are satisfied. Assume that

∂1f(z̄, z̄, z̄, 0)Fh+ ∂2f(z̄, z̄, z̄, 0)h+ ∂3f(z̄, z̄, z̄, 0)Lh = Ψ (20)

Then, (
g2 g1

In 0

)
︸ ︷︷ ︸

A

(
H
FH

)
=
(
−g3 0

0 In

)
︸ ︷︷ ︸

B

L

(
H
FH

)
+
(

1
0

)
Ψ

Fix (st, vt) ∈ {1, · · · , N}∞ × V∞, defining zt = H(st, vt) and zt+1 = FH(st, vt), and
gt = Ψ(st, vt), we have to find bounded processes zt such that:(

g2 g1

In 0

)
︸ ︷︷ ︸

A

(
zt
zt+1

)
=
(
−g3 0

0 In

)
︸ ︷︷ ︸

B

(
zt−1

zt

)
+
(

1
0

)
gt (21)

We see that as in Woodford (1986), the problem of invertibility leads to a question of existence
and uniqueness of stationary solutions for linear models6. To deal with models where g1 is
not invertible, we generalize the approach of Woodford (1986) and follow Klein (2000), this
leads to the following result.

Lemma 4. Assume that Blanchard and Kahn conditions are satisfied for the linearized model
(21), then DΦN (Φ0, 0) is invertible and

DΦN (Φ0, 0)−1 = (1 + Z−1
22 Z21L)−1Z−1

22 (1− S−1
22 T22P )−1S−1

22 Q
′
12

Proof. We use real generalized Schur decomposition on the pencil (A,B). There exist unitary
matrices Q and Z, quasi triangular matrices T and S such that:

A = QTZ and B = QSZ

Furthermore, we rank the generalized eigenvalues such that |Tii| > |Sii| for i ∈ [1, n]
and |Sii| > |Tii| for i ∈ [n + 1, 2n] which is possible if and only if the number of explosive
generalized eigenvalues is n (Blanchard and Kahn (1980), Klein (2000).

Considering,(
T11 T12

0 T22

)(
Z11 Z12

Z21 Z22

)(
zt
zt+1

)
=
(
S11 S12

0 S22

)(
Z11 Z12

Z21 Z22

)(
zt−1

zt

)
+
(
Q′11 Q′21

Q′12 Q′22

)(
1
0

)
gt

(22)
By using the last n rows and excluding divergent trajectories for Ẑt, we find:

6Woodford (1986, 2003) checks that the inverse of the derivative is continuous, but this is unnecessary due
to the Banach isomorphism theorem
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Z22zt = −Z21zt−1 +
∞∑
k=0

(S−1
22 T22)kS−1

22

(
Q′11

Q′12

)
Et(gt+k).

If, in addition, a rank condition is verified (i.e. Z22 is of full rank), then Z22 is invertible
and the solution is :

zt = −Z−1
22 Z21zt−1 + Z−1

22

∞∑
k=0

(S−1
22 T22)kS−1

22 Q
′
12Et(gt+k). (23)

Using (23), we have that:

h(ut) = −Z−1
22 Z21(Lh)(ut) + Z−1

22

∞∑
k=0

(S−1
22 T22)kS−1

22 Q
′
12P

kΨ(ut)

Thus,
h = (1 + Z−1

22 Z21L)−1Z−1
22 (1− S−1

22 T22P )−1S−1
22 Q

′
12Ψ

This ends the proof of the Lemma.

Theorem 1 implies that there exists a small enough γ0 and a unique bounded Φ such that:

∀|γ| < γ0, N (Φ(γ), γ) = 0 Φ(0) = Φ0

It proves that, for |γ| < γ0, there exists a unique (Φ, π) satisfying model (8), Φ is given by
Implicit Function Theorem and π is defined by:

π(ut) = p̃(ut,Φ(ut−1))

B.4 Proof of Theorem 3

In this section, we prove Theorem 3. We compute:

N (φ, 0)(st, vt) =
N∑
j=1

p̄stj

∫
V

fst
(φ(jst, vvt), φ(st, vt), 0)hst

(v, φ, ut)dv

We define the function φ0 such that:

∀i ∈ {1, · · ·N}, φ0(st, vt) = z̄st

According to assumption 3., the function φ0 satisfies :

N (φ0, 0) = 0

We compute now DφN (φ0, 0), using Lemma 3, we have:

DφN (φ0, 0)h(st) =
N∑
j=1

p̄stj∂1fst(z̄j , z̄st , 0)Fjh

+(
N∑
j=1

p̄stj∂2fst(z̄j , z̄st , 0))h

Introducing Aij and βi, we get that:

