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Abstract

This paper develops methods of inference for nonparametric and semiparametric pa-

rameters defined by conditional moment inequalities and/or equalities. The parameters

need not be identified. Confidence sets and tests are introduced. The correct uniform

asymptotic size of these procedures is established. The false coverage probabilities and

power of the CS’s and tests are established for fixed alternatives and some local al-

ternatives. Finite-sample simulation results are given for a nonparametric conditional

quantile model with censoring and a nonparametric conditional treatment effect model.

The recommended CS/test uses a Cramér-von-Mises-type test statistic and employs a

generalized moment selection critical value.

Keywords: Asymptotic size, kernel, local power, moment inequalities, nonparametric
inference, partial identification.
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1 Introduction

This paper considers inference for nonparametric and semiparametric parameters

defined by conditional moment inequalities and/or equalities. The moments are con-

ditional on Xi a.s. and Zi = z0 for some random vectors Xi and Zi. The parameters

need not be identified. Due to the conditioning on Zi at a single point z0, the parameter

considered is a nonparametric or semiparametric parameter (which varies with z0). Due

to the conditioning on Xi a.s., the moment conditions are typical conditional moments

which involve an infinite number of restrictions.

Examples covered by the results of this paper include: a nonparametric conditional

distribution with censoring, a nonparametric conditional quantile with censoring, an

interval-outcome partially-linear regression, an interval-outcome nonparametric regres-

sion, a semiparametric discrete-choice model with multiple equilibria, a nonparametric

revealed preference model, and tests of a variety of functional inequalities, including

nonparametric average treatment effects for certain sub-populations.

As far as we are aware, the only other paper in the literature that covers the examples

described above is Chernozhukov, Lee, and Rosen (2008) (CLR). In this paper, we

employ statistics that are akin to Bierens (1982)-type model specification test statistics.

In contrast, CLR employ statistics that are akin to Härdle and Mammen (1993)-type

model specification statistics, which are based on nonparametric regression estimators.

These approaches have different strengths and weaknesses.

We provide confidence sets (CS’s) and tests concerning the true parameter. The

class of test statistics used in this paper are like those used in Andrews and Guggen-

berger (2009), which are extended in Andrews and Shi (2007a,b) (AS1, AS2) to handle

moment conditions that are conditional on Xi a.s. Here the test statistics are extended

further to cover moment conditions that are conditional on Zi = z0 as well. The lat-

ter conditioning is accomplished using kernel smoothing. The critical values considered

here are generalized moment selection (GMS) and plug-in asymptotic (PA) critical val-

ues, as in Andrews and Soares (2010), which are extended to cover conditional moment

inequalities, as in AS1 and AS2.

The results of the paper are analogous to those in AS1 and AS2. In particular, we

establish the correct uniform asymptotic size of the CS’s and tests. We also determine

the asymptotic behavior of the CS’s and tests under fixed alternatives and some local

alternatives.

1



We provide finite-sample simulation results for two models: a nonparametric condi-

tional quantile model with censoring and a nonparametric conditional treatment effect

model. The conclusions from the finite-sample results are similar in many respects to

those from Andrews and Soares (2010), Andrews and Jia (2008), AS1, and AS2. Cramér-

von-Mises (CvM) versions of the CS’s and tests out-perform Kolmogorov-Smirnov (KS)

versions in terms of false-coverage probabilities (FCP’s) and power and have similar

size properties. Likewise, GMS critical values out-perform PA critical values according

to the same criteria. The “Gaussian asymptotic" versions of the critical values perform

similarly to the bootstrap versions in terms of size, FCP’s, and power. The finite-sample

sizes of the CvM/GMS CS’s and tests are close to their nominal size. The CS’s and

tests show some sensitivity to the nonparametric smoothing parameter employed, but

not much sensitivity to other tuning parameters.

We note that the results given here also apply to nonparametric models based on

moments that are unconditional on Xi but conditional on Zi = z0. The results also cover

the case where different moment functions depend on different sub-vectors of Xi, e.g.,

as occurs in some panel models.1 In addition, the results can be extended to the case of

an infinite number of moment functions along the lines of Andrews and Shi (2010b).

The technical results in this paper differ from those in AS1 and AS2 because (i)

the conditional moment inequalities (when evaluated at the true parameter) do not

necessarily hold for values Zi that are in a neighborhood of z0, but do not equal z0, and

(ii) the sample moments do not satisfy a functional CLT with n1/2-norming due to local

smoothing, and, hence, need to be normalized using their standard deviations which are

o(1) as n→∞.
Now, we discuss the related literature. The literature on inference based on uncondi-

tional moment inequalities for parameters that are partially identified is now quite large.

For brevity, we do not give references here. See Andrews and Soares (2010) for references.

The literature on inference for partially-identified models based on conditional moment

inequalities includes AS1, AS2, CLR, Fan (2008), Kim (2008), Aradillas-López, Gandhi,

and Quint (2010), Beresteanu, Molchanov, and Molinari (2010), Ponomareva (2010),

Armstrong (2011a,b), Hsu (2011), and Lee, Song, and Whang (2011). Khan and Tamer

(2009) considers conditional moment inequalities in a point-identified model. Galichon

and Henry (2009) considers a testing problem with an infinite number of unconditional

1This holds because the functions g1(x), ..., gk(x) in (3.1) below, which multiply the moment functions
indexed by 1, ..., k, need not be the same.
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moment inequalities of a particular type. Menzel (2008) investigates tests based on a

finite number of moment inequalities in which the number of inequalities increases with

the sample size.

Of these papers, the only one that allows for conditioning on Zi = z0, which is the key

feature of the present paper, is CLR. As noted above, the forms of the tests considered

here and in CLR differ. Other differences are as follows. The assumptions given here

are primitive, whereas those in CLR are high-level. The present paper provides uniform

asymptotic size results, whereas CLR give pointwise results. The present paper provides

asymptotic results under fixed and some local alternatives, whereas CLR do not give

results under the alternative.

The remainder of the paper is organized as follows. Section 2 describes the nonpara-

metric model and discusses six examples covered by the model. Section 3 introduces the

test statistics considered in the paper. Section 4 describes the critical values considered

with the focus on GMS critical values. Section 5 establishes the uniform asymptotic cov-

erage probabilities of the CS’s. Sections 6 and 7 establish the power of the tests against

fixed and some local alternatives, respectively. Section 8 provides Monte Carlo simula-

tion results for two models. Appendix 1 provides proofs of the uniform asymptotic size

results. For brevity, Appendix 2 is given in Andrews and Shi (2010a). It provides proofs

of the results under fixed and some local alternatives and gives additional simulation

results for the two models considered in the paper.

2 Nonparametric Conditional Moment Inequalities

and Equalities

2.1 Model

The nonparametric conditional moment inequality/equality model is defined as fol-

lows. We suppose there exists a true parameter θ0 ∈ Θ ⊂ Rdθ that satisfies the moment

conditions:

EF0(mj (Wi, θ0) |Xi, Zi = z0) ≥ 0 a.s. [FX,0] for j = 1, ..., p and

EF0(mj (Wi, θ0) |Xi, Zi = z0) = 0 a.s. [FX,0] for j = p+ 1, ..., p+ v, (2.1)
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where mj(·, θ) for j = 1, ..., p + v are (known) real-valued moment functions, {Wi =

(Y ′i , X
′
i, Z

′
i)
′ : i ≤ n} are observed i.i.d. random vectors with distribution F0, FX,0 is the

marginal distribution of Xi ∈ Rdx , Zi ∈ Rdz , Yi ∈ Rdy , and Wi ∈ Rdw (= Rdy+dx+dz).

The object of interest is a CS for the true parameter θ0.We do not assume that θ0 is

point identified. However, the model restricts the true parameter value to the identified

set (which could be a singleton) that is defined as follows:

ΘF0 = {θ ∈ Θ : (2.1) holds with θ in place of θ0}. (2.2)

We are interested in CS’s that cover the true value θ0 with probability greater than

or equal to 1−α for α ∈ (0, 1). As is standard, we construct such CS’s by inverting tests

of the null hypothesis that θ is the true value for each θ ∈ Θ. Let Tn(θ) be a test statistic

and cn,1−α(θ) be a corresponding critical value for a test with nominal significance level

α. Then, a nominal level 1− α CS for the true value θ0 is

CSn = {θ ∈ Θ : Tn(θ) ≤ cn,1−α(θ)}. (2.3)

2.2 Examples

In this section, we provide several examples in which the nonparametric conditional

moment inequality/equality model arises. Note that Examples 2 and 6 below, for a

conditional quantile bound and a conditional treatment effect, respectively, are used in

a simulation study in Section 8.

Example 1 (Conditional Distribution with Censoring). The first example is a
missing data example. The observations are i.i.d. Let Y ∗i be a variable that is subject

to censoring: it is observed only for observations i with Di = 1 and not for observations

with Di = 0. Let Zi be a vector of covariates and Xi be a vector of excluded instruments

that are independent of Y ∗i conditional on Zi. Then, the conditional distribution of Y
∗
i

given Zi, denoted FY ∗|Z , satisfies: for fixed y0 ∈ R and z0 ∈ Supp(Zi),

E(1{Y ∗i ≤ y0, Di = 1}+ 1{Di = 0} − FY ∗1 |Z1(y0|z0)|Xi, Zi = z0) ≥ 0

E(FY ∗|Z(y0|z0)− 1{Y ∗i ≤ y0, Di = 1}|Xi, Zi = z0) ≥ 0. (2.4)

This model fits into the general model (2.1) with θ0 = FY ∗|Z(y0|z0), m1(Wi, θ0) = 1{Y ∗i ≤
y0, Di = 1}+ 1{Di = 0} − θ0 and m2(Wi, θ0) = θ0 − 1{Y ∗i ≤ y0, Di = 1}.
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A model similar to this one is used in Blundell, Gosling, Ichimura, and Meghir (2007)

to study the distribution of female wages. In their study, Y ∗i is the potential wage

of woman i, Di is the dummy for employment status, Zi are demographic variables,

and Xi is non-wage income. The “parametric” version of this example– where Zi is

not present– is discussed in Chernozhukov, Lee and Rosen (2008). Notice that the

parametric version can be estimated using AS1. �
Example 2 (Conditional Quantile with Censoring). In some cases, it is more
useful to bound the conditional quantiles of Y ∗i , rather than its conditional distribu-

tion. Again, suppose the observations are i.i.d. Let qY ∗|Z(τ |z0) denote the τ quantile

of Y ∗i given Zi = z0. Then under the conditional quantile independence assumption:

qY ∗|Z,X(τ |z0, x) = qY ∗|Z(τ |z0) for all x ∈ Supp(X). The quantile satisfies: for fixed

τ ∈ (0, 1) and z0 ∈ Supp(Z),

E(1{Y ∗i ≤ qY ∗|Z(τ |z0), Di = 1}+ 1{Di = 0} − τ |Xi, Zi = z0) ≥ 0

E(τ − 1{Y ∗i ≤ qY ∗|Z(τ |z0), Di = 1}|Xi, Zi = z0) ≥ 0. (2.5)

This model fits into the general model (2.1) with θ0 = qY ∗|Z(τ |z0), m1(Wi, θ0) = 1{Y ∗i ≤
θ0, Di = 1}+ 1{Di = 0} − τ and m2(Wi, θ0) = τ − 1{Y ∗i ≤ θ0, Di = 1}.
If the conditional quantile independence assumption is replaced with the quantile

monotone instrumental variable (QMIV) assumption in AS1, then Example 2 becomes

a nonparametric version of the quantile selection example considered in AS1. �
Example 3 (Interval-Outcome Partially-Linear Regression). This example is a
partially-linear interval-outcome regression model. Let Y ∗i be a latent dependent variable

and Y ∗i = X ′iβ0+ψ0(Zi)+ε, E(ε|Xi, Zi) = 0 a.s., where (Xi, Zi) are exogenous regressors

some of which may be excluded from the regression. The latent variable Y ∗i is known

to lie in the observed interval [Y l
i , Y

u
i ]. Then, the following moment inequalities hold for

fixed z0 ∈ Supp(Z1):

E(Y u
i −X ′iβ0 − ψ0(z0)|Xi, Zi = z0) ≥ 0 and

E(X ′iβ0 + ψ0(z0)− Y l
i |Xi, Zi = z0) ≥ 0 (2.6)

This model fits into the general model (2.1) with θ0 = (β0, ψ0(z0)), Wi = (Y u
i , Y

l
i , Xi, Zi),

m1(Wi, θ0) = Y u
i −X ′iβ0 − ψ0(z0), and m2(Wi, θ0) = X ′iβ0 + ψ0(z0)− Y l

i .

Example 3 is a partially-linear version of the interval-outcome regression model con-
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sidered in Manski and Tamer (2002) and widely discussed in the moment inequality

literature (e.g., see Chernozhukov, Hong and Tamer (2007), Beresteanu and Molinari

(2008), Ponomareva and Tamer (2008), and Andrews and Shi (2007b)). Allowing some

of the regressors to enter the regression function nonparametrically makes the model

less prone to misspecification.

If the linear term X ′iβ0 does not appear in the model, then the model is an interval-

outcome nonparametric regression model. The results of this paper apply to this model

as well. However, a linear term X ′iβ0 often is used in practice to reduce the curse of

dimensionality (e.g., see Tamer (2008)). �
Example 4 (Semiparametric Discrete Choice Model with Multiple Equilib-
ria). Consider an entry game with two potential entrants, j = 1, 2, and possible multiple

equilibria. For notational simplicity, we suppress the observation index i for i = 1, ..., n.

The payoff from not entering the market is normalized to zero for both players. The

payoff from entering is assumed to be πj = βj0X+ψj0(Z)− δj0D−j− εj, where D−j is a
dummy that equals one if the other player enters the market, δj0 > 0 is the competition

effect, εj is the part of the payoff that is observable to both players but unobservable

to the econometrician, and (X,Z) is a vector of firm or market characteristics. Let

F (ε1, ε2;α0) be the joint distribution function of (ε1, ε2), which is known up to the

finite-dimensional parameter α0. Let F1 and F2 denote the marginal distributions of ε1

and ε2 respectively. Let Dj be the dummy that equals one if player j enters the market.

Suppose that it is a simultaneous-move static game. Then, following Andrews, Berry

and Jia (2004) and Ciliberto and Tamer (2009), we can summarize the game by moment

inequalities/equalities:

E((1−D1)(1−D2)− P00(X, θ0)|X,Z = z0) = 0,

E(D1D2 − P11(X, θ0)|X,Z = z0) = 0,

E(D1(1−D2)− P10(X, θ0)|X,Z = z0) ≥ 0, and

E(D2(1−D1)− P01(X, θ0)|X,Z = z0) ≥ 0, (2.7)
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where θ0 = (ψ10(z0), ψ20(z0), β10, β20, α0, δ10, δ20) and

P00(X, θ) =

1− F1(β1X + ψ1(z))− F2(β2X + ψ2(z)) + F (β1X + ψ1(z0), β2X + ψ2(z0)),

P11(X, θ) = F (β1X + ψ1(z0)− δ1, β2X + ψ2(z0)− δ2),

P10(X, θ) = F1(β1X + ψ1(z0))− F (β1X + ψ1(z0), β2X + ψ2(z0)− δ2), and

P01(X, θ) = F2(β2X + ψ2(z0))− F (β1X + ψ1(z0)− δ1, β2X + ψ2(z0)). (2.8)

In Andrews, Berry and Jia (2004) and Ciliberto and Tamer (2009), ψj0 for j = 1, 2

are assumed to be linear functions of z0. The linear functional form may be restrictive

in many applications. It can be shown that the linear form is not essential for the

identification of the model (e.g., see Bajari, Hong, and Ryan (2010)). Our method

enables one to carry out inference about the parameters while allowing for nonparametric

ψj0 for j = 1, 2. �
Example 5 (Revealed Preference Model). Consider a multiple-agent discrete

choice model with J players, where each player j has a choice set Aj. Again, for nota-

tional simplicity, we suppress the i subscript. Let π(aj, a−j,W ) be the payoff of agent j

that depends on his own action aj, his opponents action a−j, and his own and opponents’

characteristics W. Let Ij be the information set of player j at the time of his decision.

Rationality of the agents implies the following basic rule of action:

sup
aj∈Aj

E(π(aj, a−j,W )|Ij) ≤ E(π(a∗j , a−j,W )|Ij) (2.9)

for j = 1, ..., J, where a∗j is the observed action taken by j. For simplicity assume that

the players move simultaneously so that the players do not respond to changes in other

players’actions. Suppose that the econometrician models the payoff by r(aj, a−j,W )

and

r(aj, a−j,W ) = E(π(aj, a−j,W )|Ij) + v1(aj) + v2(aj), (2.10)

where the error v1(aj) is unobservable to both the agents and the econometrician, while

v2(aj) is observable to the agents but not to the econometrician. Pakes (2010) proposes

several assumptions on v1 and v2 that guarantees that (2.9) implies a moment inequality
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model of the following form:

E(r(a∗j , a−j,W )− r(aj, a−j,W )|W ) ≥ 0 ∀aj ∈ Aj.

The model falls into our framework if we parametrize r as follows:

r(a∗j , a−j,W )− r(aj, a−j,W ) = G(a∗j , aj, a−j, β0, X, ψ0(Z)), (2.11)

where X and Z are subvectors of W and G is a known function. �
In this paper, we construct confidence sets by inverting tests of the null hypothesis

that θ is the true value for different θ ∈ Θ. The basis of the method is the test for

the null hypothesis that the conditional moment inequalities/equalities (evaluated at θ)

are valid. Clearly, such a test can be used directly to evaluate the validity of certain

conditional moment inequalities/equalities as described in Example 6, which follows.

Example 6 (Functional Inequalities). Tests constructed in this paper are suitable
for testing functional inequalities of the form:

H0 : uj(x, z0) ≥ 0 for z0 ∈ Z and all (x, j) ∈ X × {1, ..., p}, where
uj(x, z) = E(mj(Wi)|Xi = x, Zi = z) (2.12)

and the observations {(Wi = (Yi, Xi, Zi) : i ≤ n} are from a stationary process. When

the Zi variable is not present, the model reduces to that considered in Lee, Song and

Whang (2011).2 The current model allows one to specify the inequality hypotheses for

a subpopulation with characteristic Zi = z0. Each of Lee, Song, and Whang’s (2011)

examples extend straightforwardly to our framework. An illustration of the extension is

now given for the conditional treatment effect example.

Consider a controlled experiment, where treatment is randomly assigned to a group

of subjects. Each subject is assigned the treatment with known probability p(Xi, Zi),

where (Xi, Zi) are the observed characteristics of the subject.3 The researcher observes

the treatment status Di ∈ {1, 0} and the outcomes yi(1) if treated and yi(0) if not

treated. That is, the researcher observes Di and Yi = Diyi(1) + (1 − Di)yi(0). The

treatment effect for the ith individual is the difference between yi(1) and yi(0). The

2Note that the model is also covered by AS1 when Zi is not present.
3The function p(x, z) can be a constant. In this case, the assignment does not depend on observed

or unobserved characteristics.
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researcher is interested in testing if the average treatment effect given Xi = x is positive

for all x ∈ X for the subpopulation with characteristic Zi = z0. Then, our test for the

hypotheses in (2.12) can be applied with p = 1 and

m(Wi) =
DiYi

p(Xi, Zi)
− (1−Di)Yi

1− p(Xi, Zi)
, (2.13)

where Wi = (Yi, Di, Xi, Zi) and no parameter θ appears in the problem. �

2.3 Parameter Space

Let (θ, F ) denote generic values of the parameter and distribution. Let F denote

the parameter space for (θ0, F0). To specify F we need to introduce some notation.
Let FY |x,z denote the conditional distribution of Yi given Xi = x and Zi = z under

(θ, F ). Let FX|z denote the conditional distribution of Xi given Zi = z under (θ, F ). Let

FZ and FX denote the marginal distributions of Zi and Xi, respectively, under (θ, F ).

