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Abstract

An important result in convex analysis is the duality between a closed convex set and
its support function. We exploit this duality to develop a novel geometric approach to
mechanism design. For a general class of social choice problems we characterize the feasi-
ble set, which is closed and convex, and its support function. We next provide a geometric
interpretation of incentive compatibility and refine the support function to include incen-
tive constraints using arguments from majorization theory. The optimal mechanism can
subsequently be derived from the support function using Hotelling’s lemma.

We first assume that values are linear in types and types are independent, private, and
one-dimensional. For this environment we provide a simple geometric proof that Bayesian
and dominant strategy implementation are equivalent by showing that the feasible sets
that remain after imposing either type of incentive constraints coincide. Furthermore,
we derive the optimal mechanism for any social choice problem and any linear objective,
including revenue and surplus maximization. As an illustration, we determine the optimal
multi-unit auction for a class of value functions that exhibit decreasing marginal valua-
tions. Other types of constraints, such as capacity constraints and budget balancedness,
can be interpreted geometrically as well, which facilitates a unified approach to a range
of social choice problems, including auctions, bargaining, and public goods provision.

We discuss how our geometric approach extends to environments with value interde-
pendencies, non-linear valuations, and correlated or multi-dimensional types. Specifically,
we illustrate that with interdependent valuations the equivalence between Bayesian and
dominant strategy implementation breaks down, and our approach naturally produces the
second-best outcomes for both types of incentive constraints.
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1. Introduction

Mechanism design is the science of creating optimal social systems by maximizing a well-defined

social welfare function taking into account resource constraints and participants’ incentives and

hidden information. It provides a framework to address social engineering questions like “what

auction format assigns goods most efficiently or yields the highest seller revenue,” “when should

a public project such as building a highway be undertaken,” and “which trading rules maximize

the gains from trade?” The difficulty in answering these questions stems from the fact that the

designer, or public authority, typically does not possess detailed information about the relevant

parameters, e.g. bidders’ valuations for the goods for sale or voters’ preferences for the public

project. A well-designed mechanism should therefore both truthfully elicit participants’ private

information and implement the corresponding social optimum.

Hurwicz (1960) was among the first to recognize the prevalence and importance of econom-

ically relevant information that is dispersed in the population.1 He introduced a formal model

of communication where agents send messages to a central planner who selects an outcome

based on a pre-specified rule. Hurwicz (1972) also introduced the key notion of incentive com-

patibility, which emphasizes the need for collecting agents’ private information in a manner

that is coherent with their incentives. The study of incentive compatible mechanisms was sig-

nificantly simplified through the observation of the revelation principle by Gibbard (1973) and

subsequent extensions to incomplete information environments by Dasgupta, Hammond, and

Maskin (1979) and Myerson (1979). This principle implies that general mechanisms or insti-

tutions can be analyzed through equivalent direct revelation mechanisms, where participants’

only form of communication or action is the revelation of their private information.

Notwithstanding this simplification, the constraints imposed by incentive compatibility are

generally treated separately from other more basic constraints, such as resource constraints.

As a result, mechanism design theory appears to have developed quite differently from classical

approaches to consumer and producer choice theory despite some obvious parallels. For exam-

ple, in producer choice theory, the firm also maximizes a well-defined objective, its profit, over

a feasible production set that reflects its resource constraints. A well-known result is that a

firm’s optimal production plan follows by evaluating the gradient of the profit function at out-

put and factor prices – Hotelling’s lemma. One contribution of this paper is to draw a parallel

between classical choice theory and mechanism design by showing how the revenue-maximizing

or surplus-maximizing mechanism can be derived using standard micro-economics tools.

1Early contributors include Hayek (1945) who contemplated the feasibility of a centralized socialist economy.
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Our approach is geometric in nature and utilizes convexity of the set of feasible, incentive

compatible outcomes. In particular, starting from the basic feasible set that is the product of

probability simplices, we determine the set that remains after imposing incentive constraints.

We do so by providing a geometric interpretation of the incentive compatibility constraints,

which puts them on an equal footing with the basic resource constraints. Exploiting convexity

of the resulting set, we subsequently derive the optimal mechanism using Hotelling’s lemma.