DφN (φ0, 0)h =
N∑
j=1

AstjFj + βst
Fst
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Let Ψ a function in B(U∞) and consider the equation DφN (φ0, 0)h = Ψ. Then, for all
i ∈ {1, · · ·N},

DφN (φ0, 0)h =
N∑
j=1

AstjFjh+ βst
Fst

h = Ψ

This relation implies that for any P ≥ 2

h = β−1
st

Ψ− β−1
st

P∑
p=2

(−1)p
∑

{s2,··· ,sp}∈{1,··· ,N}p−1

Asts2β
−1
s2 · · ·Asp−1sp

β−1
sp
Fsp

Fsp−1 · · ·Fs2Ψ

+ (−1)Pβ−1
st

∑
{s2,··· ,sP+1}∈{1,··· ,N}P

Asts2β
−1
s2 · · ·Asp−1spβ

−1
sp
FsP+1FsP

LsP−1 · · ·Fs2h (24)

We then define the operator series of general term, Ap:

Ap : φ 7→

(st, vt) 7→
∑

s2,··· ,sp

(−Asts1)β−1
s1 · · · (−Asp−1sp

)β−1
sp
Fsp
· · ·Fs2Fst

φ


If
∑
Ap converges, then, the third member of equation (24) tends to 0 when p tends to∞

and the second member converges in B(U∞). Thus, h is uniquely defined for any ψ ∈ B(U∞)
by:

h(st, vt) = β−1
st
Fst

Ψ− β−1
st

∞∑
p=2

ApΨ = β−1
st

∑
p=1

ApΨ (25)

This results proves that for any Ψ ∈ B(U∞), we have found a unique solution h such that:

DΦN (Φ0, 0)h = Ψ

Thus, DΦN (Φ0, 0) is invertible and that

DΦN (Φ0, 0)−1Ψ = β−1
st

∑
p=1

ApΨ (26)

C Proof of Proposition 1

In this part, we consider the matrix Sp defined by

Sp =

 ∑
(k1,··· ,kp−1)∈{1,··· ,N}p−1

|||Aik1β−1
k1
· · ·Akp−1jβ

−1
j |||


ij

Fix p such that the eigenvalues of Sp lie inside the unit circle ; we will show that
∑
Ap is

absolutely convergent. For any (q, r) ∈ N × {0, · · · , p − 1}, we use sub-multiplicativity of
norm ||| · ||| and compute, for n = pq + r :∑

{s2,··· ,sn}∈{1,··· ,N}n−1

‖|Aik1β−1
k1
· · ·Akp−1jβ

−1
j ‖| ≤

∑
{s2,··· ,spq}∈{1,··· ,N}pq−1

|||Ais2β−1
s2 · · ·Asp−1spβ

−1
sp
||| · · · |||Asp(q−1)sp(q−1)+1β

−1
sp(q−1)

· · ·Aspq−1spqβ
−1
spq
|||×
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∑
{s2,··· ,sr}∈{1,··· ,N}r−1

|||Aspqs2β
−1
s2 · · ·Asr−1srβ

−1
sr
|||

We find an upper bound for both terms of the previous inequality. Concerning the second
term, there exists C > 0,such that for any r ∈ {0, · · · , p− 1},

sup
i∈{1,··· ,N}

∑
{s2,··· ,sr}∈{1,··· ,N}r−1

|||Asis2β
−1
s2 ·Asr−1sr

β−1
sr
||| < C (27)

We rewrite the first term as:∑
{s2,··· ,spq}∈{1,··· ,N}pq−1

|||Ais2β−1
s2 · · ·Asp−1sp

β−1
sp
||| · · · |||Asp(q−1)sp(q−1)+1β

−1
sp(q−1)

· · ·Aspq−1spq
β−1
spq
|||

=
∑

spq∈{1,··· ,N}

(Sqp)ispq (28)

Combining (27) and (C) leads to

|||An||| < sup
i

N∑
j=1

(Sqp)ij

7 Then, denoting by [x] the ? part of a real number x, we obtain :

|||An||| ≤ C|||(Sp)[
n
p ]|||∞

Since all the eigenvalues of Sp lie inside the unit circle, due to the Gelfand’s Theorem, for
any matrix norm,

lim
q→∞

|||Sqp |||1/q = ρ < 1

This implies that lim
n→+∞

|||S[ n
p ]
p |||1/n = p

√
ρ < 1. Finally, using the Cauchy rule, the series∑

|||(Sp)[
n
p ]|||∞ is convergent and thus

∑
An is absolutely convergent.