Let µX and µY denote some measures on R
dx and Rdy (that do not depend on (θ, F )),

with supports Y and X , respectively. Let Z0 denote some neighborhood of z0. Let µLeb
denote Lebesgue measure on Z0 ⊂ Rdz .

Define

mF (θ, x, z) = EF (m(Wi, θ)|Xi = x, Zi = z)f(z|x),

ΣF (θ, x, z) = EF (m(Wi, θ)m(Wi, θ)
′|Xi = x, Zi = z)f(z|x), and

σ2
F,j(θ, z) = EF (m2

j(Wi, θ)|Zi = z)f(z) for j ≤ k, (2.14)

where f(z|x) is the conditional density with respect to Lebesgue measure of Zi given

Xi = x and f(z) is the density of Zi wrt Lebesgue measure µLeb on Z0, defined in (2.15)

below.

The parameter space F is defined to be the collection of (θ, F ) that satisfy the
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following conditions:

(i) θ ∈ Θ,

(ii) {Wi : i ≥ 1} are i.i.d. under F,
(iii) EF (mj (Wi, θ) |Xi, Zi = z0) ≥ 0 a.s. [FX ] for j = 1, ..., p,

(iv) EF (mj (Wi, θ) |Xi, Zi = z0) = 0 a.s. [FX ] for j = p+ 1, ..., k,

(v) FZ restricted to z ∈ Z0 is absolutely continuous wrt µLeb with density f(z) ∀z ∈ Z0,

(vi) FX is absolutely continuous wrt µX with density f(x) ∀x ∈ X ,
(vii) FY |x,z is absolutely continuous wrt µY with density f(y|x, z) ∀(y, x, z)∈ Y×X×Z0,

(viii) FZ|x is absolutely continuous wrt µLeb on Z0 with density f(z|x) ∀(z, x) ∈ Z0 ×X ,
(ix) FX|z is absolutely continuous wrt µX on R

dx with density f(x|z) ∀(x, z) ∈ X × Z0,

(x) σ2
F,j(θ, z0) ≥ δj for j ≤ k,

and

(xi) mF (θ, x, z) is twice continuously differentiable in z on Z0 ∀x ∈ X

with
∫
Lm(x)f(x)dµX(x) ≤ C1, where Lm(x) = sup

z∈Z0

∥∥(∂2/∂z∂z′)mF (θ, x, z)
∥∥ ,

(xii) sup
z∈Z0

∫
||mF (θ, x, z)||f(x, z)dµX(x) ≤ C2,

(xiii) ΣF (θ, x, z) is Lipschitz continuous in z at z0 on Z0 ∀x ∈ X ,

i.e., ||ΣF (θ, x, z)− ΣF (θ, x, z0)|| ≤ LΣ(x)||z||, and
∫
LΣ(x)f(x)dµX(x) ≤ C3, and

(xiv) EF
(
|mj(Wi, θ)|4

∣∣ Zi = z) f(z) ≤ C4 ∀z ∈ Z0 ∀j ≤ k, (2.15)

for some C` <∞ for ` = 1, ..., 4 and δ, δj > 0 for j ≤ k, where k = p+ v.

Conditions (iii) and (iv) of F are the key partial-identification conditions of the

model. Conditions (v)-(ix) of F are absolute continuity conditions. Conditions (v) and
(viii) impose absolute continuity wrt Lebesgue measure of FZ and FZ|x in a neighbor-

hood of z0. This is not restrictive because if FZ and FZ|x have point mass at z0 the

results of AS1 cover the model. Conditions (vi), (vii), and (ix) are not very restric-

tive because the absolute continuity is wrt arbitrary measures µX and µY . Conditions

(x)-(xiv) bound some variances away from zero and impose some smoothness and mo-

ment conditions. The smoothness conditions are on expectations, not on the underlying
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functions themselves, which makes them relatively weak.

Let f(y, x, z) = f(y|x, z)f(x|z)f(z) and f(x, z) = f(x|z)f(z).

The k-vector of moment functions is denoted

m (Wi, θ) = (m1(Wi, θ), ...,mk(Wi, θ))
′. (2.16)

3 Test Statistics

3.1 Form of the Test Statistic

Next, we define the test statistic Tn(θ) that is used to construct a CS. We transform

the conditional moment inequalities/equalities given Xi and Zi = z0 into equivalent

conditional moment inequalities/equalities given only Zi = z0 by choosing appropriate

weighting functions of Xi, i.e., Xi-instruments. Then, we construct a test statistic based

on kernel averages of the instrumented moment conditions over Zi values that lie in a

neighborhood of z0.

The instrumented conditional moment conditions given Zi = z0 are of the form:

EF0(mj (Wi, θ0) gj (Xi) |Zi = z0) ≥ 0 for j = 1, ..., p and (3.1)

EF0(mj (Wi, θ0) gj (Xi) |Zi = z0) = 0 for j = p+ 1, ..., k, for g = (g1, ..., gk)
′ ∈ G,

where g = (g1, ..., gk)
′ are instruments that depend on the conditioning variables Xi and

G is a collection of instruments. Typically G contains an infinite number of elements.
The identified set ΘF0(G) of the model defined by (3.1) is

ΘF0(G) = {θ ∈ Θ : (3.1) holds with θ in place of θ0}. (3.2)

The collection G is chosen so that ΘF0(G) = ΘF0 , defined in (2.2). Section 3.3 provides

conditions for this equality and gives an example of an instrument set G that satisfies
the conditions. Additional sets G are given in AS1 and AS2.
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We construct test statistics based on (3.1). The sample moment functions are

mn(θ, g) = n−1

n∑
i=1

m(Wi, θ, g, b) for g ∈ G, where

m(Wi, θ, g, b) = b−dz/2Kb(Zi)m(Wi, θ, g),

Kb(Zi) = K

(
Zi − z0

b

)
,

m(Wi, θ, g) =


m1(Wi, θ)g1(Xi)

m2(Wi, θ)g2(Xi)
...

mk(Wi, θ)gk(Xi)

 for g ∈ G, (3.3)

b > 0 is a scalar bandwidth parameter for which b→ 0 as n→∞, and K(x) is a kernel

function. The definition of mn(θ, g) in (3.3) is the same as the definition of mn(θ, g) in

AS1 except for the multiplicand b−dz/2Kb(Zi) in m(Wi, θ, g, b).

For notational simplicity, we omit the dependence of mn(θ, g) (and various other

quantities below) on b.

Note that the normalization b−dz/2 that appears in m(Wi, θ, g, b) yields m(Wi, θ, g, b)

to have a variance matrix that is O(1), but not o(1). In fact, under the conditions

given below, V arF (m(Wi, θ, g, b)) → V arF (m(Wi, θ, g)|Zi = z0)f(z0) as n → ∞ under

(θ, F ) ∈ F .
If the sample average mn(θ, g) is divided by the scalar n−1

∑n
i=1 b

−dz/2Kb(Zi) it be-

comes the Nadaraya-Watson nonparametric kernel estimator of E(m(Wi, θ, g)|Zi = z0).

We omit this divisor because doing so simplifies the statistic and has no effect on the

test defined below.4

We assume the bandwidth b and kernel function K(x) satisfy:

Assumption B. (a) b = o(n−1/(4+dz)) and (b) nbdz →∞ as n→∞.

Assumption K. (a)
∫
K(z)dz = 1, (b)

∫
zK(z)dz = 0dz , (c) K(z) = 0 ∀z /∈ [−1, 1]dz ,

(d) K(z) ≥ 0 ∀z ∈ Rdz , and (e) supz∈Rdz K(z) <∞.

Assumptions B and K are standard assumptions in the nonparametric density and

regression literature. When Assumption B is applied to a nonparametric regression or

density estimator, part (a) implies that the bias of the estimator goes to zero faster than

4This holds because division by n−1
∑n
i=1 b

−dz/2Kb(Zi) rescales the test statistic and critical value
identically and in consequence the rescaling cancels out.
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the variance (and is the weakest condition for which this holds) and part (b) implies that

the estimator is asymptotically normal (because it implies that b goes to zero suffi ciently

slowly that a Lindeberg condition holds).

The sample variance-covariance matrix of n1/2mn(θ, g) is

Σ̂n(θ, g) = n−1

n∑
i=1

(m(Wi, θ, g, b)−mn(θ, g)) (m(Wi, θ, g, b)−mn(θ, g))′ . (3.4)

The matrix Σ̂n(θ, g)may be singular or nearly singular with non-negligible probability for

some g ∈ G. This is undesirable because the inverse of Σ̂n(θ, g) needs to be consistent

for its population counterpart uniformly over g ∈ G for the test statistics considered
below. In consequence, we employ a modification of Σ̂n(θ, g), denoted Σn(θ, g), such

that det(Σn(θ, g)) is bounded away from zero:

Σn(θ, g) = Σ̂n(θ, g) + ε ·Diag(Σ̂n(θ, 1k)) for g ∈ G (3.5)

for some fixed ε > 0. In the simulations in Section 8, we use ε = 5/100. By design,

Σn(θ, g) is a linear combination of two scale equivariant functions and hence is scale

equivariant.5 This yields a test statistic that is invariant to rescaling of the moment

functions m(Wi, θ), which is an important property.

The test statistic Tn(θ) is either a Cramér-von-Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(θ) =

∫
S(n1/2mn(θ, g),Σn(θ, g))dQ(g), (3.6)

where S is a non-negative function, Q is a weight function (i.e., probability measure) on

G, and the integral is over G. The functions S and Q are discussed in Sections 3.2 and

3.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(θ) = sup
g∈G

S(n1/2mn(θ, g),Σn(θ, g)). (3.7)

For brevity, the discussion in this paper focusses on CvM statistics and all results

5That is, multiplying the moment functions m(Wi, θ) by a diagonal matrix, D, changes Σn(θ, g) into
DΣn(θ, g)D.
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stated concern CvM statistics. Similar results hold for KS statistics. Such results can

be established by extending the results given in Section 13.1 of Appendix B of AS2 and

proved in Section 15.1 of Appendix E of AS2.

3.2 S Functions

We establish the results of this paper for a broad family of functions S. For brevity,

the conditions on S, viz., Assumptions S1-S4, are stated in Appendix 1. Three leading

functions that satisfy these conditions are:

S1 (m,Σ) =

p∑
j=1

[mj/σj]
2
− +

p+v∑
j=p+1

[mj/σj]
2 ,

S2 (m,Σ) = inf
t=(t′1,0

′
v)′:t1∈Rp+,∞

(m− t)′Σ−1 (m− t) , and (3.8)

S3(m,Σ) = max{[m1/σ1]2−, ..., [mp/σp]
2
−, (mp+1/σp+1)2, ..., (mp+v/σp+v)

2},

wheremj is the jth element of the vectorm, σ2
j is the jth diagonal element of the matrix

Σ, and [x]− = −x if x < 0 and [x]− = 0 if x ≥ 0, R+,∞ = {x ∈ R : x ≥ 0} ∪ {+∞},
and Rp

+,∞ = R+,∞ × ... × R+,∞ with p copies.6 The functions S1, S2, and S3 are the

modified method of moments (MMM) or Sum function, the quasi-likelihood ratio (QLR)

function, and the Max function, respectively.

3.3 X-Instruments

The collection of instruments G needs to satisfy the following condition in order for
the conditional moments {EF (m(Wi, θ, g)|Zi = z0) : g ∈ G} to incorporate the same
information as the conditional moments {EF (m(Wi, θ)|Xi = x, Zi = z0) : x ∈ Rdx}.
For any θ ∈ Θ and any distribution F with EF (||m(Wi, θ)|| |Zi = z0) <∞, let

XF (θ) = {x ∈ Rdx : EF (mj (Wi, θ) |Xi = x, Zi = z0) < 0 for some j ≤ p or

EF (mj (Wi, θ) |Xi = x, Zi = z0) 6= 0 for some j = p+ 1, ..., k}. (3.9)

Assumption NCI. For any θ ∈ Θ and distribution F for which EF (||m(Wi, θ)|| |Zi =

6The functions S1, S2, and S3 satisfy Assumptions S1-S4, stated in Appendix 1, by Lemma 1 of
AS1.
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z0) <∞ and PF (Xi ∈ XF (θ)|Zi = z0) > 0, there exists some g ∈ G such that

EF (mj(Wi, θ)gj(Xi)|Zi = z0) < 0 for some j ≤ p or

EF (mj(Wi, θ)gj(Xi)|Zi = z0) 6= 0 for some j = p+ 1, ..., k.

Note that NCI abbreviates “nonparametrically conditionally identified.”The following

Lemma indicates the importance of Assumption NCI.

Lemma N1. Assumption NCI implies that ΘF (G) = ΘF for all F with supθ∈Θ

EF (||m(Wi, θ)|| |Zi = z0) <∞.

Collections G that satisfy Assumption NCI contain non-negative functions whose
supports are cubes, boxes, or other sets whose supports are arbitrarily small.

A collection G must satisfy a “manageability”condition, viz., Assumption NM, that
regulates the complexity of G. This condition ensures that {n1/2(mn(θ, g)−EFnmn(θ, g)) :

g ∈ G} satisfies a functional central limit theorem (FCLT) under drifting sequences of

distributions {Fn : n ≥ 1}. The latter is utilized in the proof of the uniform coverage

probability results for the CS’s. The manageability condition is from Pollard (1990) and

is defined and explained in Appendix E of AS2. For brevity, Assumption NM is stated

in Appendix 1.

Now we give an example of a collection of functions G that satisfies Assumptions
NCI and NM. AS1 and AS2 give four other collections G that satisfy Assumptions NCI
and NM.

Example. (Countable Hypercubes). Suppose Xi is transformed via a one-to-one

mapping so that each of its elements lies in [0, 1]. There is no loss in information in doing

so. For example, Sections 9 and 10.3.2 of AS1 and Section 13.2 of Appendix B of AS2

provide examples of how this can be done.

Consider the class of indicator functions of cubes with side lengths that are powers

of (2r)−1 for all large positive integers r and that partition [0, 1]dx for each r. This class
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is countable:

Gc-cube = {g(x) : g(x) = 1(x ∈ C) · 1k for C ∈ Cc-cube}, where

Cc-cube =

{
Ca,r =

dx∏
u=1

((au − 1)/(2r), au/(2r)] ∈ [0, 1]dx : a = (a1, ..., adx)
′

au ∈ {1, 2, ..., 2r} for u = 1, ..., dx and r = r0, r0 + 1, ...
}

(3.10)

for some positive integer r0.
7 The terminology “c-cube” abbreviates countable cubes.

Note that Ca,r is a hypercube in [0, 1]dx with smallest vertex indexed by a and side

lengths equal to (2r)−1.

The class of countable cubes Gc-cube leads to a test statistic Tn(θ) for which the

integral over G reduces to a sum. The set Gc-cube can be used with continuous and/or
discrete regressors.

Lemma 3 of AS1 establishes Assumptions NCI and NM for Gc-cube.8

3.4 Weight Function Q

The weight function Q can be any probability measure on G whose support is G. This
support condition is needed to ensure that no functions g ∈ G, which might have set-
identifying power, are “ignored”by the test statistic Tn(θ).Without such a condition, a

CS based on Tn(θ) would not necessarily shrink to the identified set as n→∞. Section 6
below introduces the support condition formally and shows that the probability measure

Q considered here satisfies it.

We now give an example of a weight function Q on Gc-cube.

Weight Function Q for Gc-cube. There is a one-to-one mapping Πc-cube : Gc-cube →
AR = {(a, r) : a ∈ {1, ..., 2r}dx and r = r0, r0 + 1, ...}. Let QAR be a probability measure

on AR. One can take Q = Π−1
c-cubeQAR. A natural choice of measure QAR is uniform

on a ∈ {1, ..., 2r}dx conditional on r combined with a distribution for r that has some
7When au = 1, the left endpoint of the interval (0, 1/(2r)] is included in the interval.
8Lemma 3 of AS1 and Lemma B2 of AS2 also establish Assumptions NCI and NM of this paper for

the collections Gbox, GB−spline, Gbox,dd, and Gc/d defined there. The proof is the same as in AS2 for
Assumptions CI and M with conditioning on Zi = z0 added throughout.
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probability mass function {w(r) : r = r0, r0 + 1, ...}. This yields the test statistic

Tn(θ) =
∞∑
r=r0

w(r)
∑

a∈{1,...,2r}dx
(2r)−dxS(n1/2mn(θ, ga,r),Σn(θ, ga,r)), (3.11)

where ga,r(x) = 1(x ∈ Ca,r) · 1k for Ca,r ∈ Cc-cube.

3.5 Computation of Sums, Integrals, and Suprema

The test statistic Tn(θ) given in (3.11) involves an infinite sum. A collection G with
an uncountable number of functions g yields a test statistic Tn(θ) that is an integral with

respect to Q. This infinite sum or integral can be approximated by truncation, simula-

tion, or quasi-Monte Carlo (QMC) methods. If G is countable, let {g1, ..., gsn} denote
the first sn functions g that appear in the infinite sum that defines Tn(θ). Alternatively,

let {g1, ..., gsn} be sn i.i.d. functions drawn from G according to the distribution Q. Or,
let {g1, ..., gsn} be the first sn terms in a QMC approximation of the integral with respect
to (wrt) Q. Then, an approximate test statistic obtained by truncation, simulation, or

QMC methods is

T n,sn(θ) =
sn∑
`=1

wQ,n(`)S(n1/2mn(θ, g`),Σn(θ, g`)), (3.12)

where wQ,n(`) = Q({g`}) when an infinite sum is truncated, wQ,n(`) = s−1
n when

{g1, ..., gsn} are i.i.d. draws from G according to Q, and wQ,n(`) is a suitable weight

when a QMC method is used. For example, in (3.11), the outer sum can be truncated

at r1,n, in which case, sn =
∑r1,n

r=r0
(2r)dx and wQ,n(`) = w(r)(2r)−dx for ` such that g`

corresponds to ga,r for some a.

It can shown that truncation at sn, simulation based on sn simulation repetitions,

or QMC approximation based on sn terms, where sn → ∞ as n → ∞, is suffi cient to
maintain the asymptotic validity of the tests and CS’s as well as the asymptotic power

results under fixed alternatives and most of the results under n−1/2-local alternatives.

For brevity we do not do so here. The method of proof is analogous to that used

in Section 15.1 of Appendix E of AS2 to prove such results stated in Section 13.1 of

Appendix B of AS2 for the tests considered in AS1 and AS2.

The KS form of the test statistic requires the computation of a supremum over g ∈ G.
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For computational ease, this can be replaced by a supremum over g ∈ Gn, where Gn ↑ G
as n→∞, in the test statistic and in the definition of the critical value (defined below).
The same asymptotic results for KS tests hold with Gn in place of G. For results of this
sort for the tests considered in AS1 and AS2, see Section 13.1 of Appendix B of AS2

and Section 15.1 of Appendix E of AS2.

4 GMS Confidence Sets

4.1 GMS Critical Values

In this section, we define GMS critical values and CS’s.

It is shown in Appendix 1 that when θ is in the identified set the “uniform asymptotic

distribution” of Tn(θ) is the distribution of T (hn), where hn = (h1,n, h2), h1,n(·) is a
function from G to Rp

[+∞]×{0}v that depends on the slackness of the moment inequalities
and on n, where R[+∞] = R ∪ {+∞}, and h2(·, ·) is a k × k-matrix-valued covariance
kernel on G × G. For h = (h1, h2), define

T (h) =

∫
S(νh2(g) + h1(g), h2(g, g) + εIk)dQ(g), (4.1)

where

{νh2(g) : g ∈ G} (4.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(·, ·) on G × G, h1(·)
is a function from G to Rp

[+∞] × {0}v, and ε is as in the definition of Σn(θ, g) in (3.5).9

The definition of T (h) in (4.1) applies to CvM test statistics. For the KS test statistic,

one replaces
∫
... dQ(g) by supg∈G ... .