The challenge lies in keeping track of the (high-dimensional) set that remains after feasi-

bility and incentive compatibility constraints are imposed. To this end we employ techniques

from convex analysis, a subfield of mathematics that studies properties of convex sets and

functions. A key result in convex analysis is the duality between a closed convex set and its

support function, which is convex and homogeneous of degree one (e.g. a firm’s profit function).

Conversely, any convex function that is homogeneous of degree one defines a convex set. We

exploit this duality to derive the support function of the basic feasible set for a general class

of social choice problems. Furthermore, support functions possess convenient algebraic prop-

erties that facilitate the description of the union, sum, and intersection of convex sets. These

algebraic properties allow us to refine the support function to include incentive constraints.

Using arguments from majorization theory, we show that this approach naturally generates the

“ironing” procedure first described by Mussa and Rosen (1978) and Myerson (1981).

A major question in mechanism design is whether dominant strategy incentive compatibility

is more stringent than Bayesian incentive compatibility. For example, does requiring dominant

strategy incentive compatibility limit a seller’s revenue or overall welfare? A recent contribu-

tion by Manelli and Vincent (2010) shows this is not true for the special case of single-unit,

private-value auctions: Bayesian incentive compatibility (BIC) and dominant strategy incen-

tive compatibility (DIC) are equivalent in this setting. Goeree and Kushnir (2011) extend this

BIC-DIC equivalence result to a broad class of social choice problems by generalizing a theorem

due to Gutmann et al. (1991), which was introduced to the economics literature by Gershkov,

Moldovanu, and Shi (2011).

In this paper we take a new perspective on the issue, one that fits with our geometric

approach. What matters to agents at the time they make their decisions is how BIC and DIC

constraints compare at the interim stage, i.e. when agents know only their own types and the

distributions of others’ types. We first show that each ex post DIC constraint can be represented

by a vector in some high-dimensional space and then study how this vector transforms under

the linear transformation (of taking expectations over others’ types) that represents going from

the ex post to the interim stage. We demonstrate that, at the interim stage, the projected DIC
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constraints coincide with the BIC constraints. We make these arguments precise by proving

that the support functions for both types of incentive constraints are identical.

Importantly, support functions provide a useful tool when maximizing some linear social

objective over the set of feasible, incentive compatible outcomes. Both revenue maximization

and surplus maximization fit the linear framework and, as a result, the revenue-maximizing

and surplus-maximizing mechanisms follow from the support function by applying Hotelling’s

lemma. More generally, we determine the optimal mechanism for any social choice problem

and any linear objective and show that the resulting mechanism is dominant strategy incentive

compatible and ex post individually rational. We illustrate the power of our approach by

deriving the optimal multi-unit auction for a class of value functions that exhibit decreasing

marginal valuations, a result that is new to the auction literature.

The geometric interpretation of the incentive compatibility constraints extends to other

types of constraints, which allows us to revisit and unify a number of important applications

of mechanism design. For instance, in auctions with many items for sale, bidders typically face

some budget or capacity constraints. We show that such constraints can easily be incorporated

into the support function from which the second-best mechanism follows using Hotelling’s

lemma. Moreover, we demonstrate that budget balancedness, which is a natural requirement

in bargaining and public goods provision, can be dealt with in a similar manner.

Finally, we show that our methods apply beyond the main model of the paper, which assumes

that values are linear in types and that types are independent, private, and one-dimensional. For

example, we illustrate that with interdependent values the equivalence between Bayesian and

dominant strategy incentive compatibility no longer holds. Nevertheless, our support function

approach naturally extends to this setting and produces the second-best mechanisms for both

types of incentive constraints.

This paper is organized as follows. In section 2 we describe the basic duality result from

convex analysis and list several other useful facts.2 Section 3 first describes the support func-

tions for the ex post and interim feasible sets and then incorporates incentive constraints. We

prove BIC-DIC equivalence and revenue equivalence and derive the optimal dominant strategy

mechanism for a broad class of social choice problems. In section 4 we apply our geometric pro-

cedure to other types of constraints, which naturally occur in multi-unit auctions, bargaining,

and public goods provision. Section 5 discusses extensions that allow for value interdependen-

cies, non-linear valuations, and correlated or multi-dimensional types. Section 6 concludes and

the Appendix contains the proofs.