D Proof of Proposition 2

In this section, we prove Proposition 2. The proof relies on a refinement of the method used in
Theorem 3. We first compute the solution when γ = 0. Since the model is completely linear,
the solution is defined for any γ. Then we solve the model for a small γ by perturbation
around the model with exogenous probabilities.

We consider the following model:

Ast
Et(xt+1) +Bst

xt + σCst
vt = 0

We assume that for any i ∈ {1, · · · , N}, the matrices Bi are invertible. In this case, the
operators Ap defined in equation (10) satisfy, for p > 0:

Ap : Φ 7→ ((st, vt) 7→
∑

s2,··· ,sp

(−p̄sts2Ast
)B−1

st
· · · (−p̄sp−1sp

Asp
)B−1

sp
Fst
· · ·Fs2Fsp

Φ)

7We recall that for a matrix M ∈MN (R), |||M |||∞ = sup
i∈{1,··· ,n}

N∑
j=1
|Mij |
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Defining Φ0(st, vt) = σCstvt and using the computations in section B.4, we get that the
solution of the model is given by :

Φ(st, vt) =
∞∑
p=1

ApΦ0

First, we compute

ApΦ0 = σ
∑

s2,··· ,sp

(−p̄sts2Ast
)B−1

st
· · · (−p̄sp−1sp

Asp
)B−1

sp
Csp

Λpvt

Defining the matrix P ∈MnN (R) by blocks as:

Pij = pijAj(Bj)−1

ApΦ0 = (P p)st
× C × Λp

where C =

 C1

...
CN

. This leads to:

∞∑
p=1

ApΦ0 = σ(P p)st
× C × Λp

This leads to the following result: Defining R =

 R1

...
RN

 such that RΦ0(st, vt) = Rst
vt,

then R satisfies:

Vect(R) = (I − (Λ⊗ P ))−1Vect

 C1

...
CN

 (29)

Consequently, the solution of this linear model when γ = 0 satisfies:

φ(σ, 0)(st, vt) = σB−1
st
Rst

vt

We apply Theorem 1 and compute

DφN (φ(σ, 0), σ, 0)h(st, vt) = B−1
st

(Rh)(st, vt)

and:

DφN (φ(σ, 0), σ, 0) = σ

N∑
j=1

∂1pstj(0, σB
−1
st
Rstv)AjB−1

j Rjvhst(v, v
t)dv

This implies that:

φ(σ, γ)(st, vt) = σB−1
st
Rst

vt + σR

N∑
j=1

∫
V

∂1pstj(0, σB
−1
st
Rst

(Λvt + µ))AjB−1
j Rj(Λvt + µ)dµ
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E Proof of Proposition 3

E.1 Existence and uniqueness of a s.r.e.e.

This results from Proposition 1.

S1 =

[
p11
|α1|

p12
|α2|

p21
|α1|

p22
|α2|

]
Here, Sp = Sp1 and we only need to check that all eigenvalues of S1 are smaller than 1.

This condition exactly coincides with Farmer et al. (2009a) determinacy condition.
Furthermore, the eigenvalues of S1 are smaller than one if and only if:

|α1|.|α2|+ p22(1− |α1|) + p11(1− |α2|) > 1.

E.2 The solution when probabilities are exogenous

We compute the solution of the model

Etπt+1 + rt = αtπt

rt = ρrt−1 + vt

We have:

πt = −
∞∑
k=0

Et
rt+k∏k
j=0 αt+j

By independency,

πt = −
∞∑
k=0

Et(rt+k)Et
1∏k

j=0 αt+j

πt = −rt
∞∑
k=0

ρkEt
1∏k

j=0 αt+j

This implies that:

πt = − rt
αt

∞∑
k=0

ρkEt
1∏k

j=1 αt+j

where
∏0
j=1 αt+j = 1 by convention.

Defining Λt =
∑∞
k=0 ρ

kEt
1∏k

j=1 αt+j
, we have:

πt = −Λtrt
αt

It remains to compute Λt. First, we compute:

Et
1∏k

j=1 αt+j
=

∑
(i1,··· ,ik)∈{1,2}k

psti1

αi1

pi1i2
αi2
· · ·

pik−1ik

αik

We define P =
[

p11 1− p11

1− p22 p22

]
, and A =

[
α1 0
0 α2

]
. This could be rewritten as:

Et
1∏k

j=1 αt+j
= (P̃ k)st

×
[

1
1

]
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where P̃ = P ∗A−1 and (P̃ k)st stands for the st line of the matrix P̃ k. This leads to:[
Λ1

Λ2

]
=
∞∑
k=0

ρkP̃ k
[

1
1

]

Thus, since ‖ρP̃‖ < 1, [
Λ1

Λ2

]
= (I − ρP̃ )−1

[
1
1

]
In particular, if ρ = 0, Λ1 = Λ2 = 1.