We are interested in tests of nominal level α and CS’s of nominal level 1− α. Let

c0(h, 1− α) (= c0(h1, h2, 1− α)) (4.3)

denote the 1−α quantile of T (h). If hn = (h1,n, h2) was known, we would use c0(hn, 1−α)

as the critical value for the test statistic Tn(θ). However, hn is not known and h1,n

cannot be consistently estimated. In consequence, we replace h2 in c0(h1,n, h2, 1 − α)

9The sample paths of νh2(·) are concentrated on the set Ukρ (G) of bounded uniformly ρ-continuous
Rk-valued functions on G, where ρ is defined in Appendix A of AS2.
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by a uniformly consistent estimator ĥ2,n(θ) (= ĥ2,n(θ, ·, ·)) of the covariance kernel h2

and we replace h1,n by a data-dependent GMS function ϕn(θ) (= ϕn(θ, ·)) on G that is
constructed to be less than or equal to h1,n(g) for all g ∈ G with probability that goes
to one as n → ∞. Because S(m,Σ) is non-increasing in mI by Assumption S1(b) (see

Appendix 1), where m = (m′I ,m
′
II)
′, the latter property yields a test whose asymptotic

level is less than or equal to the nominal level α. (It is arbitrarily close to α for certain

(θ, F ) ∈ F .) The quantities ĥ2,n(θ) and ϕn(θ) are defined below.

The nominal 1− α GMS critical value is defined to be

c(ϕn(θ), ĥ2,n(θ), 1− α) = c0(ϕn(θ), ĥ2,n(θ), 1− α + η) + η, (4.4)

where η > 0 is an arbitrarily small positive constant, e.g., .001. A nominal 1− α GMS
CS is given by (2.3) with the critical value cn,1−α(θ) equal to c(ϕn(θ), ĥ2,n(θ), 1− α).10

Next, we define the asymptotic covariance kernel, {h2,F (θ, g, g∗) : g, g∗ ∈ G}, of
n1/2mn(θ, g) after normalization via a diagonal matrix D−1/2

F (θ, z0). Define11

h2,F (θ, g, g∗) = D
−1/2
F (θ, z0)ΣF (θ, g, g∗, z0)D

−1/2
F (θ, z0), where

ΣF (θ, g, g∗, z) = EF (m(Wi, θ, g)m(Wi, θ, g
∗)′|Zi = z)f(z) and (4.5)

DF (θ, z) = Diag(ΣF (θ, 1k, 1k, z)) (= Diag(EF (m(Wi, θ)m(Wi, θ)
′|Zi = z)f(z))).

Correspondingly, the sample covariance kernel ĥ2,n(θ) (= ĥ2,n(θ, ·, ·)), which is an
estimator of h2,F (θ, g, g∗), is defined by:

ĥ2,n(θ, g, g∗) = D̂−1/2
n (θ)Σ̂n(θ, g, g∗)D̂−1/2

n (θ), where

Σ̂n(θ, g, g∗) = n−1

n∑
i=1

(m(Wi, θ, g, b)−mn(θ, g)) (m(Wi, θ, g
∗, b)−mn(θ, g∗))′ and

D̂n(θ) = Diag(Σ̂n(θ, 1k, 1k)). (4.6)

10The constant η is an infinitesimal uniformity factor (IUF) that is employed to circumvent problems
that arise due to the presence of the infinite-dimensional nuisance parameter h1,n that affects the
distribution of the test statistic in both small and large samples. The IUF obviates the need for
complicated and diffi cult-to-verify uniform continuity and strictly-increasing conditions on the large
sample distribution functions of the test statistic.
11Note that DF (θ, z) = Diag(σ2F,1(θ, z), ..., σ

2
F,k(θ, z)), where σ2F,j(θ, z) is defined in (2.14). Also

note that the means, EFm(Wi, θ, g), EFm(Wi, θ, g
∗), and EFm(Wi, θ), are not subtracted off in the

definitions of ΣF (θ, g, g∗, z) and DF (θ, z). The reason is that the population means of the sample-size n
quantities based on m(Wi, θ, g, b) are smaller than the second moments by an order of magnitude and,
hence, are asymptotically negligible. See Lemmas AN5 and AN6 in Appendix 1.
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Note that Σ̂n(θ, g), defined in (3.4), equals Σ̂n(θ, g, g) and D̂n(θ) is the sample variance-

covariance matrix of {m(Wi, θ) : n ≥ 1}.
The quantity ϕn(θ) is defined in Section 4.4 below.

4.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or

QMC quantity, as discussed in Section 3.5, the statistic T (h) in Section 4.1 is replaced

by

T sn(h) =
sn∑
`=1

wQ,n(`)S(νh2(g`) + h1(g`), h2(g`, g`) + εIk), (4.7)

where {g` : ` = 1, ..., sn} are the same functions {g1, ..., gsn} that appear in the approxi-
mate statistic T n,sn(θ).We call the critical value obtained using T sn(h) an approximate

GMS (A-GMS) critical value.

Let c0,sn(h, 1 − α) denote the 1 − α quantile of T sn(h) for fixed {g1, ..., gsn}. The
A-GMS critical value is defined to be

csn(ϕn(θ), ĥ2,n(θ), 1− α) = c0,sn(ϕn(θ), ĥ2,n(θ), 1− α + η) + η. (4.8)

This critical value is a quantile that can be computed by simulation as follows. Let

{T sn,τ (h) : τ = 1, ..., τ reps} be τ reps i.i.d. random variables each with the same distri-

bution as T sn(h) and each with the same functions {g1, ..., gsn}, where h = (h1, h2) is

evaluated at (ϕn(θ), ĥ2,n(θ)). Then, the A-GMS critical value, csn(ϕn(θ), ĥ2,n(θ), 1− α),

is the 1−α+η sample quantile of {T sn,τ (ϕn(θ), ĥ2,n(θ)) : τ = 1, ..., τ reps} plus η for very
small η > 0 and large τ reps.

4.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical value

in (4.8) can be employed. The bootstrap GMS critical value is

c∗(ϕn(θ), ĥ∗2,n(θ), 1− α) = c∗0(ϕn(θ), ĥ∗2,n(θ), 1− α + η) + η, (4.9)

where c∗0(h, 1 − α) is the 1 − α quantile of T ∗(h) and T ∗(h) is defined as in (4.1) but

with {νh2(g) : g ∈ G} and ĥ2,n(θ) replaced by the bootstrap empirical process {ν∗n(g) :
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g ∈ G} and the bootstrap covariance kernel ĥ∗2,n(θ), respectively. By definition, ν∗n(g) =

n−1/2
∑n

i=1(m(W ∗
i , θ, g, b)−mn(θ, g)), where {W ∗

i : i ≤ n} is an i.i.d. bootstrap sample
drawn from the empirical distribution of {Wi : i ≤ n}. Also, ĥ∗2,n(θ, g, g∗), Σ̂∗n(θ, g, g∗),

and D̂∗n(θ) are defined as in (4.6) with W ∗
i in place of Wi. Note that ĥ∗2,n(θ, g, g∗) only

enters c(ϕn(θ), ĥ∗2,n(θ), 1− α) via functions (g, g∗) such that g = g∗.

When the test statistic, T n,sn(θ), is a truncated sum, simulated integral, or a QMC

quantity, a bootstrap A-GMS critical value can be employed. It is defined analogously

to the bootstrap GMS critical value but with T ∗(h) replaced by T ∗sn(h), where T ∗sn(h)

has the same definition as T ∗(h) except that a truncated sum, simulated integral, or

QMC quantity appears in place of the integral with respect to Q, as in Section 4.2. The

same functions {g1, ..., gsn} are used in all bootstrap critical value calculations as in the
test statistic T n,sn(θ).

4.4 Definition of ϕn(θ)

Next, we define ϕn(θ). As discussed above, ϕn(θ) is constructed such that ϕn(θ, g) ≤
h1,n(g) ∀g ∈ G with probability that goes to one as n → ∞ uniformly over (θ, F ) ∈ F .
Let

ξn(θ, g) = κ−1
n n1/2D

−1/2

n (θ, g)mn(θ, g), where Dn(θ, g) = Diag(Σn(θ, g)), (4.10)

Σn(θ, g) is defined in (3.5), and {κn : n ≥ 1} is a sequence of constants that diverges to
infinity as n→∞. The jth element of ξn(θ, g), denoted ξn,j(θ, g), measures the slackness

of the moment inequality EFmj(Wi, θ, g) ≥ 0 for j = 1, ..., p.

Define ϕn(θ, g) = (ϕn,1(θ, g), ..., ϕn,p(θ, g), 0, ..., 0)′ ∈ Rk via, for j ≤ p,

ϕn,j(θ, g) = −η if ξn,j(θ, g) ≤ 1

ϕn,j(θ, g) = h2,n,j(θ, g)1/2Bn if ξn,j(θ, g) > 1, where

h2,n(θ, g) = D̂−1/2
n (θ)Σn(θ, g)D̂−1/2

n (θ), h2,n,j(θ, g) = [h2,n(θ, g)]jj, (4.11)

and η > 0 is the IUF employed in (4.4).12

We assume:
12Note that ϕn(θ, g) is defined in AS1 with 0 in place of −η. The quantity −η is required in the

definition of ϕn(θ, g) in this paper because it is possible for EFmj(Wi, θ, g, b) to take on small negative
values (that converge to 0 as n → ∞) for j ≤ p because EF (mj(Wi, θ, g)|Zi = z) ≥ 0 only holds for
z = z0 by (2.1) or (2.15).
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Assumption GMS1. (a) ϕn(θ, g) satisfies (4.11), where {Bn : n ≥ 1} is a non-
decreasing sequence of positive constants, and

(b) for some ζ > 1, κn − ζBn →∞ as n→∞.

The constants {Bn : n ≥ 1} in Assumption GMS1 need not diverge to infinity
for the GMS CS to have asymptotic size greater than or equal to 1 − α. However,

for the GMS CS not to be asymptotically conservative, Bn must diverge to ∞, see
Assumption GMS2(b) below. In the simulations in Section 8, we use κn = (0.3 ln(n))1/2

and Bn = (0.4 ln(n)/ ln ln(n))1/2, which satisfy Assumption GMS1.

The multiplicand h2,n,j(θ, g)1/2 in (4.11) is an “ε-adjusted”standard deviation esti-

mator for the jth normalized sample moment based on g. It provides a suitable scaling

for ϕn(θ, g).

The following assumption is not needed for GMS CS’s to have uniform asymptotic

coverage probability greater than or equal to 1 − α. It is used, however, to show that
GMS CS’s are not asymptotically conservative. For (θ, F ) ∈ F and j = 1, ..., k, define

h1,∞,F (θ) = {h1,∞,F (θ, g) : g ∈ G} to have jth element equal to ∞ if EFmj(Wi, θ, g) >

0 and j ≤ p and 0 otherwise. Let h∞,F (θ) = (h1,∞,F (θ), h2,F (θ)), where h2,F (θ) =

{h2,F (θ, g, g∗) : (g, g∗) ∈ G × G}.

Assumption GMS2. (a) For some (θc, Fc)∈F , the distribution function of T(h∞,Fc(θc))

is continuous and strictly increasing at its 1 − α quantile plus δ, viz., c0(h∞,Fc(θc), 1 −
α) + δ, for all δ > 0 suffi ciently small and δ = 0,

(b) Bn →∞ as n→∞, and
(c) n1/2/κn →∞ as n→∞.

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of

S and Q for any (θc, Fc) for which Q({g ∈ G : h1,∞,Fc(θc, g) = 0}) > 0. Assumption

GMS2(c) is satisfied by typical choices of κn, such as κn = (0.3 lnn)1/2.

4.5 “Plug-in Asymptotic”Confidence Sets

Next, for comparative purposes, we define plug-in asymptotic (PA) critical values.

Subsampling critical values also can be considered, see Appendix B of AS2 for details.

We strongly recommend GMS critical values over PA and subsampling critical values

for the same reasons as given in AS1 plus the fact that the finite-sample simulations in

Section 8 show better performance by GMS critical values than PA and subsampling

critical values.
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PA critical values are obtained from the asymptotic null distribution that arises when

all conditional moment inequalities hold as equalities a.s. The PA critical value is

c(−η × 1G, ĥ2,n(θ), 1− α) = c0(−η × 1G, ĥ2,n(θ), 1− α + η) + η, (4.12)

where η is an arbitrarily small positive constant (i.e., an IUF), 1G denotes the Rk-

valued function on G that is identically (1, ..., 1)′ ∈ Rk, and ĥ2,n(θ) is defined in (4.6).

The nominal 1 − α PA CS is given by (2.3) with the critical value cn,1−α(θ) equal to

c(−η × 1G, ĥ2,n (θ) , 1− α).

Bootstrap PA, A-PA, and bootstrap A-PA critical values are defined analogously to

their GMS counterparts in Sections 4.2 and 4.3.

5 UniformAsymptotic Coverage Probability Results

In this section, we show that GMS and PA CS’s have correct uniform asymptotic

coverage probabilities, i.e., correct asymptotic size.

For simplicity, let h2,F (θ) abbreviate the asymptotic covariance kernel {h2,F (θ, g, g∗) :

g, g∗ ∈ G} defined in (4.5). Define

H2 = {h2,F (θ) : (θ, F ) ∈ F}. (5.13)

On the space of k× k-matrix-valued covariance kernels on G × G, which is a superset of
H2, we use the uniform metric d defined by

d(h
(1)
2 , h

(2)
2 ) = sup

g,g∗∈G
||h(1)

2 (g, g∗)− h(2)
2 (g, g∗)||. (5.14)

The following Theorem gives uniform asymptotic coverage probability results for

GMS and PA CS’s.

Theorem N1. Suppose Assumptions B, K, NM, S1, and S2 hold and Assumption

GMS1 also holds when considering GMS CS’s. Then, for every compact subset H2,cpt of

H2, GMS and PA confidence sets CSn satisfy

(a) lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) ≥ 1− α and

(b) if Assumption GMS2 also holds and h2,Fc(θc) ∈ H2,cpt (for (θc, Fc) ∈ F as in
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Assumption GMS2), then the GMS confidence set satisfies

lim
η→0

lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

PF (θ ∈ CSn) = 1− α,

where η is as in the definition of c(h, 1− α).

Comments. 1. Theorem N1(a) shows that GMS and PA CS’s have correct uniform

asymptotic size over compact sets of covariance kernels. TheoremN1(b) shows that GMS

CS’s are at most infinitesimally conservative asymptotically. The uniformity results hold

whether the moment conditions involve “weak”or “strong”instrumental variables Xi.

2. As in AS1, an analogue of Theorem N1(b) holds for PA CS’s if Assumption

GMS2(a) holds and EFc(mj(Wi, θc)|Xi, Zi = z0) = 0 a.s. for j ≤ p (i.e., if the conditional

moment inequalities hold as equalities a.s.) under some (θc, Fc) ∈ F . However, the latter
condition is restrictive– it fails in many applications.

6 Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as n → ∞ for

all fixed alternatives (for which the moment functions have 4+ δ moments finite). Thus,

both tests are consistent tests. This implies that for any fixed distribution F0 and any

parameter value θ∗ not in the identified set ΘF0 , the GMS and PA CS’s do not include

θ∗ with probability approaching one. In this sense, GMS and PA CS’s based on Tn(θ)

fully exploit the conditional moment inequalities and equalities. CS’s based on a finite

number of unconditional moment inequalities and equalities do not have this property.

The null hypothesis is

H0 : EF0(mj(Wi, θ∗)|Xi, Zi = z0) ≥ 0 a.s. [FX,0] for j = 1, ..., p and

EF0(mj(Wi, θ∗)|Xi, Zi = z0) = 0 a.s. [FX,0] for j = p+ 1, ..., k, (6.1)

where θ∗ denotes the null parameter value and F0 denotes the fixed true distribution of

the data. The alternative hypothesis is H1 : H0 does not hold. The following assumption

specifies the properties of fixed alternatives (FA).

Let F+ denote all (θ, F ) that satisfy conditions (i)-(xiv) in (2.15) that define F
except conditions (iii) and (iv) (which impose the conditional moment inequalities and
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equalities). As defined, F ⊂ F+. Note that F+ includes (θ, F ) pairs for which θ lies

outside of the identified set ΘF as well as all values in the identified set.

Assumption NFA. The value θ∗ ∈ Θ and the true distribution F0 satisfy: (a) PF0(Xi ∈
XF0(θ∗)|Zi = z0) > 0, where XF0(θ∗) is defined in (3.9), and (b) (θ∗, F0) ∈ F+.

Assumption NFA(a) states that violations of the conditional moment inequalities or

equalities occur for the null parameter θ∗ for Xi values in some set with positive condi-

tional probability given Zi = z0 under F0. Thus, under Assumption NFA(a), the moment

conditions specified in (6.1) do not hold.

For g ∈ G, define

m∗j(g) = EF0(mj(Wi, θ∗)gj(Xi)|Zi = z0)f(z0)/σF0,j(θ∗, z0) and

β(g) = max{−m∗1(g), ...,−m∗p(g), |m∗p+1(g)|, ..., |m∗k(g)|}. (6.2)

Under Assumptions NFA(a) and NCI, β(g0) > 0 for some g0 ∈ G.
For a test based on Tn(θ) to have power against all fixed alternatives, the weight-

ing function Q cannot “ignore”any elements g ∈ G, because such elements may have
identifying power for the identified set. This requirement is captured in the following

assumption.

Let FX,0 denote the distribution of Xi under F0. Define the pseudo-metric ρX on G
by

ρX(g, g∗) = (EFX,0||g(Xi)− g∗(Xi)||2)1/2 for g, g∗ ∈ G. (6.3)

Let BρX (g, δ) denote an open ρX-ball in G centered at g with radius δ.

Assumption Q. The support of Q under the pseudo-metric ρX is G. That is, for all
δ > 0, Q(BρX (g, δ)) > 0 for all g ∈ G.

Assumption Q holds for QAR and Gc-cube defined above because Gc-cube is countable
and QAR has a probability mass function that is positive at each element in Gc-cube.
Appendix B of AS2 verifies Assumption Q for four other choices of Q and G.
The following Theorem shows that GMS and PA tests are consistent against all fixed

alternatives.

Theorem N2. Suppose Assumptions B, K, NFA, NCI, Q, S1, S3, and S4 hold and
Assumption NM holds with F0 in place of Fn in Assumption NM(b). Then,

(a) limn→∞ PF0(Tn(θ∗) > c(ϕn(θ∗), ĥ2,n(θ∗), 1− α)) = 1 and
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(b) limn→∞ PF0(Tn(θ∗) > c(0G, ĥ2,n(θ∗), 1− α)) = 1.

Comment. Assumption NM holds for Gc-cube with F0 in place of Fn in part (b) because

Cc-cube is a Vapnik-Cervonenkis class of sets.

7 Power Against (nbdz)−1/2-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but not

all, (nbdz)−1/2-local alternatives. These testing results have immediate implications for

the volume of CS’s, see Pratt (1961).

We show that a GMS test has asymptotic power that is greater than or equal to

that of a PA test (based on the same test statistic) under all alternatives with strict

inequality in certain scenarios.

For given θn,∗ ∈ Θ for n ≥ 1, we consider tests of

H0 : EFn(mj(Wi, θn,∗)|Zi = z0) ≥ 0 for j = 1, ..., p,

EFn(mj(Wi, θn,∗)|Zi = z0) = 0 for j = p+ 1, ..., k, (7.1)

and (θn,∗, Fn) ∈ F , where Fn denotes the true distribution of the data. The null values
θn,∗ are allowed to drift with n or be fixed for all n. Drifting θn,∗ values are of interest

because they allow one to consider the case of a fixed identified set, say Θ0, and to derive

the asymptotic probability that parameter values θn,∗ that are not in the identified set,

but drift toward it at rate n−1/2, are excluded from a GMS or PA CS. In this scenario,

the sequence of true distributions are ones that yield Θ0 to be the identified set, i.e.,

Fn ∈ F0 = {F : ΘF = Θ0}.
The true parameters and distributions are denoted (θn, Fn).We consider the Kolmog-

orov-Smirnov metric on the space of distributions F.