2Proofs of these facts can be found in Convex Analysis by Rockafellar (1997).
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2. Preliminaries from Convex Analysis

An important concept in convex analysis is the duality between a closed convex set C ⊂ IRn

and its support function SC : IRn → IR, which is defined as

SC(w) = sup{v ·w |v ∈ C}

with v · w =
∑n

i=1 viwi the usual inner product. The support function is homogeneous of

degree 1, i.e. SC(λw) = λSC(w) for any λ ≥ 0, and convex, i.e. SC(αw1 + (1 − α)w2) ≤
αSC(w1) + (1 − α)SC(w2) for any α ∈ [0, 1]. Conversely, any lower semi-continuous function

defined over IRn that is convex and homogeneous of degree 1 is the support function of a closed

convex set, which can be defined as the intersection of half spaces

C =
{
v ∈ IRn |v ·w ≤ SC(w) ∀w ∈ IRn

}
To illustrate, consider the two-dimensional simplex C = {(v1, v2) | v1 ≥ 0, v2 ≥ 0, v1 + v2 ≤ 1}
shown in the left panel of Figure 1. In this panel, the blue arrows represent arbitrary vectors

w ∈ IR2 and the label next to the arrow shows the outcome of the maximization problem

sup{v · w |v ∈ C}. It is readily verified that the support function for the two-dimensional

simplex can be summarized as

SC(w) = max(0, w1, w2)

In turn, the two-dimensional simplex can be recovered from the support function by considering,

for each w ∈ IR2, the inequality

v ·w ≤ SC(w)

This inequality defines a half space of possible v ∈ IR2 for each w ∈ IR2. In the right panel of

Figure 1 these half spaces are bounded by the green lines and their intersection reproduces the

two-dimensional simplex. It is straightforward to generalize the example to n dimensions.

Fact 1. For the n-dimensional simplex

C = {v ∈ IRn
+ |

n∑
i=1

vi ≤ 1}

the support function is given by SC(w) = maxi(0, wi) for w ∈ IRn.
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Figure 1. Illustration of duality. The left panel shows how the support function SC(w1, w2) follows
by maximizing v · w over the simplex C = {(v1, v2) | v1 ≥ 0, v2 ≥ 0, v1 + v2 ≤ 1}. The right panel
shows how the simplex can be recovered from the inequalities v · w ≤ SC(w1, w2) for all w ∈ IR2,
where the support function is given by SC(w1, w2) = max(0, w1, w2).

The support functions for the convex sets C1 and C2 can be used to construct the support

function for associated sets. Two relevant cases are the sum

C1 + C2 = {v1 + v2 |v1 ∈ C1, v2 ∈ C2}

and the intersection C1 ∩ C2, both of which are convex. An example of the sum is shown in

the left panel of Figure 2, where C1 and C2 are one-dimensional simplices embedded in IR2

(indicated by the thick lines on the axes) and their sum is the unit square. The example in the

right panel shows the intersection of the two-dimensional simplex C1 = {v ∈ IR2
+|v1 + v2 ≤ 1}

with the half space C2 = {v ∈ IR2 | v2 ≥ v1}.

Fact 2. If C1 and C2 are non-empty closed convex sets with non-empty intersection then

SC1+C2(w) = SC1(w) + SC2(w)

and

SC1∩C2(w) = inf{SC1(w1) + SC2(w2) |w1 + w2 = w}

The left panel of Figure 2 illustrates the support function of the sum of two one-dimensional

simplices. Recall from Fact 1 that SC1(w) = max(0, w1) and SC2(w) = max(0, w2). It is readily

verified that the support function for the unit square is simply the sum, i.e. SC1+C2(w) =

5



v1

v2

1

1

w1 + w2

w2

0

w1 + w2

w1

v1

v2

1

w2

w2

0

1
2
(w1 + w2)

1
2
(w1 + w2)

0

Figure 2. The left panel shows the support function for the sum of two one-dimensional simplices.
The right panel shows the support function for the intersection of the two-dimensional simplex and
the half-space above the 45 degree line.

max(0, w1) + max(0, w2), as indicated by the labels next to the arrows in the left panel of

Figure 2.