E.3 Computation of DγN (Φ0, 0)

The expression of N (Φ, γ) leads to:

DγN (Φ0, 0) = ρ
Λst

αst

(
Λ1

α1
− Λ2

α2
)[λ1

st1 +
Λst

αst

λ2
st1rt]r

2
t

We thus define βi = Λi

αi
(Λ1
α1
− Λ2

α2
)λ1
i1 and γi = Λ2

i

α2
i
(Λ1
α1
− Λ2

α2
)λ2
i1, to rewrite the differential as

follows:
DγN (Φ0, 0) = ρ(βstr

2
t + γstr

3
t )

E.4 Computation of DΦN (Φ0, 0)−1DγN (Φ0, 0)

Computing :

DΦN (Φ0, 0)−1DγN (Φ0, 0) = −rtΛst

αst

+ γρ

∞∑
k=0

Et
βt+k∏k
j=0 αt+j

r2
t+k + γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

r3
t+k

As rt is independent from the switching process,

DΦN (Φ0, 0)−1DγN (Φ0, 0) = −rtΛst

αst

+γρ
∞∑
k=0

Et
βt+k∏k
j=0 αt+j

Etr
2
t+k+γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr
3
t+k

Let first remark that:

Et
βt+k∏k
j=0 αt+j

=
1
αst

P̃ kst

[
β1

β2

]
and

Et
γt+k∏k
j=0 αt+j

=
1
αst

P̃ kst

[
γ1

γ2

]
Now we compute first and second raw moments of rt:

Etr
3
t+k = 3var(v)Etrt+k−1 + ρ3Etr

3
t+k−1

Etr
3
t+k = 3var(v)rt

k∑
i=1

(ρ3)i−1ρk+1−i + (ρ3)kr3
t

Etr
3
t+k = 3ρk

1− (ρ2)k

1− ρ2
var(v)rt + (ρ3)kr3

t

Etr
3
t+k = 3

ρk

1− ρ2
var(v)rt + (ρ3)k[r3

t −
var(v)rt
1− ρ2

]
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Thus,

γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr
3
t+k = γ

ρ

αst

var(v)rt
1− ρ2

∞∑
k=0

ρkP̃ kst

[
γ1

γ2

]
+(r3

t−
var(v)rt
1− ρ2

)
∞∑
k=0

ρ3kP̃ kst

[
γ1

γ2

]

γρ

∞∑
k=0

Et
γt+k∏k
j=0 αt+j

Etr
3
t+k = γ

ρ

αst

var(v)rt
1− ρ2

(I−ρP̃ )−1

[
γ1

γ2

]
+(r3

t−
var(v)rt
1− ρ2

)(I−ρ3P̃ )−1

[
γ1

γ2

]
Furthermore, we can show by recursion that:

Etr
2
t+k =

var(v)
1− ρ2

+ ρ2k[r2
t −

var(v)
1− ρ2

]

Consequently,

γρ

∞∑
k=0

Et
βt+k∏k
j=0 αt+j

Etr
2
t+k = γ

ρ

αst

var(v)
1− ρ2

∞∑
k=0

P̃ kst

[
β1

β2

]
+ (r2

t −
var(v)
1− ρ2

)
∞∑
k=0

ρ2kP̃ kst

[
β1

β2

]
Thus,

γρ

∞∑
k=0

(...) = γ
ρ

αst

[
var(v)
1− ρ2

(I − P̃ )−1
st

[
β1

β2

]
(30)

+ (r2
t −

var(v)
1− ρ2

)(I − ρ2P̃ )−1
st

[
β1

β2

]]
(31)

Finally by applying Proposition 2 we find:

πt = −rtΛst

αst

+ ργ(ast
r2
t + bst

var(v)
1− ρ2

+ cst
r3
t + dst

var(v)
1− ρ2

rt) + o(γ)

Where [
a1

a2

]
= A−1(I − ρ2P̃ )−1

[
β1

β2

]
[
b1
b2

]
= A−1[(I − P̃ )−1 − (I − ρ2P̃ )−1]

[
β1

β2

]
[
c1
c2

]
= A−1(I − ρ3P̃ )−1

[
γ1

γ2

]
[
d1

d2

]
= A−1[(I − ρP̃ )−1 − (I − ρ3P̃ )−1]

[
γ1

γ2

]

F Figures
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Figure 1: Impulse Response Function to a positive real interest rate shock

Figure 2: Impulse Response Function to a negative real interest rate shock
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