Let fn(z) denote the density of Zi wrt µLeb under Fn.

The (nbdz)−1/2-local alternatives are defined as follows.

Assumption NLA1. The true parameters and distributions {(θn, Fn) ∈ F : n ≥ 1}
and the null parameters {θn,∗ : n ≥ 1} satisfy:
(a) θn,∗ = θn + λ(nbdz)−1/2(1 + o(1)) for some λ ∈ Rdθ , θn,∗ ∈ Θ, θn,∗ → θ0, and

Fn → F0 for some (θ0, F0) ∈ F ,
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(b) (nbdz)1/2EFn(mj(Wi, θn, g)|Zi = z0)fn(z0)/σFn,j(θn, z0)→ h1,j(g) for some h1,j(g)

∈ R+,∞ for j = 1, ..., p and all g ∈ G,
(c) d(h2,Fn(θn), h2,F0(θ0)) → 0 and d(h2,Fn(θn,∗), h2,F0(θ0)) → 0 as n → ∞ (where d

is defined in (5.14)), and

(d) (θn, Fn) ∈ F+ for all n ≥ 1.

Assumption NLA2. The k × d matrix ΠF (θ, g) = (∂/∂θ′)[D
−1/2
F (θ, z0)EF (m(Wi, θ, g)

|Zi = z0)f(z0)] exists and is continuous in (θ, F ) for all (θ, F ) in a neighborhood of

(θ0, F0) for all g ∈ G.

For notational simplicity, we let h2 abbreviate h2,F0(θ0) throughout this section.

Assumption NLA1(a) states that the true values {θn : n ≥ 1} are (nbdz)−1/2-local to

the null values {θn,∗ : n ≥ 1}. Assumption NLA1(b) specifies the asymptotic behavior
of the (normalized) moment inequality functions when evaluated at the true values

{θn : n ≥ 1}. Under the true values, these (normalized) moment inequality functions are
non-negative. Assumption NLA1(c) specifies the asymptotic behavior of the covariance

kernels {h2,Fn(θn, ·, ·) : n ≥ 1} and {h2,Fn(θn,∗, ·, ·) : n ≥ 1}. Assumption NLA2 is a
smoothness condition on the normalized expected conditional moment functions given

Zi = z0. Given the smoothing properties of the expectation operator, this condition is

not restrictive.

Under Assumptions NLA1 and NLA2, we show that the moment inequality functions

evaluated at the null values {θn,∗ : n ≥ 1} satisfy:

lim
n→∞

n1/2D
−1/2
Fn

(θn,∗, b)EFnm(Wi, θn,∗, g, b) = h1(g) + Π0(g)λ ∈ Rk, where

h1(g) = (h1,1(g), ..., h1,p(g), 0, ..., 0)′ ∈ Rk and Π0(g) = ΠF0(θ0, g). (7.2)

If h1,j(g) = ∞, then by definition h1,j(g) + y = ∞ for any y ∈ R. We have h1(g) +

Π0(g)λ ∈ Rp
[+∞] × Rv. Let Π0,j(g) denote the jth row of Π0(g) written as a column

dθ-vector for j = 1, ..., k.

The null hypothesis, defined in (7.1), does not hold (at least for n large) when the

following assumption holds.

Assumption LA3. For some g ∈ G, h1,j(g) + Π0,j(g)′λ < 0 for some j = 1, ..., p or

Π0,j(g)′λ 6= 0 for some j = p+ 1, ..., k.

Under the following assumption, if λ = βλ0 for some β > 0 and some λ0 ∈ Rdθ , then

the power of GMS and PA tests against the perturbation λ is arbitrarily close to one
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for β arbitrarily large:

Assumption LA3 ′. Q({g ∈ G : h1,j(g) < ∞ and Π0,j(g)′λ0 < 0 for some j = 1, ..., p

or Π0,j(g)′λ0 6= 0 for some j = p+ 1, ..., k}) > 0.

Assumption LA3 ′ requires that either (i) the moment equalities detect violations of the

null hypothesis for a set of g functions with positive Q measure or (ii) the moment

inequalities are not too far from being binding, i.e., h1,j(g) < ∞, and the perturbation
λ0 occurs in a direction that yields moment inequality violations for a set of g functions

with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3 ′.

If Assumption LA3 holds with λ = βλ0 (and some other assumptions), then the power

of KS-GMS and KS-PA tests against the perturbation λ is arbitrarily close to one for

β arbitrarily large. For brevity, we do not prove this here. The proof is analogous to

the proof of such results for the KS tests considered in AS1 and AS2, see Section 13.1

of Appendix B and Section 15.1 of Appendix E of AS2.

Assumptions LA3 and LA3 ′ can fail to hold even when the null hypothesis is violated.

This typically happens if the true parameter/true distribution is fixed, i.e., (θn, Fn) =

(θ0, F0) ∈ F for all n in Assumption NLA1(a), the null hypothesis parameter θn,∗ drifts
with n as in Assumption NLA1(a), and PF0(Xi ∈ Xzero|Zi = z0) = 0, where Xzero =

{x ∈ Rdx : EF0(m(Wi, θ0)|Xi = x, Zi = z0) = 0}. In such cases, typically h1,j(g) = ∞
∀g ∈ G (because the conditional moment inequalities are non-binding with probability
one), Assumptions LA3 and LA3 ′ fail, and Theorem N3 below shows that GMS and

PA tests have trivial asymptotic power against these (nbdz)−1/2-local alternatives.

The asymptotic distribution of Tn(θn,∗) under (nbdz)−1/2-local alternatives is shown

to be Jh,λ. By definition, Jh,λ is the distribution of

T (h1 + Π0λ, h2) =

∫
S(νh2(g) + h1(g) + Π0(g)λ, h2(g) + εIk)dQ(g), (7.3)

where h = (h1, h2), Π0 denotes Π0(·), and νh2(·) is a mean zero Gaussian process with
covariance kernel h2 = h2,F0(θ0). For notational simplicity, the dependence of Jh,λ on Π0

is suppressed.

Next, we introduce two assumptions, viz., Assumptions NLA4 and LA5, that are

used only for GMS tests in the context of local alternatives. The asymptotic analogues
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of Σn(θ, g) and its diagonal matrix are

ΣF (θ, g, z0) = ΣF (θ, g, g, z0) + εΣF (θ, 1k, 1k, z0) and DF (θ, g, z0) = Diag(ΣF (θ, g, z0)),

(7.4)

where ΣF (θ, g, g, z0) is defined in (4.5).

Assumption NLA4. κ−1
n (nbdz)1/2D

−1/2

Fn (θn, g, z0)EFn(m(Wi, θn, g)|Zi = z0)f(z0) →
π1(g), where π1(g) = (π1,1(g), ..., π1,k(g))′, for some π1,j(g) ∈ R+,∞ for j = 1, ..., p,

π1,j(g) = 0 for j = p+ 1, ..., k, and all g ∈ G.

In Assumption NLA4 the functions are evaluated at the true value θn, not at the null

value θn,∗, and (θn, Fn) ∈ F . In consequence, the moment functions in Assumption NLA4
satisfy the moment inequalities and π1,j(g) ≥ 0 for all j = 1, ..., p and g ∈ G. Note that
0 ≤ π1,j(g) ≤ h1,j(g) for all j = 1, ..., p and all g ∈ G (by Assumption NLA1(b) and
κn →∞.)
Let c0(ϕ(π1), h2, 1− α) denote the 1− α quantile of

T (ϕ(π1), h2) =

∫
S(νh2(g) + ϕ(π1(g)), h2(g) + εIk)dQ(g), where

ϕ(π1(g)) = (ϕ(π1,1(g)), ..., ϕ(π1,p(g)), 0, ..., 0)′ ∈ Rk and

ϕ(x) = 0 if x ≤ 1 and ϕ(x) =∞ if x > 1. (7.5)

Let ϕ(π1) denote ϕ(π1(·)). The probability limit of the GMS critical value c(ϕn(θ), ĥ2,n(θ),

1− α) is shown below to be c(ϕ(π1), h2, 1− α) = c0(ϕ(π1), h2, 1− α + η) + η.

Assumption LA5. (a) Q(Gϕ) = 1, where Gϕ = {g ∈ G : π1,j(g) 6= 1 for j = 1, ..., p},
and

(b) the distribution function (df) of T (ϕ(π1), h2) is continuous and strictly increasing

at x = c(ϕ(π1), h2, 1− α), where h2 = h2,F0(θ0).

The value 1 that appears in Gϕ in Assumption LA5(a) is the discontinuity point of ϕ.
Assumption LA5(a) implies that the (nbdz)−1/2-local power formulae given below do not

apply to certain “discontinuity vectors”π1(·), but this is not particularly restrictive.13

13Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain
lower and upper bounds on the local asymptotic power of GMS tests by replacing c(ϕ(π1), h2, 1−α) by
c(ϕ(π1−), h2, 1−α) and c(ϕ(π1+), h2, 1−α), respectively, in Theorem N3(a). By definition, ϕ(π1−) =
ϕ(π1(·)−) and ϕ(π1(g)−) is the limit from the left of ϕ(x) at x = π1(g). Likewise ϕ(π1+) = ϕ(π1(·)+)
and ϕ(π1(g)+) is the limit from the right of ϕ(x) at x = π1(g).
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Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian

random variables νh2(g) that enter T (ϕ(π1), h2).14

The following assumption is used only for PA tests.

Assumption LA6. The df of T (0G, h2) is continuous and strictly increasing at x =

c(0G, h2, 1− α), where h2 = h2,F0(θ0).

The probability limit of the PA critical value is shown to be c(0G, h2, 1 − α) =

c0(0G, h2, 1−α+ η) + η, where c0(0G, h2, 1−α) denotes the 1−α quantile of J(0G ,h2),0dθ
.

Theorem N3. Under Assumptions B, K, NM, S1, S2, and NLA1-NLA2,
(a) limn→∞ PFn(Tn(θn,∗) > c(ϕn(θn,∗), ĥ2,n(θn,∗), 1−α)) = 1−Jh,λ(c(ϕ(π1), h2, 1−α))

provided Assumptions GMS1, NLA4, and LA5 also hold,

(b) limn→∞ PFn(Tn(θn,∗) > c(0G, ĥ2,n(θn,∗), 1−α)) = 1−Jh,λ(c(0G, h2, 1−α)) provided

Assumption LA6 also holds, and

(c) limβ→∞[1− Jh,βλ0(c(ϕ(π1), h2, 1− α))] = limβ→∞[1− Jh,βλ0(c(0G, h2, 1− α))] = 1

provided Assumptions LA3 ′, S3, and S4 hold.

Comments. 1. Theorems N3(a) and N3(b) provide the (nbdz)−1/2-local alternative

power functions of the GMS and PA tests, respectively. Theorem N3(c) shows that the

asymptotic power of GMS and PA tests is arbitrarily close to one if the (nbdz)−1/2-local

alternative parameter λ = βλ0 is suffi ciently large in the sense that its scale β is large.

2. We have c(ϕ(π1), h2, 1−α) ≤ c(0G, h2, 1−α) (because ϕ(π1(g)) ≥ 0 for all g ∈ G
and S(m,Σ) is non-increasing in mI by Assumption S1(b), where m = (m′I ,m

′
II)
′).

Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA

test. Strict inequality holds whenever π1(·) is such that Q({g ∈ G : ϕ(π1(g)) > 0}) > 0.

The latter typically occurs whenever the conditional moment inequalityEFn(mj(Wi, θn,∗)

|Xi, Zi = z0) for some j = 1, ..., p is bounded away from zero as n → ∞ with positive

Xi probability.

3. The results of Theorem N3 hold under the null hypothesis as well as under the

alternative. The results under the null quantify the degree of asymptotic non-similarity

of the GMS and PA tests.
14If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power

of GMS tests by replacing Jh,λ(c(ϕ(π1), h2, 1 − α)) by Jh,λ(c(ϕ(π1), h2, 1 − α)+) and Jh,λ(c(ϕ(π1),
h2, 1 − α)−), respectively, in Theorem N3(a), where the latter are the limits from the left and right,
respectively, of Jh,λ(x) at x = c(ϕ(π1), h2, 1− α).
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4. Suppose the assumptions of Theorem N3 hold and each distribution Fn generates
the same identified set, call it Θ0 = ΘFn ∀n ≥ 1. Then, Theorem N3(a) implies that the

asymptotic probability that a GMS CS includes, θn,∗, which lies within O((nbdz)−1/2) of

the identified set, is Jh,λ(c(ϕ(π1), h2, 1−α)). If λ = βλ0 and Assumptions LA3 ′, S3, and

S4 also hold, then θn,∗ is not in Θ0 (at least for β large) and the asymptotic probability

that a GMS or PA CS includes θn,∗ is arbitrarily close to zero for β arbitrarily large by

Theorem N3(c). Analogous results hold for PA CS’s.

8 Monte Carlo Simulations

This section provides simulation evidence concerning the finite-sample properties

of the confidence intervals (CI’s) and tests introduced in the paper. We consider two

models: a quantile selection model and a conditional treatment effect model. In the

quantile selection model, we compare different versions of the CI’s introduced in the

paper. In the conditional treatment effect model, the tests are used directly (rather

than to construct CI’s), and we compare different versions of the tests.

8.1 Confidence Intervals and Tests Considered

To be specific, we compare different test statistics and critical values in terms of

their coverage probabilities (CP’s) for points in the identified set and their false cover-

age probabilities (FCP’s) for points outside the identified set in the quantile selection

model. We compare different test statistics and critical values in terms of their rejection

probabilities under the null (NRP’s) and under alternatives (ARP’s) in the conditional

treatment effect model. Obviously, one wants FCP’s (ARP’s) to be as small (large) as

possible. FCP’s are directly related to the power of the tests used to constructed the CI

and are related to the length of the CI, see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii)

CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as defined in Sections 3

and 4. In the conditional treatment effect model, different choices of the S function

(Sum, QLR and Max) coincide because there is only one conditional moment inequality.

We thus do not distinguish them in the results. Asymptotic normal, bootstrap, and

subsampling critical values are computed. In particular, we consider PA/Asy, PA/Bt,
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GMS/Asy, GMS/Bt, and Sub critical values.15 The critical values are simulated using

5001 repetitions (for each original sample repetition). The base case values of κn, Bn,

and ε for the GMS critical values are specified as follows and are used in both models:

κn =
√

0.3 log(n), Bn =
√

0.4 log(n)/ log(log(n)), and ε = 5/100. Additional results are

reported for variations of these values. The base case sample size is 250. Some additional

results are reported for n = 100 and 500. The subsample size is 20 when the sample

size is 250. Results are reported for nominal 0.95 CI’s and 0.05 tests. The number of

simulation repetitions used to compute CP’s and FCP’s is 5000 for all cases. This yields

a simulation standard error of 0.0031.

In the first model, the reported FCP’s are “CP-corrected”by employing a critical

value that yields a CP equal to 0.95 at the closest point of the identified set if the CP at

the closest point is less than 0.95. If the CP at the closest point is greater than 0.95, then

no CP correction is carried out. The reason for this “asymmetric”CP correction is that

CS’s may have CP’s greater than 0.95 for points in the identified set, even asymptotically,

in the present context and one does not want to reward over-coverage of points in the

identified set by CP correcting the critical values when making comparisons of FCP’s.

In the second model, the ARP’s are “NRP-corrected”analogously.

A bandwidth b and a kernel function are required to compute the test statistic

and the critical values. The kernel function is chosen to be the Epanechnikov kernel:

K(x) = 0.75 max{1− x2, 0}. We use the bandwidth b = b0n−2/7, where b0 = 4.68σ̂z and

σ̂z is the estimated standard deviation of Zi.16 Both the kernel function and the band-

width selection procedure are the same for both simulation examples. For comparative

purposes, some results are also reported for b = 0.5b0n−2/7 and b = 2b0n−2/7.

8.2 Nonparametric Quantile Selection

This model extends the quantile selection model in AS1. We are interested in the

conditional τ -quantile of a treatment response given the value of covariates Xi and Zi.

15The Sum, QLR, and Max statistics use the functions S1, S2, and S3, respectively. The PA/Asy and
PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise
for the GMS/Asy and GMS/Bt critical values. The quantity η is set to 0 because its value, provided it
is suffi ciently small, has no effect in these models. Sub denotes a (non-recentered) subsampling critical
value. It is the 0.95 sample quantile of the subsample statistics, each of which is defined exactly as
the full sample statistic is defined but using the subsample in place of the full sample. The number of
subsamples considered is 5001. They are drawn randomly without replacement.
16The bandwidth b is under-smoothed due to the factor n−2/7, which is the same as in Chernozhukov,

Lee, and Rosen (2008), rather than n−1/5. It is somewhat arbitrary, but seems to work well in practice.
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The results also apply to other types of response variables with selection. As in AS1, Xi

is assumed to satisfy the quantile monotone instrumental variable (QMIV) assumption.

In this paper, we add an additional covariate Zi that does not necessarily satisfy the

QMIV assumption. The results of AS1 do not cover such a model.

The model setup is as follows. The observations are i.i.d. Let yi(t) ∈ Y be individual
i’s “conjectured”response variable given treatment t ∈ T . Let Ti be the realization of
the treatment for individual i. The observed outcome variable is Yi = yi(Ti). Let Xi be

a covariate whose support contains an ordered set X . Let Zi be another covariate. We
observe Wi = (Yi, Xi, Zi, Ti). The parameter of interest, θ, is the conditional τ -quantile

of yi(t) given (Xi, Zi) = (x0, z0) for some t ∈ T , some x0 ∈ X , and some z0 ∈ Z,
which is denoted Qyi(t)|Xi,Zi(τ |x0, z0). We assume the conditional distribution of yi(t)

given (Xi, Zi) = (x, z0) is absolutely continuous at its τ -quantile for all x ∈ X . We
assume that Xi satisfies the QMIV assumption given Zi = z0, i.e., Qyi(t)|Xi,Zi(τ |x1, z0) ≤
Qyi(t)|Xi,Zi(τ |x2, z0) for all x1 ≤ x2.

AS1 describes four empirical problems that fit in their quantile selection model. All

of those problems fit in the nonparametric quantile selection model considered here if

one or more of the covariates is not a QMIV.

The model setup above implies the following conditional moment inequalities:

E (1(Xi ≤ x0)[1(Yi ≤ θ, Ti = t) + 1(Ti 6= t)− τ ]|Xi, Zi = z0) ≥ 0 a.s. and

E (1(Xi ≥ x0)[τ − 1(Yi ≤ θ, Ti = t)]|Xi, Zi = z0) ≥ 0 a.s. (8.1)

For the simulations, we consider the following data generating process (DGP):

yi(1) = µ(Xi, Zi) + σ (Xi, Zi)ui, where ∂µ (x, z) /∂x ≥ 0 and σ (x, z) ≥ 0,

Ti = 1{L (Xi, Zi) + εi ≥ 0}, where ∂L (x, z) /∂x ≥ 0,

Xi, Zi ∼ Unif [0, 2], (εi, ui) ∼ N(0, I2), (Xi, Zi) ⊥ (εi, ui), Xi ⊥ Zi,

Yi = yi(Ti), and t = 1. (8.2)

The variable yi(0) is irrelevant (because Yi enters the moment inequalities in (8.1) only

through 1(Yi ≤ θ, Ti = t)) and, hence, is left undefined. With this DGP, Xi satisfies

the QMIV assumption for any τ ∈ (0, 1) and Zi might not. We consider the median:

τ = 0.5. We focus on the conditional median of yi(1) given (Xi, Zi) = (1.5, 1.0), i.e.,

θ = Qyi(1)|Xi,Zi(0.5|x0, z0) with (x0, z0) = (1.5, 1.0).
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Some algebra shows that the conditional moment inequalities in (8.1) imply:

θ ≥ θ(x, z0) := µ(x, z0) + σ (x, z0) Φ−1
(
1− [2Φ (L (x, z0))]−1) for x ≤ 1.5 and

θ ≤ θ̄ (x, z0) := µ(x, z0) + σ (x, z0) Φ−1
(
[2Φ (L (x, z0))]−1) for x ≥ 1.5. (8.3)

We call θ(x, z0) and θ̄ (x, z0) the lower and upper bound functions on θ, respectively. The

identified set for the quantile selection model is
[
supx≤x0 θ(x, z0), infx≥x0 θ̄ (x, z0)

]
. The

shape of the lower and upper bound functions depends on the µ, σ, and L functions. We

consider three specifications, one that yields flat bound functions, another that yields

kinked bound functions, and a third that yields peaked bound functions.17

The CP or FCP performance of a CI at a particular value θ depends on the shape

of the conditional moment functions, as functions of x and z and evaluated at θ. In the

present model, the conditional moment functions are

β(x, z, θ) =

{
E (1(Yi ≤ θ, Ti = 1) + 1(Ti 6= 1)− 0.5| (Xi, Zi) = (x, z)) if x < 1.5

E (0.5− 1(Yi ≤ θ, Ti = 1)| (Xi, Zi) = (x, z)) if x ≥ 1.5.