To compute the support function for the intersection in the right panel, we first need to

determine the support function for the unbounded half space C2. Define β = (−1, 1) so that

the constraint v2 ≥ v1 can be written as β · v ≥ 0. We have

SC2(w) =

 ∞ if w 6= −λβ
0 if w = −λβ

for λ ≥ 0. The support function of the intersection can thus be written as

SC1∩C2(w) = inf
λ≥ 0

max(0, w1 − λ,w2 + λ)

The infimum is attained when λ = max(0, 1
2
(w1 − w2)) and the resulting support function is

SC1∩C2(w) =

{
max(0, w1, w2) if w1 ≤ w2

max(0, 1
2
(w1 + w2)) if w1 ≥ w2

as shown by the labels next to the arrows in the right panel of Figure 2.

In the applications below, we will frequently need the support function for a closed convex set

on which multiple constraints βm ·v ≥ Km for m = 1, . . . ,M are imposed. The support function

can be derived by repeatedly applying Fact 2, and we list the result here for convenience.
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Fact 3. The support function of a closed convex set C intersected with the half spaces βm ·v ≥
Km for m = 1, . . . ,M is given by

inf
λ1, ..., λM ≥ 0

SC(w +
M∑

m= 1

λmβm)−
M∑

m= 1

λmKm

We next determine how the support function transforms under a linear mapping A : IRn → IRm.

For any v ∈ IRn and w ∈ IRm we have Av ·w = v · ATw where AT denotes the transpose of

A, i.e. (AT )ij = Aji. This well-known property of the inner product can be used to derive the

support function of the convex set AC obtained by applying the linear transformation A to

elements of the convex set C.

Fact 4. Let A : IRn → IRm be a linear transformation. For any closed convex set C in IRn

SAC(w) = SC(ATw)

for any w ∈ IRm.

The left panel of Figure 3 demonstrates this fact when the linear transformation

A =
( 1 1

0 1

)
is applied to the two-dimensional simplex shown in the left panel of Figure 1. The gray shaded

area depicts the resulting convex set and the associated support function is given by SAC(w) =

max(0, w1, w1 + w2) as indicated by the labels next to the arrows.

An alternative way to represent a convex set is in terms of its extreme points or “vertices.”

In the right panel of Figure 3 these vertices are indicated by the red dots. It is well known that

a bounded closed convex set is simply the convex hull of its vertices, which can be obtained by

computing the gradient of the support function at points where it is differentiable. To illustrate,

consider the support function of the two-dimensional simplex SC(w) = max(0, w1, w2), which

is differentiable when (i) max(w1, w2) < 0, (ii) max(0, w1) < w2, and (iii) max(0, w2) < w1.

The corresponding gradients yield the three vertices shown in the right panel of Figure 3, i.e.

V1 = (0, 0), V2 = (0, 1), and V3 = (1, 0) respectively.

What about the edges or “faces” of the two-dimensional simplex, which are labeled F1, F2,

and F3 in the right panel of Figure 3. The faces correspond to points of non-differentiability of
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Figure 3. The left panel illustrates the support function for a transformed two-dimensional simplex.
In the right panel the two-dimensional simplex is seen as the convex hull of its vertices, Vi, which can
be calculated by taking the gradient of the support function at points of differentiability. Similarly,
the edges or faces, Fi, of the two-dimensional simplex correspond to the subgradient of the support
function at points of non-differentiability.

the support function in which case the gradient should be replaced by the subgradient. Recall

that a vector g ∈ IRn is a subgradient of the support function at w ∈ IRn if

SC(z) ≥ SC(w) + g · (z−w)

for all z ∈ IRn. Consider, for example, the support function SC(w) = max(0, w1, w2) of the

two-dimensional simplex and the following points of non-differentiability, w1 = 0 and w2 < 0.

For any such w the subgradient is any vector g = (g1, 0) with 0 ≤ g1 ≤ 1.3 The set of

all subgradients at w is called the subdifferential of the support function at w. To keep the

notation simple we will also denote the subdifferential by ∇SC(w). For w = (0, w2) with

w2 < 0, the subdifferential consists of the face F1 that connects V1 and V3 in the right panel

of Figure 3. The other faces can be recovered similarly by considering other points of non-

differentiability, i.e. F2 follows from w = (w1, 0) with w1 < 0 and F3 follows from w = (w,w)

with w > 0.