(8.4)

The conditional moment functions as functions of x at z = z0 are flat, kinked and peaked

under the three specifications of µ, σ, and L functions, respectively. The functions as a

function of z at each x also possess those three shapes at the point z = z0 depending on

the specification.

8.2.1 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0, 1], i.e., intervals, as in AS1. The regressor Xi is transformed via the method

described in Section 9 in AS1 to lie in (0, 1).18 The hypercubes have side-edge lengths

17For the flat bound DGP, µ(x, z) = 2, σ (x, z) = 1, and L (x, z) = 1 for x, z ∈ [0, 2] . In this case,

θ(x, z) = 2 + Φ−1
(

1− [2Φ (1)]
−1
)
for x ≤ 1.5 and θ̄ (x, z) = 2 + Φ−1

(
[2Φ (1)]

−1
)
for x > 1.5. For

the kinked bound DGP, µ(x, z) = (x ∧ 1) + (z ∧ 1), σ (x, z) = (x+ z) /2, L (x, z) = x ∧ 1, θ(x, z) =

(x ∧ 1) + (z ∧ 1) + (x+ z) · Φ−1
(

1− [2Φ (x ∧ 1)]
−1
)
/2 for x ≤ 1.5, and θ̄ (x, z) = (x ∧ 1) + (z ∧ 1)

+(x+ z) ·Φ−1
(

[2Φ (x ∧ 1)]
−1
)
/2 for x > 1.5. For the peaked bound function, µ(x, z) = (x∧1)+(z∧1),

σ (x, z) =
(
x5 + z5

)
/2, L (x, z) = x∧1, θ(x, z) = (x∧1)+(z∧1)+

(
x5 + z5

)
Φ−1

(
1− [2Φ (x ∧ 1)]−1

)
/2

for x ≤ 1.5, and θ̄ (x, z) = (x ∧ 1) + (z ∧ 1) +
(
x5 + z5

)
Φ−1

(
[2Φ (x ∧ 1)]−1

)
/2 for x > 1.5.

18This method takes the transformed regressor to be Φ((Xi − Xn)/σX,n), where Xn and σX,n are
the sample mean and standard deviation of Xi and Φ(·) is the standard normal distribution function.
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(2r)−1 for r = r0, ..., r1, where r0 = 1 and the base case value of r1 is 3.19 The base case

number of hypercubes is 12. We also report results for r1 = 2, 4, which yield 6, and 20

hypercubes, respectively.

Note that we use a smaller value of r1 as the base-case value in this paper than in

AS1. This is because the test statistic for a nonparametric parameter of interest depends

only on observations local to Zi = z0, which is a fraction of the full sample. For example,

the Epanechnikov kernel gives positive weight only to observations within distance b to

z0. When n = 250 and Z ∼ Unif [0, 2], observations that receive positive weight lie in

an interval centered at z0 of length about 2b = 9.36σZn
−2/7 ≈ 0.64, which is 32 of the

support of Zi. This interval on average contains 80 effective observations when n = 250.

Thus, the finest cube when r1 = 3 contains 80/6 ≈ 13 effective observations. On the

other hand, the finest cube when r1 = 7 contains only 80/14 ≈ 5.7 effective observations.

For this reason, a value of r1 that is smaller than that used in AS1 leads to better CP

and FCP performance of the CS’s in the nonparametric model.

8.2.2 Simulation Results

Tables I-III report CP’s and CP-corrected FCP’s for a variety of test statistics and

critical values proposed in this paper for a range of cases. The CP’s are for the lower

endpoint of the identified interval in Tables I-III and for the flat, kinked, and peaked

bound functions. FCP’s are for points below the lower endpoint.20

Table I provides comparisons of different test statistics when each statistic is cou-

pled with PA/Asy and GMS/Asy critical values. Table II provides comparisons of the

PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and

KS/Max test statistics. Table III provides robustness results for the CvM/Max and

KS/Max statistics coupled with GMS/Asy critical values. The results in Table III show

the degree of sensitivity of the results to (i) the sample size, n, (ii) the number of cubes

employed, as indexed by r1, (iii) the choice of (κn, Bn) for the GMS/Asy critical values,

(iv) the value of ε, upon which the variance estimator Σn(θ, g) depends, and (v) the

bandwidth choice. Table III also reports results for CI’s with nominal level .5, which

19For simplicity, we let r1 denote r1,n here and below.
20Note that the DGP is the same for FCP’s as for CP’s, just the value θ that is to be cov-

ered is different. For the lower endpoint of the identified set, FCP’s are computed for θ equal to
supx≤1.5 θ(x, 1) − c × (250/n)5/14, where c = .34, .78, and 1.1 in the flat, kinked, and peaked bound
cases, respectively. These points are chosen to yield similar values for the FCP’s across the different
cases considered.
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yield asymptotically half-median unbiased estimates of the lower endpoint.

Table I shows that all of the CI’s have coverage probabilities greater than or equal to

0.95 for all three specifications of the bound functions. The PA/Asy CI’s have noticeably

larger over-coverage than the GMS/Asy CI’s in all cases. The GMS/Asy CI’s have CP’s

close to 0.95 with the flat bound DGP and larger than 0.95 with the other two DGP’s.

The CP’s are not sensitive to the choice of the test statistics.

The FCP results in Table 1 show (i) a clear advantage of the GMS-based CI’s over

the PA-based ones, (ii) a clear advantage of the CvM-based CI’s over the KS-based ones,

Table I. Nonparametric Quantile Selection Model: Base-Case Test Statistic Comparisons

(a) Coverage Probabilities

Statistic:
CvM/

Sum

CvM/

QLR

CvM/

Max

KS/

Sum

KS/

QLR

KS/

Max

DGP Crit Val

Flat Bound PA/Asy .974 .974 .971 .968 .968 .963

GMS/Asy .953 .953 .951 .955 .955 .953

Kinked Bound PA/Asy .998 .998 .997 .995 .995 .995

GMS/Asy .990 .990 .989 .989 .989 .987

Peaked Bound PA/Asy .998 .998 .997 .995 .995 .996

GMS/Asy .992 .992 .991 .991 .991 .991

(b) False Coverage Probabilities (Coverage Probability Corrected)

Flat Bound PA/Asy .57 .57 .54 .67 .67 .64

GMS/Asy .45 .45 .45 .61 .61 .60

Kinked Bound PA/Asy .67 .67 .65 .67 .67 .64

GMS/Asy .49 .49 .49 .57 .57 .57

Peaked Bound PA/Asy .57 .57 .55 .60 .60 .56

GMS/Asy .50 .50 .49 .55 .55 .53
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and (iii) little difference between the test statistic functions: Sum, QLR or Max. The

comparison holds for all three types of DGP’s.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and

Sub. The results show little difference in CP’s and FCP’s between the Asy and Bt

versions of the CI’s regardless of the DGP specification or the test statistic choice (CvM

Table II. Nonparametric Quantile Selection Model: Base-Case Critical Value

Comparisons

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat Bound CvM/Max .971 .971 .951 .948 .963

KS/Max .963 .963 .953 .948 .909

Kinked Bound CvM/Max .997 .998 .989 .988 .990

KS/Max .995 .996 .987 .986 .959

Peaked Bound CvM/Max .997 .997 .991 .990 .991

KS/Max .996 .996 .991 .990 .968

(b) False Coverage Probabilities (Coverage Probability Corrected)

Flat Bound CvM/Max .54 .55 .45 .44 .53

KS/Max .64 .66 .60 .57 .66

Kinked Bound CvM/Max .65 .66 .49 .47 .51

KS/Max .64 .67 .57 .53 .40

Peaked Bound CvM/Max .55 .54 .49 .47 .51

KS/Max .56 .55 .53 .49 .39
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or KS).21

The GMS critical values noticeably outperform the PA counterparts in terms of

FCP’s. The CvM/Max test statistic coupled with the GMS/Asy or GMS/Bt critical

values outperforms all other combinations in terms of FCP’s in all cases.

Table III provides results for the CvM/Max and KS/Max statistics coupled with the

GMS/Asy critical values for several variations of the base case. The table shows that

the CI’s perform similarly at different sample sizes, with different choices of cells and

Table III. Nonparametric Quantile Selection Model with Flat-Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .951 .953 .45 .60

ε = 0.05, b = b0n−2/7)

n = 100 .950 .956 .46 .61

n = 500 .950 .953 .44 .59

r1 = 2 .951 .950 .44 .56

r1 = 4 .952 .961 .45 .63

(κn, Bn) = 1/2(κn,bc, Bn,bc) .948 .947 .46 .61

(κn, Bn) = 2(κn,bc, Bn,bc) .967 .961 .48 .62

ε = 1/100 .949 .953 .45 .63

b = 0.5b0n−2/7 .960 .963 .68 .77

b = 2b0n−2/7 .950 .948 .19 .34

α = .5 .525 .516 .045 .072

α = .5 & n = 500 .517 .519 .042 .070

21Hall (1993) shows that undersmoothing or bias correction is necessary for consistency of the boot-
strap. Undersmoothing is employed in this paper. Hall (1993) also shows that in the context of
nonparametric curve estimation, the bootstrap has advantages over the Gaussian approximation in
providing a uniform confidence band for the curve. This result does not shed light on the relative per-
formance of Asy and Bt-based tests in this paper because (i) the test statistics are not asymptotically
pivotal in the present context, whereas they are in the situation consider in Hall (1993), and (ii) we
consider inference at just one point (Z = z0) of the curve.
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with a smaller ε.22 There is some sensitivity to the magnitude of the GMS tuning pa-

rameters (κn, Bn)– doubling their values increases both the CP’s and the FCP’s, but

halving their values does not decrease the CP’s much below 0.95. There is more sensi-

tivity to the kernel bandwidth– a larger bandwidth reduces the FCP drastically while

keeping the CP at around 0.95 and a smaller bandwidth does the opposite. This result

is closely related to the flatness of the bound. The bound is completely flat on the

support of Zi. It is more effi cient to use more of the data information by using a larger

bandwidth. This phenomenon does not occur with the kinked bound and the peaked

bound as shown in Tables A1 and A2 in Appendix 2 in Andrews and Shi (2010a).

The last two rows of Table III show that a CI based on α = 0.5 provides a good

choice for an estimator of the identified set. For example, the lower endpoint estimator

based on the CvM/Max-GMS/Asy CS with α = 0.5 is close to being median-unbiased.

It is less than the lower bound with probability 0.525 and exceeds it with probability

0.475 when n = 250.

To sum up, we find that the CI’s based on the CvM /Max statistic with the GMS/Asy

critical value perform the best in the quantile selection example considered. Equally good

are the CI’s that use the Sum or QLR statistic in place of the Max statistic and the

GMS/Bt critical value in place of the GMS/Asy critical value. The CP’s and FCP’s of

the CvM/Max-GMS/Asy CI’s are quite good over a range of sample sizes. The findings

echo those in AS1 in the parametric quantile selection example.

8.3 Conditional Treatment Effects

In this example, we illustrate how the proposed method can be used to test functional

inequality hypotheses.

We are interested in the effect of a randomly assigned binary treatment (Di) con-

ditional on covariates Xi and Zi. The outcome variable of interest, Yi is a mixture of

two potential outcomes yi(1) and yi(0): Yi = Diyi(1) + (1 − Di)yi(0). The difference

yi(1) − y(0) is the effect of treatment on individual i. The treatment effect for every

individual cannot be identified (even partially) because yi(1) and yi(0) are never ob-

served simultaneously. Thus, one often focuses on the average treatment effect of a

22The θ values at which the FCP’s are computed differs from the lower endpoint of the identified set
by a distance that depends on (nb)−1/2. Table III suggests that the "local alternatives" that give equal
FCP’s converge to the null hypothesis at a rate that is slightly faster than (nb)−1/2 for sample sizes n
in the range 100 to 500.
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chosen group of individuals with certain observed characteristics. The chosen group of

individuals that we consider here is individuals with Zi = z0 ∈ Z and Xi ∈ X , where Z
and X are the supports of Zi and Xi, respectively. We test the hypothesis:

E[yi(1)− yi(0)|(Xi, Zi) = (x, z0)] ≥ 0 for all x ∈ X . (8.5)

The framework can be extended to treatments with any finite number of treatment

values. If the Xi variable is not present, the problem is a trivial case of (2.1) where X is
a singleton. If the Zi variable is not present, the problem fits in the framework of AS1

and Lee, Song, and Whang (2009). The nonparametric method proposed in this paper

allows us to focus on a particular value of Zi.

Examples of the above hypothesis include: (i) whether a certain drug reduces blood

pressure for people of all ages and genders (Xi = (age, gender)) whose body mass index

(Zi) is at certain level (z0); (ii) whether students of a certain IQ score (Zi = z0) do

better in smaller classes than in bigger classes regardless of their parents’income (Xi);

and (iii) whether group liability discourages default better than individual liability in

a micro-loan program for villages of all sizes (Xi) and certain average income level

(Zi = z0).

The model setup is as follows. We assume that Di is randomly assigned and Pr(Di =

1) = p ∈ (0, 1).23 Then,

E[yi(1)− yi(0)|(Xi, Zi) = (x, z0)] = E

[
YiDi

p
− Yi(1−Di)

1− p |(Xi, Zi) = (x, z0)

]
. (8.6)

Then, the hypothesis (8.5) is equivalent to testing if θ = 0 is in the identified set of the

following moment inequality model:

E

[
YiDi

p
− Yi(1−Di)

1− p − θ|(Xi, Zi) = (x, z0)

]
≥ 0 for all x ∈ X . (8.7)

23It is easy to allow for “selection on observables,”i.e., to allow Di to depend on Xi and Zi. E.g., see
Imbens (2004).
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For the simulations, we consider the following data generating process (DGP):

yi(0) = 0, yi(1) = µ(Xi, Zi) + ui, Di = 1{εi ≥ 0},
Xi ∼ Unif [0, 2], Zi ∼ Unif [−1, 1], (εi, ui) ∼ N(0, I2),

(Xi, Zi) ⊥ (εi, ui), and Xi ⊥ Zi. (8.8)

The function µ(x, z) is the conditional treatment effect function at (Xi, Zi) = (x, z).We

focus on z0 = 0.

Three different µ(x, z) functions are considered, which are flat, kinked, and tilted

as a function of z, respectively. They are: µ1(x, z) = −a, µ2(x, z) = |x| + |z| − a, and
µ3(x, z) = log(z+1)−a, where a is a constant. The hypothesis (8.5) holds if a = 0 and is

violated if a > 0. The functions µ1 and µ2 do not change sign in a neighborhood around

z0, whereas the tilted function µ3 changes sign in any neighborhood of z0 if a = 0.

Notice that there is only one conditional moment inequality in this model (i.e., p = 1

and v = 0). In consequence, the different S-functions, i.e. Sum, Max and QLR, are

identical to each other and we do not distinguish them in the results reported below.

8.3.1 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0, 1], i.e., intervals, as in the example above. The regressor Xi is transformed to lie

in (0, 1) by the same method as in the example above. The hypercubes have side-edge

lengths (2r)−1 for r = r0, ..., r1, where r0 = 1 and the base case value of r1 is 3. The base

case number of hypercubes is 12. We also report results for r1 = 2 and 4, which yield 6

and 20 hypercubes, respectively.

8.3.2 Simulation Results

Tables IV and V report NRP’s and ARP’s, respectively, for a variety of test statistics

and critical values proposed in this paper for a range of cases. The NRP’s are for a = 0

and the ARP’s are for a > 0.24

Table IV provides comparisons of the PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub

24Note that, contrary to the previous simulation example, the DGP is different for the NRP’s and for
the ARP’s. The null hypothesis stays the same. ARP’s are computed for a equal to c × (250/n)5/14,
where c = 0.25, 1.05, and 0.25 in the flat, kinked, and tilted bound cases, respectively. These points are
chosen to yield similar values for the ARP’s across the different cases considered.
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critical values for the CvM and KS test statistics. Table V provides robustness results

for the CvM and KS test statistics in the flat bound case. Table V shows the degree of

sensitivity of the results to (i) the sample size, n, (ii) the number of cubes employed, as

indexed by r1, (iii) the choice of (κn, Bn) for the GMS/Asy critical values, (iv) the value

of ε, upon which the variance estimator Σn(θ, g) depends, and (v) the bandwidth b.

Table IV shows that tests with the Asy versions of both the PA and GMS critical

values have NRP’s less than or equal to the nominal level 0.05 with the flat bound and

kinked bound DGP’s. The tilted bound DGP is a diffi cult case for NRP control because

Table IV. Nonparametric Conditional Treatment Effect Model: Base-Case

Comparisons

(a) Null Rejection Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat Bound CvM .040 .054 .044 .063 .106

KS .028 .039 .031 .046 .231

Kinked Bound CvM .000 .000 .000 .000 .000

KS .000 .000 .000 .000 .002

Tilted Bound CvM .066 .085 .072 .094 .148

KS .044 .057 .047 .064 .280

(b) Rejection Probabilities under H1 (Null Rejection Probability Corrected)

Flat Bound CvM .50 .57 .51 .54 .52

KS .30 .42 .30 .42 .35

Kinked Bound CvM .32 .24 .52 .59 .63

KS .37 .19 .49 .53 .79

Tilted Bound CvM .53 .54 .53 .53 .52

KS .36 .46 .36 .44 .35
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the conditional mean function changes sign at z = z0 and the integral of the mean

function over any symmetric neighborhood around z0 is negative under the DGP with

a = 0.With this diffi cult DGP, tests with Asy critical values using the KS statistic have

NRP’s less than or equal to 0.05 and tests using the CvM statistic have NRP’s slightly

above 0.05. The tests using Bt critical values have noticeably greater over-rejection

compared to their counterparts using Asy critical values. The tests using subsampling

critical values with either the CvM or KS test statistic appear unreliable: their NRP’s

exceed 0.05 by a substantial amount with not only the tilted bound DGP but also the

flat bound DGP.

The ARP comparison in Table IV shows (i) a clear advantage of CvM-based tests

over KS-based tests, and (ii) clearly better performance of GMS-based tests compared

to PA-based ones with the kinked bound DGP and similar performance of GMS and PA

critical values with the flat and the tilted bound DGP’s.

Table V provides results for the CvM and KS statistics coupled with the GMS/Asy

critical values for several variations of the base case with the flat bound function. Anal-

ogous results for the kinked and tilted bound functions are given in Tables A3 and A4

in Appendix 2 (in Andrews and Shi (2010a)). The results in Table V show little sensi-

tivity to the sample size and a smaller ε for the CvM-based test. The ARP performance

of the KS-based test improves noticeably with the sample size, but stays much worse

than that of the CvM-based test at all three sample sizes considered. There is some

sensitivity to the number of cubes and the magnitude of the GMS tuning parameters

(κn, Bn). Increasing the number of cubes or increasing (κn, Bn) reduces both the NRP’s

and the ARP’s. As in the quantile selection example, there is some sensitivity to the

bandwidth. A larger bandwidth leads to higher ARP’s but still keeps the NRP’s below

0.05. As discussed in the quantile selection example, this is closely related to the flatness

of the bound and the same phenomenon does not occur with the other types of bounds,

see Tables A3 and A4 in Appendix 2 (in Andrews and Shi (2010a)).

In conclusion, the comparison between test statistics and critical values is largely con-

sistent with the quantile selection example, with the CvM-GMS/Asy couple performing

the best both in terms of NRP’s and ARP’s. The CvM-GMS/Bt couple has somewhat

worse NRP than CvM-GMS/Asy. The performance of CvM-GMS/Asy is quite good

over a range of sample sizes.
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Table V. Nonparametric Conditional Treatment Effect Model with Flat Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej. Probs. under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .044 .031 .51 .30

ε = 0.05, b = b0n−2/7)

n = 100 .047 .026 .50 .26

n = 500 .048 .037 .53 .34

r1 = 2 .047 .040 .51 .36

r1 = 4 .044 .024 .50 .26

(κn, Bn) = 1/2(κn,bc, Bn,bc) .052 .037 .51 .31

(κn, Bn) = 2(κn,bc, Bn,bc) .040 .028 .50 .30

ε = 1/100 .046 .027 .51 .25

b = 0.5b0n−2/7 .041 .020 .28 .14

b = 2b0n−2/7 .049 .043 .78 .57
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9 Appendix 1

9.1 S Function Assumptions

Let mI = (m1, ...,mp)
′ and mII = (mp+1, ...,mk)

′. Let ∆ be the set of k× k positive-
definite diagonal matrices. Let W be the set of k × k positive-definite matrices. Let
S = {(m,Σ) : m ∈ Rp

[+∞] ×Rv, Σ ∈ W}. Let R+ = {x ∈ R : x ≥ 0}.
We consider functions S that satisfy the following conditions.

Assumption S1. ∀ (m,Σ) ∈ S,
(a) S (Dm,DΣD) = S (m,Σ) ∀D ∈ ∆,

(b) S (mI ,mII ,Σ) is non-increasing in each element of mI ,

(c) S (m,Σ) ≥ 0,

(d) S is continuous, and

(e) S (m,Σ + Σ1) ≤ S (m,Σ) for all k × k positive semi-definite matrices Σ1.

Note that Assumption S1(d) requires S to be continuous in m at all points m in the

extended vector space Rp
[+∞] ×Rv, not only for points in Rp+v.

Assumption S2. S(m,Σ) is uniformly continuous in the sense that, for all m0 ∈ Rk

and all pd Σ0, supµ∈Rp+×{0}v |S(m+ µ,Σ)− S(m0 + µ,Σ0)| → 0 as (m,Σ)→ (m0,Σ0).25

The following two assumptions are used only to establish the power properties of

tests.

Assumption S3. S(m,Σ) > 0 if and only if mj < 0 for some j = 1, ..., p or mj 6= 0 for

some j = p+ 1, ..., k, where m = (m1, ...,mk)
′ and Σ ∈ W .

Assumption S4. For some χ > 0, S(am,Σ) = aχS(m,Σ) for all scalars a > 0, m ∈ Rk,

and Σ ∈ W .

9.2 X-Instrument Assumptions

The collection G must satisfy the following “manageability”condition. The manage-
ability condition is from Pollard (1990) and is defined and explained in Appendix E of

AS2.
25Assumption S2 is equivalent to the same condition with µ vectors whose elements exceed −η1 for

some η1 <∞. This is used in the proofs below.
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Assumption NM. (a) 0 ≤ gj(x) ≤ G ∀x ∈ Rdx ,∀j ≤ k,∀g ∈ G, for some constant
G <∞, and
(b) the processes {gj(Xn,i) : g ∈ G, i ≤ n, n ≥ 1} are manageable with respect to

the constant function G for j = 1, ..., k, where {Xn,i : i ≤ n, n ≥ 1} is a row-wise i.i.d.
triangular array with Xn,i ∼ FX,n and FX,n is the distribution of Xn,i under Fn for some

(θn, Fn) ∈ F+ for n ≥ 1.26

9.3 Proof of Lemma N1

Proof of Lemma N1. We have: θ /∈ ΘF (G) implies that EF (mj(Wi, θ)gj(Xi)|Zi =

z0) < 0 for some j ≤ p or EF (mj(Wi, θ)gj(Xi)|Zi = z0) 6= 0 for some j = p+ 1, ..., k. By

the law of iterated expectations and gj(x) ≥ 0 for all x ∈ Rdx and j ≤ p, this implies

that PF (Xi ∈ XF (θ)|Zi = z0) > 0 and, hence, θ /∈ ΘF .

On the other hand, θ /∈ ΘF implies that PF (Xi ∈ XF (θ)|Zi = z0) > 0 and the latter

implies that θ /∈ ΘF (G) by Assumption NCI. �

9.4 Proof of Theorem N1

In this section, we prove Theorem N1. We start by introducing some notation. Next,

we establish Theorem AN1, which is used in the proof of Theorem N1. To prove Theorem

AN1 we use Lemmas AN1-AN3. The proofs of the latter use Lemmas AN4-AN6.

9.4.1 Notation

First, we define sample-size n population analogues of the asymptotic covariance

kernels that are defined in (4.5). We make their dependence on b = bn explicit. Let27

h2,F (θ, g, g∗, b) = D
−1/2
F (θ, b)ΣF (θ, g, g∗, b)D

−1/2
F (θ, b)

= CovF

(
D
−1/2
F (θ, b)m(Wi, θ, g, b), D

−1/2
F (θ, b)m(Wi, θ, g

∗, b)
)
,

ΣF (θ, g, g∗, b) = CovF (m(Wi, θ, g, b),m(Wi, θ, g
∗, b)), and (9.1)

DF (θ, b) = Diag(ΣF (θ, 1k, 1k, b)) (= Diag(V arF (b−dz/2Kb(Zi)m(Wi, θ)))).

26The asymptotic results given in the paper hold with Assumption NM replaced by any alternative
assumption that is suffi cient to obtain the requisite empirical process results given in Lemma AN3
below.
27For simplicity, there is some abuse of notation in the definitions in (9.1) because h2,F (θ, g, g∗, b) has

a different definition than h2,F (θ, g, g∗, z0) in (4.5), but the only difference in the notation is b versus
z0. The same is true for ΣF (θ, g, g∗, b) and DF (θ, b) versus ΣF (θ, g, g∗, z0) and DF (θ, z0).
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Let h2,F (θ, b) abbreviate the sample-size n covariance kernel {h2,F (θ, g, g∗, b) : g, g∗ ∈ G}
of n1/2mn(θ, g), which depends on n through b.

Next, define

h1,n,F (θ, g, b) = n1/2D
−1/2
F (θ, b)EFm(Wi, θ, g, b),

hn,F (θ, g, g∗, b) = (h1,n,F (θ, g, b), h2,F (θ, g, g∗, b)),

ĥ2,n,F (θ, g, g∗, b) = D
−1/2
F (θ, b)Σ̂n(θ, g, g∗)D

−1/2
F (θ, b),

h2,n,F (θ, g, b) = ĥ2,n,F (θ, g, g, b) + εĥ2,n,F (θ, 1k, 1k, b)

= D
−1/2
F (θ, b)Σn(θ, g)D

−1/2
F (θ, b), and

νn,F (θ, g, b) = n−1/2

n∑
i=1

D
−1/2
F (θ, b)[m(Wi, θ, g, b)− EFm(Wi, θ, g, b)], (9.2)

where m(Wi, θ, g, b), Σn(θ, g), and Σ̂n(θ, g, g∗) are defined in (3.3), (3.5), and (4.6),

respectively. Below we write Tn(θ) as a function of the quantities in (9.2). As de-

fined, (i) h1,n,F (θ, g, b) is a k-vector of normalized means of the moment functions

D
−1/2
F (θ, b)m(Wi, θ, g, b) for g ∈ G, which measure the slackness of the population

moment conditions under (θ, F ), (ii) hn,F (θ, g, g∗, b) contains the normalized means of

D
−1/2
F (θ, b)m(Wi, θ, g, b) and the covariances of D

−1/2
F (θ, b)m(Wi, θ, g, b) and D

−1/2
F (θ, b)

m(Wi, θ, g
∗, b), (iii) ĥ2,n,F (θ, g, g∗, b) and h2,n,F (θ, g, b) are hybrid quantities– part popu-

lation, part sample– based on Σ̂n(θ, g, g∗) and Σn(θ, g), respectively, and (iv) νn,F (θ, g, b)

is the sample average of D−1/2
F (θ, b) ×m(Wi, θ, g, b) normalized to have mean zero and

variance that is O(1) but not o(1). Note that νn,F (θ, ·, b) is an empirical process indexed
by g ∈ G with covariance kernel given by h2,F (θ, g, g∗, b).

The normalized sample moments n1/2mn(θ, g) can be written as

n1/2mn(θ, g) = D
1/2
F (θ, b)(νn,F (θ, g, b) + h1,n,F (θ, g, b)). (9.3)

The test statistic Tn(θ), defined in (3.6), can be written as

Tn(θ) =

∫
S(νn,F (θ, g, b) + h1,n,F (θ, g, b), h2,n,F (θ, g, b))dQ(g). (9.4)

Note the close resemblance between Tn(θ) and T (h) (defined in (4.1)).

Let H1 denote the set of all functions from G to Rp
[+∞] × {0}v.

For notational simplicity, for any function of the form rF (θ, g, b) for g ∈ G, let
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rF (θ, b) denote the function rF (θ, ·, b) on G. Correspondingly, for any function of the
form rF (θ, g, g∗, b) for g, g∗ ∈ G, let rF (θ, b) denote the function rF (θ, ·, ·, b) on G2.

9.4.2 Theorem AN1

The following Theorem provides a uniform asymptotic distributional result for the

test statistic Tn(θ). It is an analogue of Theorem 1 of AS1. It used in the proof of

Theorem N1.

Theorem AN1. Suppose Assumptions B, K, NM, S1, and S2 hold. Then, for every
compact subset H2,cpt of H2, all constants xhn,F (θ,b) ∈ R that may depend on (θ, F ) and

n through hn,F (θ, b), and all δ > 0, we have

(a) lim sup
n→∞

sup
(θ,F )∈F :

h2,F (θ)∈H2,cpt

[
PF (Tn(θ) > xhn,F (θ,b))− P (T (hn,F (θ)) + δ > xhn,F (θ,b))

]
≤ 0,

(b) lim inf
n→∞

inf
(θ,F )∈F :

h2,F (θ)∈H2,cpt

[
PF (Tn(θ) > xhn,F (θ,b))− P (T (hn,F (θ))− δ > xhn,F (θ,b))

]
≥ 0,

where T (h) =

∫
S(νh2(g) + h1(g), h2(g) + εIk)dQ(g) and νh2(·) is the Gaussian

process defined in (4.2).

Comments. 1. Theorem AN1 gives a uniform asymptotic approximation to the distri-
bution function of Tn(θ). Uniformity holds without any restrictions on the normalized

mean (i.e., moment inequality slackness) functions {h1,n,Fn(θn, b) : n ≥ 1}. In particu-
lar, Theorem AN1 does not require {h1,n,Fn(θn, b) : n ≥ 1} to converge as n → ∞ or

to belong to a compact set. The Theorem does not require that Tn(θ) has a unique

asymptotic distribution under any sequence {(θn, Fn) ∈ F : n ≥ 1}.
2. The supremum and infimum in Theorem AN1 are over compact sets of asymptotic

covariance kernelsH2,cpt, rather than the parameter spacesH2 of covariance kernels. This

is not particularly problematic because the potential asymptotic size problems that arise

in moment inequality models are due to the pointwise discontinuity of the asymptotic

distribution of the test statistic as a function of the means of the moment inequality

functions, not as a function of the covariances between different moment inequalities.
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9.4.3 Lemmas AN1-AN3

The proof of Theorem AN1 uses the following three Lemmas. The first Lemma is a

key result that establishes that the finite-sample covariance kernel h2,F (θ, b) converges to

the asymptotic covariance kernel h2,F (θ) in the sup norm d uniformly over (θ, F ) ∈ F+.

Lemma AN1. Suppose Assumptions B, K, and NM hold. Then,

(a) sup
(θ,F )∈F+

sup
g,g∗∈G

‖ΣF (θ, g, g∗, b)− ΣF (θ, g, g∗, z0)‖ → 0,

(b) sup
(θ,F )∈F+

∥∥D−1
F (θ, z0)DF (θ, b)− Ik

∥∥→ 0, and

(c) sup
(θ,F )∈F+

d(h2,F (θ, b), h2,F (θ))→ 0.

Comment. Lemma AN1 is a key ingredient in the proof of Lemma AN3, which in turn
is used in the proofs of Theorems AN1 and N1. See Comment 3 to Lemma AN3 for a

description of how Lemma AN1 is employed.

The next Lemma shows that the bias due to taking averages over values z ( 6= z0) for

which the conditional moment inequalities in (2.1) do not hold is negligible asymptoti-

cally.

Lemma AN2. Suppose Assumptions B, K, and NM hold. Then,

lim inf
n→∞

inf
(θ,F )∈F

inf
g∈G

h1,n,F (θ, g, b) + η1 ≥ 0 ∀η1 > 0.

Comment. Lemma AN2 only applies for (θ, F ) ∈ F , not (θ, F ) ∈ F+.

The next Lemma is analogous to Lemma A1 of AS2. It is used in the proofs of The-

orems AN1 and N1-N3. It establishes a functional CLT and uniform LLN for certain

independent non-identically distributed empirical processes as well as uniform conver-

gence of the estimator of the covariance kernel.

LetH2,+ = {h2,F (θ) : (θ, F ) ∈ F+}. By definition, H2,+ is a set of k×k-matrix-valued
covariance kernels on G × G that includes H2.

Definition SubSeq(h2). For h2 ∈ H2,+, SubSeq(h2) is the set of subsequences {(θan ,
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Fan) ∈ F+ : n ≥ 1}, where {an : n ≥ 1} is some subsequence of {n}, for which

(i) lim
n→∞

sup
g,g∗∈G

||h2,Fan (θan , g, g
∗)− h2(g, g∗)|| = 0

and (ii) {Wi : i ≥ 1} are i.i.d. under Fan .

Note that the definition of SubSeq(h2) here differs from the definition of SubSeq(h2)

in AS2 because (i) the summands of the sample averages arem(Wi, θ, g, b) = b−dz/2Kb(Zi)

m(Wi, θ, g), rather than m(Wi, θ, g), and {m(Wi, θ, g, b)m(Wi, θ, g
∗, b)′ : n ≥ 1} is not

uniformly integrable, which complicates the proof of Lemma AN3(b) below, (ii) SubSeq

(h2) requires (θan , Fan) ∈ F+, and (iii) SubSeq(h2) does not impose any conditions

related to Assumption NM. The latter are imposed separately in the results below.

The sample paths of the Gaussian process νh2(·), which is defined in (4.2) and appears
in the following Lemma, are bounded and uniformly ρ-continuous a.s. The pseudo-metric

ρ on G is a pseudo-metric commonly used in the empirical process literature:

ρ2(g, g∗) = tr (h2(g, g)− h2(g, g∗)− h2(g∗, g) + h2(g∗, g∗)) . (9.5)

For h2(·, ·) = h2,F (θ, ·, ·), where (θ, F ) ∈ F , this metric can be written equivalently as

ρ2(g, g∗) = EF ||D−1/2
F (θ)[m̃(Wi, θ, g)− m̃(Wi, θ, g

∗)]||2, where
m̃(Wi, θ, g) = m(Wi, θ, g)− EFm(Wi, θ, g). (9.6)

Lemma AN3. Suppose Assumptions B and NM hold. For any subsequence {(θan , Fan) :

n ≥ 1} ∈ SubSeq(h2) with h2 ∈ H2,+,

(a) νan,Fan (θan , ·, ban)⇒ νh2 (·) as n→∞ (as processes indexed by g ∈ G), and
(b) supg,g∗∈G ||ĥ2,an,Fan (θan , g, g

∗, ban)− h2(g, g∗)|| →p 0 as n→∞.

Comments. 1. To obtain uniform asymptotic coverage probability results for CS’s,

Lemma AN3 is applied with (θan , Fan) ∈ F for all n ≥ 1 and h2 ∈ H2. To obtain power

results under fixed and local alternatives, Lemma AN3 is applied with (θan , Fan) ∈ F+/F
for all n ≥ 1 and h2 ∈ H2,+.

2. Condition (xv) of F only needs to hold with exponent 2 + δ for Lemma AN3(a)

to hold. For Lemma AN3(b), which gives consistency of the estimator of the covariance

kernel, the exponent 4 + δ is needed to control the variance of the covariance estimator.

3. The proof of Lemma AN3(a) is an extension of the proof of Lemma A1 of
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AS2 (which is given in Appendix E of AS2). The proof of Lemma AN3(b) is different

from that of Lemma A1 of AS2 because the summands m(Wi, θ, g, b) are not uniformly

integrable, so a standard uniform law of large numbers cannot be employed. Rather, an

empirical process maximal inequality is utilized.

4. To prove Theorem AN1, we adjust the proof of Theorem 1 of AS1. The

proof of Theorem 1 of AS1 uses a subsequence argument to reduce a uniform result

over (θ, F ) ∈ F for which h2,F (θ) ∈ H2,cpt as n → ∞ to a result for a subsequence

{(θan , Fan) ∈ F : n ≥ 1} for which the covariance kernels {h2,Fan (θan , g, g
∗) : n ≥ 1}

satisfy d(h2,Fan (θan), h2,0)→ 0 for some limit h2,0 ∈ H2.

In AS1 and AS2, the covariance kernel h2,F (θ) of νn(θ, ·) is a normalized sum of

terms m(Wi, θ, g) and does not depend on n. Hence, the sample-size n and the asymp-

totic covariance kernels are the same. In contrast, in this paper, the covariance kernel

h2,F (θ, b) of νn,F (θ, ·, b) is a normalized sum of terms m(Wi, θ, g, b) and it depends on n

through b. Here, the subsequence of covariance kernels {h2,Fan (θan , g, g
∗) : n ≥ 1} (that

arises from the subsequence argument in AS2) is a subsequence of asymptotic kernels.

We use Lemma AN1(c) to show that if d(h2,Fan (θan), h2,0)→ 0, then the sample-size an
covariance kernel h2,Fan (θan , ban) satisfies d(h2,Fan (θan , ban), h2,0) → 0 as n → ∞. This
holds because

d(h2,Fan (θan , ban), h2,0)

≤ d(h2,Fan (θan , ban), h2,Fan (θan)) + d(h2,Fan (θan), h2,0)

≤ sup
(θ,F )∈F

d(h2,F (θ, ban), h2,F (θ)) + d(h2,Fan (θan), h2,0)

→ 0, (9.7)

where the first inequality holds by the triangle inequality and the convergence holds by

Lemma AN1(c). The convergence result in (9.7) is the condition that is needed to obtain

the weak convergence of the empirical process νan,Fan (θan , ·, ban) in Lemma AN3(a).

9.4.4 Proofs of Theorems AN1 and N1

Proof of Theorem AN1. We adjust the proof of Theorem 1 of AS1 to prove The-

orem AN1. The proof of Theorem 1 of AS1 is given in AS2. It goes through as

stated using Lemma AN3 in place of Lemma A1 of AS2 except for one inequality.