To summarize, any point on the boundary of the convex set C can be written as ∇SC(w)

for some w ∈ IRn. This allows for the following characterization of the maximization of a linear

function over the convex set C.

3Let g = (g1, g2). For z1 < 0 and z2 = w2 < 0 the subgradient inequality yields g1 ≥ 0 and for z1 > 0 and
z2 = w2 it yields g1 ≤ 1. Likewise, for z1 = 0 and z2 = 0 the subgradient inequality yields g2 ≤ 0 and for z1 = 0
and z2 < w2 it yields g2 ≥ 0.
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Fact 5. Consider some closed convex set C in IRn and some vector ω ∈ IRn. Then

sup{v · ω |v ∈ C} = SC(ω)

arg sup{v · ω |v ∈ C} = ∇SC(ω)

The second part of Fact 5 is a generalization of the envelope theorem, or Hotelling’s lemma, that

allows for points of non-differentiability. This form of Hotelling’s lemma will play an important

role in the applications below, where it is used to derive the optimal allocation rule directly

from the support function.

We end this section with a result from majorization theory. Let p1, . . . , pn denote arbitrary

non-negative numbers and consider two sequences σ and ς with elements σi, ςi for i = 1, . . . , n.

We will write σ �p ς if

j∑
i= 1

piσi ≥
j∑

i= 1

piςi for j = 1, . . . , n− 1

n∑
i= 1

piσi =
n∑

i= 1

piςi

The following result, due to Fuchs (1947), can be found in Marshall, Olkin, and Arnold (2011).

Fact 6. If σ, ς are non-decreasing sequences and σ �p ς then we say that σ p-majorizes ς and

we have
n∑

i= 1

pig(σi) ≤
n∑

i= 1

pig(ςi)

for any continuous convex function g : IR→ IR.

Consider any sequence σ, not necessarily non-decreasing, and let σ+ denote the non-decreasing

sequence such that (i) σ �p σ+ and (ii) any other non-decreasing sequence ς that satisfies

σ �p ς is p-majorized by σ+.4 The second property motivates calling σ+ the largest non-

decreasing sequence that satisfies σ �p σ+. Its usefulness stems from the following fact.

Lemma 1. For any sequence σ and any convex function g : IR→ IR, ς = σ+ solves

min
σ�p ς

n∑
i= 1

pig(ςi)

4See Bapat (1991) for arguments that ensure existence of such a sequence.
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Figure 4. Illustration of majorization. The three sequences in the leftmost panel are σ1 = (1, 2, 6)
(solid blue circles), σ2 = (2, 6, 1) (red squares), and σ3 = (6, 1, 2) (open green circles). The rightmost
panel shows the corresponding σ+ sequences: σ+

1 = (1, 2, 6), σ+
2 = (2, 7

2 ,
7
2), and σ+

3 = (3, 3, 3). The
two middle panels (with rescaled y-axis) show the cumulative sequences for σ (middle-left) and σ+

(middle-right). The cumulative of σ+ is the largest convex function below the cumulative of σ.

Figure 4 illustrates the construction when n = 3 and pi = 1 for i = 1, . . . , n. The leftmost

panel shows the sequences σ1 = (1, 2, 6), σ2 = (2, 6, 1), and σ3 = (6, 1, 2). The rightmost

panel shows the corresponding σ+
1 = (1, 2, 6), σ+

2 = (2, 7
2
, 7

2
), and σ+

3 = (3, 3, 3). Note that

σ = σ+ if and only if σ is non-decreasing. The middle panels show the cumulative sequences

for σ (left) and σ+ (right) and demonstrates that the cumulative of σ+ is the largest convex

function that is below the cumulative of σ. Our discrete majorization procedure thus parallels

Myerson’s (1981) “ironing” technique for continuous type spaces. Lemma 1 will be important

when minimizing the support function with respect to the constraint parameters as in Fact 3.