The second inequality in (12.14) of AS1 does not necessarily hold because it relies on
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h1,an,Fan (θan , g) ≥ 0p, which does not necessarily hold when the summands m(Wi, θ, g)

are replaced by m(Wi, θ, g, b).

The reason is as follows. In this paper, h1,an,Fan (θan , g) of AS2 is replaced by h1,an,Fan

(θan , g, ban). For arbitrary (θ, F ), the latter can be written as

h1,n,F (θ, g, b) = n1/2D
−1/2
F (θ, b)EF [b−dz/2Kb(Zi)EF (m(Wi, θ, g)|Zi)] (9.8)

using its definition in (9.2) and iterated expectations. By the conditional moment in-

equalities in (2.1) (or conditions (iii) and (iv) of F in (2.15)), EF (m(Wi, θ, g)|Zi = z) ≥ 0

when z = z0. But, for other values of z, this inequality need not hold. In (9.8),

EF (m(Wi, θ, g)|Zi = z) receives a non-zero weight for all Zi = z such that Kb(z) 6= 0.

Hence, h1,an,Fan (θan , g, ban) ≥ 0p need not hold.

By Lemma AN2, we have h1,an,Fan (θan , g, ban) ≥ −η1 for n suffi ciently large for some

η1 > 0. Hence, the second through fourth inequalities in (12.14) of AS1 are valid in

the present context when ν̃an(g)(ω) and −Bχ(ω) are replaced by ν̃an(g)(ω) − η1 and

−Bχ(ω)− η1, respectively. �

Proof of Theorem N1. We adjust the proof of Theorem 2 in AS1 to prove Theorem

N1. The proof of Theorem 2 of AS1 is given by the combination of Lemmas A2-A5 of

AS2. Hence, we need to establish analogues of these Lemmas that hold in the context

of this paper.

In the analogue of Lemma A2, the quantity c0(hn,F (θ), 1−α) is replaced by c0(hn,F (θ,

b), 1 − α) because the latter is the 1 − α quantile of the distribution of Tn(θ), which

depends on hn,F (θ, b), not hn,F (θ). Given this change, the proof of Lemma A2 of AS2

goes through making use of Theorem AN1 in place of Theorem 1 of AS1. Note that the

quantity xhn,F (θ) that appears in Theorem 1 and in the proof of Lemma A2 of AS2 is

changed to xhn,F (θ,b) in Theorem AN1 because we take xhn,F (θ,b) = c0(hn,F (θ, b), 1−α)+δ

in the proof of the analogue of Lemma A2.

In the analogue of Lemma A3 of AS2, we use the property of the sequence {han,Fan (θan):

n ≥ 1} constructed there (that d(han,Fan (θan), h2,0) → 0) and Lemma AN1(c) to show

that {(θan , Fan) : n ≥ 1} ∈ SubSeq(h2,0). The rest of the proof of Lemma A3 of

AS2 goes through (with the empirical process and other finite-sample quantities de-

pending on ban) except for the second inequality in (12.23) of AS2. The latter does

not hold because h1,an,Fan ,j(θan , g, ban) ≥ 0 does not necessarily hold, as discussed in

the proof of Theorem AN1 above, and hence “ϕan,j(θan , g) = 0 ≤ h1,an,Fan ,j(θan , g)
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whenever ξan,j(θan , g) ≤ 1” does not necessarily hold. We replace the latter with

“ϕan,j(θan , g) = −η ≤ h1,an,Fan ,j(θan , g, ban) whenever ξan,j(θan , g) ≤ 1 for n suffi ciently

large,”which holds by the definition of ϕn(θ, g) in (4.11) and Lemma AN2.

In the proof of the analogue of Lemma A4 of AS2, we use Lemma AN1(c) to show

that the sequence {(θan , Fan) : n ≥ 1} constructed there is in SubSeq(h2,0) (as in the

proof of the analogue of Lemma A3). The rest of the proof of the analogue of Lemma A4

goes through with the only changes being that h1,an,Fan (θan , g) and h2,Fan (θan , g) depend

on ban .

The proof of the analogue of Lemma A5 of AS2 goes through with the only change

being a change in the set H1, which is defined in Section 5.2 of AS1 to be the set of all

functions from G to Rp
+,∞ × {0}v, to the set H1,η1 , which we define here to be the set of

all functions from G to [−η1,∞]p × {0}v for some η1 > 0. The latter definition allows

the functions in H1,η1 to take small negative values, which accommodates the fact that

h1,n,F (θ, g, b) can be negative.

Given the analogues of Lemmas A1-A5 of AS2, the proof of Theorem N1 is complete.

�

9.4.5 Lemmas AN4-AN6 and Proofs of Lemmas AN1-AN3

The proof of Lemma AN1 uses the following three Lemmas.

Let A � B denote the direct (i.e., element-by-element) product of two matrices A

and B with the same dimensions.

Lemma AN4. Suppose Assumption NM holds. Then, for all g, g∗ ∈ G and (θ, F ) ∈ F+,

ΣF (θ, g, g∗, z0) = EFΣF (θ,Xi, z0)� (g(Xi)g
∗(Xi)

′),

where ΣF (θ, x, z) and ΣF (θ, g, g∗, z) are defined in (2.14) and (4.5), respectively.

Lemma AN5. Suppose Assumptions B, K, and NM hold. Then,

sup
(θ,F )∈F+

sup
g∈G
||b−dz/2EFKb(Zi)m(Wi, θ, g)|| = O(bdz/2) = o(1).
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Lemma AN6. Suppose Assumptions B, K, and NM hold. Then,

sup
(θ,F )∈F+

sup
g,g∗∈G

||b−dzEFK2
b (Zi)m(Wi, θ, g)m(Wi, θ, g

∗)′

−EFΣF (θ,Xi, z0)� (g(Xi)g
∗(Xi)

′)|| → 0.

Proof of Lemma AN1. Using the definitions in (4.5) and (9.1), part (a) is established
as follows. We have

ΣF (θ, g, g∗, b) = CovF (b−dz/2Kb(Zi)m(Wi, θ, g), b−dz/2Kb(Zi)m(Wi, θ, g
∗))

= b−dzEFK
2
b (Zi)m(Wi, θ, g)m(Wi, θ, g

∗)′

−b−dz/2EFKb(Zi)m(Wi, θ, g) · b−dz/2EFKb(Zi)m(Wi, θ, g
∗)′

= EF [ΣF (θ,Xi, z0)� (g(Xi)g
∗(Xi)

′)] + o(1)

= ΣF (θ, g, g∗, z0) + o(1), (9.9)

where the o(1) term holds uniformly over g, g∗ ∈ G and (θ, F ) ∈ F+, the third equality

holds by Lemmas AN5 and AN6, and the fourth equality holds by Lemma AN4.

Part (b) follows from part (a) by taking g = g∗ = 1k because DF (θ, b) = Diag(ΣF (θ,

1k, 1k, b)), DF (θ, z0) = Diag(ΣF (θ, 1k, 1k, z0)), and sup(θ,F )∈F+

∥∥D−1
F (θ, z0)

∥∥ < ∞ by

condition (x) of F in (2.15).
Part (c) follows from parts (a) and (b) because

h2,F (θ, g, g∗, b) =
[
D
−1/2
F (θ, b)D

1/2
F (θ, z0)

] [
D
−1/2
F (θ, z0)ΣF (θ, g, g∗, b)D

−1/2
F (θ, z0)

]
×
[
D

1/2
F (θ, z0)D

−1/2
F (θ, b)

]
,

h2,F (θ, g, g∗, z0) = D
−1/2
F (θ, z0)ΣF (θ, g, g∗, z0)D

−1/2
F (θ, z0), (9.10)

and sup(θ,F )∈F+

∥∥∥D−1/2
F (θ, z0)

∥∥∥ <∞. �
Proof of Lemma AN2. For notational simplicity, supposemF (θ, x, z) is a scalar. This

is without loss of generality (wlog) because we could argue element by element. By a
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two-term Taylor expansion of mF (θ, x, z0 + bz∗) around z∗ = 0, we have

sup
(θ,F )∈F+

∣∣∣∣∫ K (z∗) [mF (θ, x, z0 + bz∗)−mF (θ, x, z0)]dz∗
∣∣∣∣

= sup
(θ,F )∈F+

∣∣∣∣b∫ z∗′K (z∗) dz∗
∂

∂z
mF (θ, x, z0) +

b2

2

∫
K(z∗)z∗′

∂2

∂z∂z′
mF (θ, x, z̃)z∗dz∗

∣∣∣∣
≤ b2 sup

z∈[−1,1]dz
|K(z)| · sup

(θ,F )∈F
sup
z∈Z0

∥∥∥∥ ∂2

∂z∂z′
mF (θ, x, z)

∥∥∥∥ · ∣∣∣∣∫
[−1,1]dz

z∗′z∗dz∗
∣∣∣∣

= b2Lm(x)C (9.11)

for some C < ∞, where the Taylor expansion is valid by condition (xi) of F in (2.15),
z̃ is some intermediate point that is in Z0 for b suffi ciently small, the inequality uses

Assumption K(c), the last equality uses Assumptions K(d) and K(e), and Lm(x) is

defined in condition (xi) of F in (2.15).
Using (9.11), we have: for all (θ, F ) ∈ F and g ∈ G,

|EFm(Wi, θ, g, b)− bdz/2EFmF (θ,Xi, z0)g(Xi)|
= |b−dz/2EFKb(Zi)m(Wi, θ)g(Xi)− bdz/2EFmF (θ,Xi, z0)g(Xi)|

=

∣∣∣∣∫ (∫ b−dz/2K

(
z − z0

b

)
mF (θ, x, z)dz − bdz/2mF (θ, x, z0)

)
g(x)f(x)dµX(x)

∣∣∣∣
= bdz/2

∣∣∣∣∫ (∫ [K (z∗)mF (θ, x, z0 + bz∗)−K (z∗)mF (θ, x, z0)] dz∗
)
g(x)f(x)dµX(x)

∣∣∣∣
≤ bdz/2

∫
b2Lm(x)CGf(x)dµX(x)

≤ b2+dz/2CGC2, (9.12)

where CGC2 <∞, the first equality holds by the definition of m(Wi, θ, g, b), the second

equality uses iterated expectations with conditioning on (Xi, Zi) and the definition of

mF (θ, x, z), the third equality holds by change of variables with z∗ = (z−z0)/b, the first

inequality holds by (9.11) and Assumption NM(a), and the second inequality holds by

condition (xi) of F in (2.15).
By Assumption B(a), n1/2O(b2+dz/2) = o(1). This and (9.12) give

sup
(θ,F )∈F

sup
g∈G
|n1/2EFm(Wi, θ, g, b)− (nbdz)1/2EFmF (θ,Xi, z0)g(Xi)| = o(1). (9.13)
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Equations (9.11)-(9.13) also hold with D−1/2
F (θ, z0) multiplying each quantity inside

the absolute values using condition (x) of F in (2.15). Equation (9.13) (with the multipli-
cand D−1/2

F (θ, z0) added inside the absolute values), Lemma AN1(b), and the definition

of h1,n,F (θ, g, b) give

sup
(θ,F )∈F

sup
g∈G
|(Ik + o(1))h1,n,F (θ, g, b)− (nbdz)1/2D

−1/2
F (θ, z0)EFmF (θ,Xi, z0)g(Xi)| = o(1).

(9.14)

By conditions (iii) and (x) of F in (2.15), mF (θ, x, z0) ≥ 0 a.s. [FX ] ∀(θ, F ) ∈ F and
D
−1/2
F (θ, z0) is pd. In addition, g(x) ≥ 0 ∀x ∈ Rdx by Assumption NM(a). Hence, for

all (θ, F ) ∈ F and g ∈ G,

(nbdz)1/2D
−1/2
F (θ, z0)EFmF (θ,Xi, z0)g(Xi) ≥ 0. (9.15)

Equations (9.14) and (9.15) combine to establish the result of the Lemma. �

Proof of Lemma AN3. The proof of part (a) follows the same argument as used to
prove Lemma A1(a) of AS2 using Lemmas E1-E3 in Appendix E of AS2. Lemmas E1

and E2 hold without change.

The results of Lemma E3 of AS2 hold for SubSeq(h2) as defined here with h2 ∈
H2,+ and with m(Wn,i(ω), θn, g) and D

−1/2
Fn

(θn) replaced by m(Wn,i(ω), θn, g, b) and

D
−1/2
Fn

(θn, b), respectively, in (16.4) of AS2. Lemma E3 of AS2 is proved by verifying

conditions (i)-(v) of Theorem 10.6 of Pollard (1990). The proof in the present context

requires some adjustments.

In the verification of (i), m(Wn,i(ω), θn, g) and σFn,j(θn) are replaced by m(Wn,i

(ω), θn, g, b) and the (j, j) element of D1/2
Fn

(θn, b) in (16.35)-(16.36) of AS2.

In the verification of (ii), DFn(θn) and ΣFn(θn, g, g
∗) are replaced by DFn(θn, b) and

ΣFn(θn, g, g
∗, b) in (16.37) of AS2. Then, condition (i) of SubSeq(h2) plus Lemma AN1(c)

deliver the desired convergence. Lemma AN1(c) is required in the proof in the current

case, but not in AS2, because the finite-sample covariance kernel of the empirical process

depends on b in the present case.

In the verification of (iii), one can ignore the σ−1
Fn,j

(θn) and G(Xi) multiplicands in

(16.38) of AS2 because Lemma AN1(b) and condition (x) of F in (2.15) imply that

σ−1
Fn,j

(θn) is uniformly bounded over (θ, F ) ∈ F+ and n ≥ 1 and Assumption NM(a)

implies that G(Xi) = G <∞. Then, Lemma AN1(a) gives the desired result.
Condition (iv) is the Lindeberg condition. In the verification of (iv), one can ignore
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the σ−1
Fn,j

(θn) and G(Xi) multiplicands in (16.39) of AS2 for the same reasons as above.

The required condition reduces to: for all ξ > 0, some δ > 0, and all j ≤ k,

An =

n∑
i=1

EFnm
2
j(Wi, θn, b)1(|mn,j(Wi, θn, b)| > ξ)→ 0, where

mn,j(Wi, θ, b) = n−1/2b−dz/2Kb(Zi)mj(Wi, θ). (9.16)

We have

An ≤ nEFn|mn,j(Wi, θn, b)|2+δ/ξ2+δ

= n−δ/2b−δdz/2
(
b−dzEFnK

2+δ
b (Zi)|mj(Wi, θn)|2+δ/ξ2+δ

)
= (nbdz)−δ/2

(
b−dz

∫
K2+δ

(
z − z0

b

)
EFn(|mj(Wi, θn)|2+δ|Zi = z)fn(z)dz/ξ2+δ

)
= (nbdz)−δ/2

(∫
K2+δ(z∗)EFn(|mj(Wi, θn)|2+δ|Zi = z0 + bz∗)fn(z0 + bz∗)dz∗/ξ2+δ

)
≤ (nbdz)−δ/2

(
C∗5

∫
K2+δ(z∗)dz∗/ξ2+δ

)
→ 0 (9.17)

for some constant C∗5 <∞, where the first inequality holds using identical distributions,
the first equality holds by algebra, the second equality holds by iterated expectations,

the third equality holds by change of variables with z∗ = (z−z0)/b, the second inequality

holds for b suffi ciently small that z0 + bz∗ ∈ Z0 by condition (xiv) of F in (2.15), and
the convergence holds by Assumptions B(b), K(c), and K(e).

In the verification of (v), DFn(θn) and m(Wi, θn, g) are replaced by DFn(θn, b) and

m(Wi, θn, g, b) in (16.40) of Section 16.6 in Appendix E of AS2 and the convergence

holds by condition (i) of SubSeq(h2) plus Lemma AN1(c). This completes the changes

needed in the proof of Lemma E3 of AS2.

Given that the results of Lemma E3 of AS2 hold for SubSeq(h2) as defined here, the

proof of Lemma A1(a) in AS2 establishes Lemma AN3(a) with only minor changes. In

particular, DFn(θn) is replaced by DFn(θn, b) in (16.8) of AS2 and the second and last

equalities in (16.8) of AS2 hold by (16.40) of AS2 with the changes described in the

previous paragraph. This completes the proof of part (a) of Lemma AN3.

Now, we prove part (b) of the Lemma. The multiplicand D−1/2
F (θ, b), which appears

in ĥ2,n,F (θ, g, g∗, b), equals D−1/2
F (θ, z0) + o(1) uniformly over (θ, F ) ∈ F by Lemma
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AN1(b) and sup(θ,F )∈F ||D
−1/2
F (θ, z0)|| <∞ by condition (x) of F in (2.15). Hence, one

can ignore the D−1/2
F (θ, b) multiplicand when verifying part (b) of the Lemma. Doing

so transforms ĥ2,n,F (θ, g, g∗, b) into Σ̂n(θ, g, g∗).

Part of the proof of part (b) is similar to the proof of Lemma A1(b) of AS2. As in

AS2, for notational simplicity, we establish results for the sequence {n}, rather than the
subsequence {an : n ≥ 1}. Two terms appear in the rhs of (16.16) of AS2. The second
term can be shown to be op(1). The argument is as follows. The second term (ignoring

the D−1/2
F (θ, b) multiplicand) is the following quantity multiplied by its transpose:

n−1

n∑
i=1

m(Wi, θ, g, b) = n−1

n∑
i=1

b−dz/2Kb(Zi)mj(Wi, θn)g(Xi). (9.18)

This quantity has mean that is op(1) by Lemma AN5. The difference between this quan-

tity and its mean is op(1) by Lemma E2 of AS2. The conditions of Lemma E2 are verified

by the argument given in (16.18)-(16.22) of AS2 with (16.21), which verifies an L1+η-

boundedness condition, replaced by L2-boundedness of b−dz/2Kb(Zi)mj(Wi, θn)g(Xi),

which holds by Lemma AN6.

The first term appearing in (16.16) of AS2 (ignoring the D−1/2
F (θ, b) multiplicand) is

Qn(g, g∗) = n−1

n∑
i=1

m(Wi, θ, g, b)m(Wi, θ, g
∗, b)′. (9.19)

To complete the proof of part (b), we need to show that the supremum over (g, g∗) ∈ G2

of Qn(g, g∗) minus its expectation is op(1) under {(θn, Fn) : n ≥ 1}. This cannot be done
using the uniform law of large numbers given in Lemma E2 of AS2, as is done in the proof

of Lemma A1(b) in AS2, because the summands do not satisfy an L1+η-boundedness

condition when m(Wi, θ, g) is replaced by m(Wi, θ, g, b).

In fact, the summands of Qn(g, g∗) do not even satisfy a uniform integrability con-

dition, as the following calculations show. For simplicity, suppose m(Wi, θ) is a scalar

and is independent of Zi. Let mn,i(b) and mn,i denote m(Wi, θn, g, b) and m(Wi, θn, g),

respectively. We have: for L <∞,

EFnm
2
n,i(b)1(m2

n,i(b) > L)

= EFnb
−dzK2

b (Zi)m
2
n,i1(b−dzK2

b (Zi)m
2
n,i > L)

= EFn · EFn(b−dzK2
b (Zi)m

2
n,i1(b−dzK2

b (Zi)m
2
n,i > L)|Zi)
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=

∫
b−dzK2

(
z − z0

b

)
EFn

(
m2
n,i1

(
b−dzK2

(
z − z0

b

)
m2
n,i > L

)
|Zi = z

)
fn(z)dz

=

∫
K2 (z∗)EFn(m2

n,i1(K2(z∗)m2
n,i > Lbdz)|Zi = z0 + bz∗)fn(z0 + bz∗)dz∗, (9.20)

where the second equality holds by iterated expectations and the fourth equality holds

by change of variables with z∗ = (z − z0)/b. The lim supn→∞ of the rhs in (9.20) is not

small for L large because bdz → 0. Hence, uniform integrability fails.