3. Social Choice Implementation

We consider an environment with a finite set I = {1, 2, . . . , I} of agents and a finite set

K = {1, 2, . . . , K} of social alternatives. When alternative k is selected, agent i’s value is

aki xi where aki is some non-negative constant and agent i’s type, xi, is distributed according

to probability distribution fi(xi) with discrete support Xi = {x1
i , . . . , x

Ni
i }, where the xji are

non-negative with xj−1
i < xji for j = 2, . . . , Ni. This formulation is rich enough to include many

important applications, e.g. single or multi-unit auctions, public goods provision, bargaining,

etc. For example, single-unit auctions are captured by setting aki = δki for i = 1, . . . , I and

k = 1, . . . , I + 1, where alternative i = 1, . . . , I corresponds to the case where bidder i wins

the object and alternative I + 1 corresponds to the case where the seller keeps the object. As

another example, public goods provision can be summarized by two alternatives, i.e. k = 1

when the public good is implemented and k = 2 when it is not, and aki = δk1 for i = 1, . . . , I.

10



We denote the profile of all agents’ types by x = (x1, ..., xI) ∈ X =
∏

i∈I Xi. Without

loss of generality we restrict attention to direct mechanisms characterized by K + I functions,

{qk(x)}k∈K and {ti(x)}i∈I , where ti(x) ∈ IR is agent i’s payment and qk(x) is the probability

that alternative k is implemented. We define vi(x) =
∑

k∈K a
k
i q
k(x) so that agent i’s utility

from truthful reporting, assuming others report truthfully as well, is ui(x) = xivi(x)− ti(x).

3.1. Feasibility

The probabilities with which the alternatives occur satisfy the usual feasibility conditions

qk(x) ≥ 0 for k ∈ K, x ∈ X and
∑

k∈K q
k(x) ≤ 1 for all x ∈ X. In other words, the fea-

sible qk(x) define a k-dimensional simplex for each type profile. We can invoke Fact 2 and

simply write the support function S : IRK|X| → IR as a sum, over all type profiles, of support

functions for k-dimensional simplices (cf. left panel of Figure 2)

S(w) =
∑
x∈X

max
k∈K

(0, wk(x)) (1)

From agent i’s perspective it is the linear combination vi(x) =
∑

k∈K a
k
i q
k(x) that determines

her possible ex post values. Let us define the ex post value possibility set (“vps”) as

vps =
{
v ∈ IR

I|X|
+ | ∃ feasible q(x) s.t. vi(x) =

∑
k∈K

aki q
k(x) ∀ i ∈ I, x ∈ X

}
which is a convex, closed, and bounded set. Its support function S : IRI|X| → IR follows by

applying Fact 4 to the support function in (1):

Sex post(w) =
∑
x∈X

max
k∈K

(0,
∑
i∈I

akiwi(x)) (2)

The latter can be used to derive the support function of the feasible set of interim expected

values:

VPS =
{
V ∈ IR

∑
i |Xi|

+ | ∃ feasible q(x) s.t. Vi(xi) =
∑

k∈K
Ex−i(a

k
i q
k(x)) ∀ i ∈ I, xi ∈ Xi

}
Throughout we distinguish interim variables using capital letters, e.g. the interim expected

values are denoted Vi(xi) for i ∈ I, xi ∈ Xi. Since Vi(xi) = Ex−i(vi(x)), going from the ex post

to the interim stage entails taking a sum over others’ types, x−i, weighted with the product

probability
∏

j 6=i fj(xj). This is a linear transformation so once more we can invoke Fact 4.
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To arrive at expressions that are symmetric in the probabilities we multiply the weight Wi(xi)

associated with Vi(xi) by fi(xi) so that all terms are weighted with f(x) =
∏

i fi(xi). In other

words, when we define the interim support function Sinterim : IR
∑
i |Xi| → IR as

Sinterim(W) = sup{V ◦W |V ∈ VPS}

the inner product on the right side is probability weighted, i.e.

V ◦W =
∑
i∈I

Exi(Vi(xi)Wi(xi))

where Exi(Vi(xi)Wi(xi)) =
∑

xi
fi(xi)Vi(xi)Wi(xi).

Proposition 1. The support function for the set of feasible interim expected values is

Sinterim(W) = Ex

(
max
k∈K

(0,
∑
i∈I

akiWi(xi))
)

(3)

The intuition for the support-function inequalities V ◦W ≤ Sinterim(W), is as follows. For

given weights, W, the expected value implied by the interim values V is equal to V◦W, which

can be no higher than the maximum possible expected value Sinterim(W) at these weights.

3.2. Incentive Compatibility

A mechanism is dominant strategy incentive compatible (DIC) if truthful reporting is a dominant

strategy equilibrium. Necessary and sufficient conditions for a mechanism (q, t) to be DIC is

that vi(xi,x−i) is non-decreasing in xi for all i ∈ I, x ∈ X, and that the payments satisfy5

(vi(x
n
i ,x−i)− vi(xn−1

i ,x−i))x
n−1
i ≤ ti(x

n
i ,x−i)− ti(xn−1

i ,x−i) ≤ (vi(x
n
i ,x−i)− vi(xn−1

i ,x−i))x
n
i

(4)

for n = 2, . . . , Ni. Moreover, ex post individual rationality (EXIR) requires that ui(x) ≥ 0 for

x ∈ X, i ∈ I, which is most binding for the lowest-type agent and determines the following range

of payments for this agent: 0 ≤ ti(x
1
i ,x−i) ≤ vi(x

1
i ,x−i)x

1
i . Note that the ex post individual

rationality condition can be included as one of the incentive compatibility constraints in (4),

namely for n = 1, if we set x0
i = 0 and vi(x

0
i ,x−i) = ti(x

0
i ,x−i) = 0.

5Notice that we consider only “adjacent” incentive constraints, which are necessary and sufficient when a
bidder’s value is linear in her private, one-dimensional type (see, e.g., Goeree and Kushnir, 2011).
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Similarly, a mechanism (q, t) is Bayesian incentive compatible (BIC) if truthful reporting is

a Bayes-Nash equilibrium. BIC holds if and only if Vi(xi) is non-decreasing in xi for all i ∈ I,

xi ∈ Xi, and the payments satisfy

(Vi(x
n
i )− Vi(xn−1

i ))xn−1
i ≤ Ti(x

n
i )− Ti(xn−1

i ) ≤ (Vi(x
n
i )− Vi(xn−1

i ))xni (5)

for n = 2, . . . , Ni. Furthermore, interim individual rationality (INIR) requires that Ui(xi) ≥ 0

for all xi ∈ Xi, i ∈ I, which holds if 0 ≤ Ti(x
1
i ) ≤ Vi(x

1
i )x

1
i . Also this individual rationality

constraint can be obtained from (5) for n = 1 if we set Vi(x
0
i ) = Ti(x

0
i ) = 0.

3.2.1. BIC–DIC Equivalence

We postpone solving for the payments that satisfy the incentive compatibility conditions to

Section 3.2.2. First, we demonstrate that the set of feasible interim expected values that are

dominant strategy implementable coincide with those that are Bayesian implementable. In

other words, from an interim perspective, dominant strategy incentive compatibility is no more

stringent than Bayesian incentive compatibility.

To glean some intuition for this result, we start with a simple example. Consider the case of

two agents and two equally likely types x < x. For each of the four type profiles, (x, x), (x, x),

(x, x), and (x, x), the feasible set is a two-dimensional simplex, as shown in the left panel of

Figure 1. The vps, i.e. the ex post feasible set, is thus the product of four two-dimensional

simplices and an element v(x) ∈ vps is an eight-dimensional vector

v(x) = (v1(x, x), v1(x, x), v1(x, x), v1(x, x), v2(x, x), v2(x, x), v2(x, x), v2(x, x))

The dominant strategy incentive compatibility constraints that vi(xi,x−i) be non-decreasing in

xi for all x−i, i ∈ I, can be written as βm · v ≥ 0 for m = 1, . . . , 4 where

β1 = (−1, 1, 0, 0, 0, 0, 0, 0)

β2 = (0, 0,−1, 1, 0, 0, 0, 0)

β3 = (0, 0, 0, 0,−1, 1, 0, 0)

β4 = (0, 0, 0, 0, 0, 0,−1, 1)

The VPS, i.e. the set of interim expected values, is a four-dimensional set consisting of vectors

V = (V1(x), V1(x), V2(x), V2(x))

13



that follow from applying the linear transformation

P =
1

2


1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1


to elements v(x) of the vps. The Bayesian incentive compatibility constraints that Vi(xi) be

non-decreasing in xi for all i ∈ I, can be written as Bm ◦V ≥ 0 for m = 1, 2 where

B1 = (−1, 1, 0, 0)

B2 = (0, 0,−1, 1)

Note that the constraint generated by B1 is the same as that generated by Pβ1 or Pβ2.