Instead, we show that

sup
g,g∗∈G

|Qn(g, g∗)− EFnQn(g, g∗)| →p 0 (9.21)

under {(θn, Fn) : n ≥ 1} by using the maximal inequality (7.10) of Pollard (1990, p. 38)
for manageable processes, which is applicable by Assumption NM(b) and Lemma E1 of

AS2. For notational simplicity, suppose m(Wi, θ, g, b) is a scalar. (This is wlog because

we can argue element by element.) The maximal inequality says that

EFn sup
g,g∗∈G

|Qn(g, g∗)− EFnQn(g, g∗)| ≤ n−1CEFn||F ∗n || ≤ nC(EFn||F ∗n ||2)1/2, (9.22)

where C is some finite constant and F ∗n (using Pollard’s notation) is an n-vector of

envelope functions that satisfies F ∗n = (F ∗n,1, ..., F
∗
n,n)′, ||F ∗n ||2 =

∑n
i=1 F

∗2
n,i, and

F ∗n,i = b−dzK2
b (Zi)||m(Wi, θn)||2G2 ≥ sup

g,g∗∈G
||m(Wi, θn, g, b)m(Wi, θn, g

∗, b)||. (9.23)

We have

n−1(EFn||F ∗n ||2)1/2

= n−1/2(EFnF
∗2
n,1)1/2

= n−1/2G2(EFnb
−2dzK4

b (Zi)||m(Wi, θn)||4)1/2

= (nbdz)−1/2G2

(∫
b−dzK4

(
z − z0

b

)
EFn(||m(Wi, θn)||4|Zi = z)fn(z)dz

)1/2

= (nbdz)−1/2G2

(∫
K4(z∗)EFn(||m(Wi, θn)||4|Zi = z0 + bz∗)fn(z0 + bz∗)dz∗

)1/2
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≤ (nbdz)−1/2G2

(∫
K4(z∗)dz∗ sup

(θ,F )∈F+
sup
z∈Z0

EF (||m(Wi, θ)||4|Zi = z)f(z)

)1/2

→ 0, (9.24)

where the first equality holds by identical distributions for i = 1, ..., n under Fn, the

second equality holds using Assumption NM(a), the third equality holds by iterated

expectations, the fourth equality holds by change of variables with z∗ = (z − z0)/b, the

inequality holds for b suffi ciently small using Assumption K(c), and the convergence

holds by Assumptions B(b) and K(c)-(e) and condition (xiv) of F in (2.15). This

completes the proof of part (b) of the Lemma. �

9.4.6 Proofs of Lemmas AN4-AN6

Proof of Lemma AN4. Using conditions (v)-(viii) of F in (2.15) (which also hold for
F+), we have

ΣF (θ, g, g∗, z) = EF (m(Wi, θ, g)m(Wi, θ, g
∗)′|Zi = z)f(z)

=

∫ ∫
m(y, x, z, θ, g)m(y, x, z, θ, g∗)′f(y, x|z)dµY (y)dµX(x)f(z)

=

∫ ∫
m(y, x, z, θ, g)m(y, x, z, θ, g∗)′f(y, x, z)dµY (y)dµX(x). (9.25)

In addition, we have

EF [ΣF (θ,Xi, z)� (g(Xi)g
∗(Xi)

′)]

=

∫
[ΣF (θ, x, z)� (g(x)g∗(x)′)]f(x)dµX(x)

=

∫ [∫
m(y, x, z, θ)m(y, x, z, θ)′f(y|x, z)dµY (y)f(z|x)� (g(x)g∗(x)′)

]
f(x)dµX(x)

=

∫ ∫
m(y, x, z, θ, g)m(y, x, z, θ, g∗)′f(y, x, z)dµY (y)dµX(x), (9.26)

where the last equality uses m(w, θ, g) = m(w, θ)� g(x) for w = (y, x, z)′. �

Proof of Lemma AN5. Define

mF (θ, g, z) = EF (m(Wi, θ, g)|Zi = z)f(z). (9.27)
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We have

sup
(θ,F )∈F+

sup
g∈G
||b−dz/2EFKb(Zi)m(Wi, θ, g)||

= sup
(θ,F )∈F+

sup
g∈G
||b−dz/2

∫
Kb(z)mF (θ, g, z)dz||

≤ b−dz/2
∫
K

(
z − z0

b

)
sup

(θ,F )∈F+
sup
g∈G
||mF (θ, g, z)||dz

= bdz/2
∫
K (z∗) sup

(θ,F )∈F+
sup
g∈G
||mF (θ, g, z0 + bz∗)||dz∗

≤ bdz/2 sup
(θ,F )∈F+

sup
z∈Z0

sup
g∈G
||mF (θ, g, z)||

→ 0, (9.28)

where the first equality holds by iterated expectations conditioning on Zi using condition

(v) of F in (2.15), the second equality holds by change of variables with z∗ = (z −
z0)/b, the second inequality holds using Assumption K(a), and the convergence holds

by Assumption B(a) and the result:

sup
(θ,F )∈F+,z∈Z0,g∈G

||mF (θ, g, z)|| <∞. (9.29)

Equation (9.29) is established as follows. We have

mF (θ, g, z) = EFEF (m(Wi, θ, g)|Xi, Zi = z)f(z)

=

∫
EF (m(Wi, θ)|Xi = x, Zi = z)g(x)f(x|z)dµX(x)f(z)

=

∫
mF (θ, x, z)g(x)f(x, z)dµX(x), (9.30)

where the second equality uses condition (ix) of F in (2.15). Hence, we obtain

sup
(θ,F )∈F+

sup
z∈Z0

sup
g∈G
||mF (θ, g, z)||

≤ G sup
(θ,F )∈F+

sup
z∈Z0

∫
||mF (θ, x, z)||f(x, z)dµX(x) <∞, (9.31)

where the first inequality holds by Assumption NM(a) and the second inequality holds

by condition (xii) of F in (2.15). �
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Proof of Lemma AN6. For notational simplicity, we suppose m(Wi, θ, g) is a scalar.

(This is wlog because we could argue element by element.) For all g, g∗ ∈ G, we have

Jb(g, g
∗)

= sup
(θ,F )∈F+

|b−dzEFK2
b (Zi)m

2(Wi, θ, g)− EF [ΣF (θ,Xi, z0)� (g(Xi)g
∗(Xi))]|

= sup
(θ,F )∈F+

|b−dzEFK2
b (Zi)m

2(Wi, θ)g(Xi)g
∗(Xi)− EFΣF (θ,Xi, z0)g(Xi)g

∗(Xi)|

= sup
(θ,F )∈F+

∣∣∣∣∫ (∫ b−dzK2

(
z − z0

b

)
ΣF (θ, x, z)dz − ΣF (θ, x, z0)

)
g(x)g∗(x)f(x)dµX(x)

∣∣∣∣
= sup

(θ,F )∈F+

∣∣∣∣∫ (∫ [K2 (z∗) ΣF (θ, x, z0 + bz∗)−K2 (z∗) ΣF (θ, x, z0)
]
dz∗
)

×g(x)g∗(x)f(x)dµX(x)
∣∣ , (9.32)

where the first equality defines Jb(g, g∗), the second equality holds by the definition of

m(Wi, θ, g), the third equality uses iterated expectations with conditioning on (Xi, Zi)

and conditions (vi) and (viii) of F in (2.15), and the fourth equality holds by change of
variables with z∗ = (z − z0)/b.

Using (9.32), we have

sup
g,g∗∈G

Jb(g, g
∗) ≤ G sup

(θ,F )∈F+

∫ (∫
K2 (z∗)LΣ(x)b||z∗||dz∗

)
f(x)dµX(x)

≤ bGC sup
(θ,F )∈F+

∫
LΣ(x)f(x)dµX(x)

→ 0, (9.33)

where the first inequality holds by condition (xiii) of F in (2.15) and Assumption NM(a),
the second inequality holds for some C < ∞ by Assumptions K(c) and K(e), and the

convergence holds by Assumptions B(a) and condition (xiii) of F in (2.15). �
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10 Appendix 2

This Appendix provides proofs of Theorems N2 and N3 of the paper “Nonparametric

inference based on conditional moment inequalities.” It also provides some additional

simulation results to those given in that paper. We let AS1 and AS2 abbreviate Andrews

and Shi (2007a) and Andrews and Shi (2007b), respectively.

10.1 Proofs of Theorems N2 and N3

Proof of Theorem N2. Theorem N2 is analogous to Theorem 3 of AS1. The proof

of Theorem 3 of AS1 that is given in Section 14.2 in Appendix C of AS2 goes through

with a few changes in the present context. First, EF0(·) is replaced by EF0(·|Zi = z0) in

m∗(g) and elsewhere. Second, n1/2β(g0) is replaced throughout by (nbdz)1/2β(g0). Third,

Assumption NFA(a) is used in place of Assumption FA(a) to obtain the inequality in

(14.28) of AS2. Fourth, the proof uses Lemma AN3, which employs Assumptions NFA(b)

and NFA(c), in place of Lemma A1 of AS2.

Fifth, the second equality of (14.33) of AS2 does not hold. It relies on n−1/2h1,n,F0(θ∗, g)

= m∗(g), which in the present context is replaced by (nbdz)−1/2h1,n,F0(θ∗, g, b) = m∗(g),

which does not hold. However, we have

(nbdz)−1/2h1,n,F0(θ∗, g, b) = D
−1/2
F0

(θ∗, b)b
−dz/2EF0m(Wi, θ∗, g, b)

= D
−1/2
F0

(θ∗, z0)EF0m(θ∗, Xi, z0)g(Xi) +O(b2)

= D
−1/2
F0

(θ∗, z0)EF0(m(Wi, θ∗, g)|Zi = z0)f(z0) +O(b2)

= m∗(g) + o(1), (10.34)

where the second equality holds by Lemma AN1(b) and (9.12) (which holds for (θ∗, F0) ∈
F+), the third equality holds by the same argument as in the proof of Lemma AN4

withm(y, x, z, θ, g)m(y, x, z, θ, g∗)′ replaced bym(y, x, z, θ, g) throughout, and the fourth

equality holds by the definition of m∗(g) and Assumption B(a).

Using (10.34), the second equality of (14.33) of AS2 holds with m∗(g)/β(g0) replaced

by m∗(g)/β(g0) + o(1).

These are the only changes needed to the proof of Theorem 3 of AS1. �

Proof of Theorem N3. Theorem N3 is analogous to Theorem 4 of AS1. First, we

give an analogue of (14.37) in the proof of Theorem 4 of AS1 given in Section 14.3 of

1



Appendix C in AS2. We have

h1,n,Fn(θn,∗, g, b)

= n1/2D
−1/2
Fn

(θn,∗, b)EFnm(Wi, θn,∗, g, b)

= (nbdz)1/2(Ik + o(1))D
−1/2
Fn

(θn,∗, z0)EFnm(θn,∗, Xi, z0)g(Xi) + o(1) (10.35)

= (nbdz)1/2(Ik + o(1))D
−1/2
Fn

(θn,∗, z0)EFn(m(Wi, θn,∗, g)|Zi = z0)fn(z0) + o(1),

where the first equality holds by (9.2), the second equality holds by Lemma AN1(b) and

(9.12) because n1/2b2+dz/2 → 0 if b = o(n−1/(4+dz)), and the third equality holds by the

same argument as in the proof of Lemma AN4 above.

Next, by element-by-element mean-value expansions about θn, we have

D
−1/2
Fn

(θn,∗, z0)EFn(m(Wi, θn,∗, g)|Zi = z0)fn(z0)

= D
−1/2
Fn

(θn, z0)EFn(m(Wi, θn, g)|Zi = z0)fn(z0)

+ΠFn(θn,g, g)(θn,∗ − θn), (10.36)

using Assumption NLA2, where θn,g may differ across rows of ΠFn(θn,g, g), θn,g lies

between θn,∗ and θn, and θn,g → θ0.

Combining (10.35) and (10.36) gives the analogue of (14.37) of AS2:

h1,n,Fn(θn,∗, g, b)

= (nbdz)1/2(Ik + o(1))D
−1/2
Fn

(θn, z0)EFn(m(Wi, θn, g)|Zi = z0)fn(z0)

+(Ik + o(1))ΠFn(θn,g, g)(nbdz)1/2(θn,∗ − θn)

→ h1(g) + Π0(g)λ, (10.37)

where h1(g) and Π0(g) are defined in (7.2) and the convergence uses Assumptions

NLA1(a), NLA1(b), and NLA2.

Now, the proof of Theorem N3 is similar to the proof of Theorem 4 of AS1 given in

AS2 with the following changes:

(i) {(θn,∗, Fn) ∈ F : n ≥ 1} ∈ SubSeq(h2), where h2 = h2,F0(θ0) ∈ H2,+ by Assump-

tions NLA1(a) and NLA1(c)-(e),

(ii) part (i) and Assumptions B and MN imply that the results of Lemma AN3 hold

under {(θn,∗, Fn) ∈ F : n ≥ 1} and these results are used in place of Lemma A1 of AS2,

2



(iii) equation (14.38) of AS2 is replaced by

κ−1
n D

−1/2

Fn (θn,∗, g, b)D
1/2
Fn

(θn,∗, b)h1,n,Fn(θn,∗, g, b)

= (Ik + o(1))κ−1
n (nbdz)1/2D

−1/2

Fn (θn, g, z0)EFn(m(Wi, θn, g)|Zi = z0)fn(z0)

+κ−1
n D

−1/2

F0
(θ0, g, z0)D

1/2
F0

(θ0, z0)(Ik + o(1))ΠFn(θn,g, g)(nbdz)1/2(θn,∗ − θn)]

= π1(g) + o(1), (10.38)

where the first equality holds by the equality in (10.37) and Lemma AN1(b) and the

second equality holds because (a) the first term on the rhs of the first equality is π1(g)+

o(1) by Assumption NLA4 and (b) the second term on the rhs of the first equality is

o(1) by the convergence of the second term in (10.37) plus κ−1
n → 0, and

(iv) in the verification of (14.23) in part (ix) of the proof of Theorem 4 of AS1 given

in Section 14.3 of Appendix C in AS2, (10.37) is used in place of (14.37) of AS2. This

completes the proof. �

10.2 Additional Simulation Results

In this section, we provide some additional simulation results. Tables A1 and A2

report the robustness results for the CvM/Max and KS/Max test statistics in the kinked

and the peaked bound cases, respectively, for the quantile selection model. As in Tables

I-III, the results in Tables A1 and A2 are for the lower endpoints of the identified

intervals. Tables A3 and A4 report the robustness results for the CvM and KS test

statistics in the kinked and tilted bound cases, respectively, for the conditional treatment

effect model.

Both Tables A1 and A2 show that there is little sensitivity to r1, ε, the GMS tuning

parameters, and the kernel bandwidth in terms of coverage probabilities. There is some

sensitivity in terms of the FCP’s. The FCP decreases (gets better) with the sample size

for the KS/MAX-GMS/Asy pair and is stable for the CvM/Max-GMS/Asy pair. The

FCP is smaller (better) with (κn, Bn) halved and bigger with (κn, Bn) doubled.

There is quite a bit sensitivity to the kernel bandwidth. With both the kinked

and the peaked bound, doubling the bandwidth reduces the FCP’s for tests with the

KS/Max statistics. The same is true with the kinked bound and the CvM/Max statistic.

However, with the peaked bound, both doubling and halving the bandwidth increases

the FCP’s.
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Tables A1 and A2 show that 0.50 CI’s cover the true value with probability noticeably

higher than 0.50. This indicates that the lower boundary point of the 0.50 CI as an

estimator for the lower end point of the identified set is not median unbiased, but does

not have an inward bias which has been a concern in the literature.

Table A1. Nonparametric Quantile Selection Model with Kinked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .989 .987 .49 .57

ε = 0.05, b = b0n−2/7)

n = 100 .988 .991 .48 .59

n = 500 .989 .991 .45 .54

r1 = 2 .988 .987 .50 .53

r1 = 4 .990 .989 .48 .60

(κn, Bn) = 1/2(κn,bc, Bn,bc) .991 .987 .49 .55

(κn, Bn) = 2(κn,bc, Bn,bc) .993 .991 .56 .61

ε = 1/100 .989 .987 .47 .57

b = 0.5b0n−2/7 .986 .987 .69 .77

b = 2b0n−2/7 .997 .995 .35 .45

α = .5 .771 .739 .05 .06

α = .5 & n = 500 .787 .753 .05 .06
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Table A2. Nonparametric Quantile Selection Model with Peaked Bound: Variations on the

Base Case

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .991 .991 .49 .53

ε = 0.05, b = b0n−2/7)

n = 100 .989 .990 .56 .65

n = 500 .994 .995 .50 .45

r1 = 2 .990 .990 .51 .50

r1 = 4 .992 .991 .48 .58

(κn, Bn) = 1/2(κn,bc, Bn,bc) .992 .990 .47 .52

(κn, Bn) = 2(κn,bc, Bn,bc) .994 .994 .54 .56

ε = 1/100 .991 .991 .47 .53

b = 0.5b0n−2/7 .988 .989 .62 .70

b = 2b0n−2/7 .997 .996 .53 .47

α = .5 .803 .761 .04 .05

α = .5 & n = 500 .836 .795 .04 .04

Tables A3 and A4 show the sensitivity results for the nonparametric conditional

treatment effect model with kinked bound and tilted bound, respectively.

Table A3 shows that, with the kinked bound, the test has NRP’s smaller than 0.05 for

all the test configurations and sample sizes that we experimented with. This is expected

because with the kinked bound, the conditional moment inequality is only binding at

a measure-zero set of the instrumental variable and Assumption GMS2 is not likely to

hold. The ARP’s are relatively stable as we vary r1, decrease ε or decrease (κn, Bn).

Doubling (κn, Bn) makes the ARP’s smaller (worse). Both doubling and halving the

kernel bandwidth reduces ARP’s noticeably.
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Table A3. Nonparametric Conditional Treatment Effect Model with Kinked Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .000 .000 .52 .49

ε = 0.05, b = b0n−2/7)

n = 100 .000 .000 .65 .55

n = 500 .000 .000 .33 .40

r1 = 2 .000 .000 .52 .53

r1 = 4 .000 .000 .51 .45

(κn, Bn) = 1/2(κn,bc, Bn,bc) .000 .000 .52 .52

(κn, Bn) = 2(κn,bc, Bn,bc) .000 .000 .44 .42

ε = 1/100 .000 .000 .52 .44

b = 0.5b0n−2/7 .000 .000 .38 .30

b = 2b0n−2/7 .000 .000 .34 .43

Table A4 shows a new aspect of the sensitivity analysis. The NRP for the CvM test

in the base case is somewhat bigger than 0.05. Halving the bandwidth reduces NRP’s

to below 0.05. while doubling the bandwidth increases the NRP’s to disastrous level.

This is expected because with the tilted bound the unconditional moment formed using

the kernel functions has negative expectation for any fixed bandwidth. The negative

expectation converges to zero as the bandwidth converges to zero. Thus, letting b

converge to zero is central to the theoretical validity of our method. Using a large b

deviates from the asymptotic theory.

The ARP’s in Table A4 are reasonably stable across different configurations and

sample sizes, except that they are somewhat sensitive to the kernel bandwidth.
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Table A4. Nonparametric Conditional Treatment Effect Model with Tilted Bound:

Variations on the Base Case

(a) Null Rejection (b) Rej Probs under H1

Probabilities (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case: (n = 250, r1 = 3, .072 .047 .53 .36

ε = 0.05, b = b0n−2/7)

n = 100 .085 .042 .49 .34

n = 500 .072 .050 .53 .40

r1 = 2 .074 .059 .52 .38

r1 = 4 .069 .036 .53 .32

(κn, Bn) = 1/2(κn,bc, Bn,bc) .081 .054 .50 .35

(κn, Bn) = 2(κn,bc, Bn,bc) .066 .045 .53 .36

ε = 1/100 .071 .040 .52 .31

b = 0.5b0n−2/7 .044 .023 .29 .14

b = 2b0n−2/7 .467 .313 .69 .57
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