Similarly, B2 generates the same constraint as Pβ3 or Pβ4. In other words, the DIC constraints,

β, are mapped exactly onto the BIC constraints, B. At the interim stage, requiring dominant

strategy incentive compatibility is the same as requiring Bayesian incentive compatibility.

To make this intuition more precise we use the support function to keep track of the set of

feasible, incentive compatible outcomes. Generalizing the above example, a geometric charac-

terization of the DIC constraints is given by

(
e(xji ,x−i)− e(xj−1

i ,x−i)
)
· v ≥ 0

for j = 2, . . . , Ni, x−i ∈
∏

j 6= iXj, i ∈ I, where each e(x) is a unit vector in IRI|X|. Likewise,

the BIC constraints can be written as

( 1

fi(x
j
i )
E(xji )−

1

fi(x
j−1
i )

E(xj−1
i )

)
◦V ≥ 0

for j = 2, . . . , Ni, i ∈ I, where each E(xi) is a unit vector in IR
∑
i |Xi|. The inverse probabilities

appear because the inner product used at the interim stage is probability weighted.

To compare BIC and DIC constraints from an agent’s viewpoint we determine the interim

support functions for both cases. To this end, we define for j = 1, . . . , Ni,

∆λi(x
j
i ,x−i) ≡ λi(x

j
i ,x−i)− λi(x

j−1
i ,x−i)

∆Λi(x
j
i ) ≡ Λi(x

j
i )− Λi(x

j−1
i )

with λi(x
0
i ,x−i) = λi(x

Ni
i ,x−i) = 0 and Λi(x

0
i ) = Λi(x

Ni
i ) = 0.

14



Proposition 2. The support function for the set of feasible interim expected values that satisfy

dominant strategy incentive compatibility is given by

SDICinterim(W) = inf
0≤λi(x)

Ex

(
max
k∈K

(
0,
∑
i∈I

aki (Wi(xi)−
∆λi(x)

fi(xi)
)
))

(6)

Likewise, the support function for the set of feasible interim expected values that satisfy Bayesian

incentive compatibility is

SBICinterim(W) = inf
0≤Λi(xi)

Ex

(
max
k∈K

(
0,
∑
i∈I

aki (Wi(xi)−
∆Λi(xi)

fi(xi)
)
))

(7)

The minimization problem that defines the DIC support function involves more parameters

and, hence, could result in a lower support function (reflecting a smaller set). This is not the

case, however, if an agent’s ex post DIC constraints for different profiles of others’ types are

all mapped to the same BIC constraint when we take an interim viewpoint, as in the example

above. In terms of the minimization problems in Proposition 2 this would imply that the

optimal parameters satisfy λi(xi,x−i) = Λi(xi) for all x−i.

Consider again the above example with two agents and two equally-likely types and suppose

we set aki = δki and impose symmetry so that we can drop agent-specific subscripts. The two

support functions are then given by6

SDICinterim(W) = inf
0≤λ,λ

1

4
max(0,W − λ) +

1

2
max(0,W − λ,W + λ) +

1

4
max(0,W + λ)

where W,W are the weights associated with x and x respectively, and

SBICinterim(W) = inf
0≤Λ

1

4
max(0,W − Λ) +

1

2
max(0,W − Λ,W + Λ) +

1

4
max(0,W + Λ)

The solution to the latter problem is readily calculated as Λ = max(0, 1
2
(W−W )). Furthermore,

if we set λ = Λ in the DIC minimization problem then the solution for λ is Λ. Conversely, if

we set λ = Λ then the solution for λ is Λ. In other words, (λ, λ) = (Λ,Λ) generates a local

minimum, and by convexity of the support function, it is the global solution. For this example,

the resulting BIC and DIC support functions are thus the same.

6Without loss of generality we can scale the λ and Λ parameters by 1
2 .
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We next establish this equivalence more generally and determine the support function that

results from minimizing over the Λ (or λ) parameters. Define the shifted weights

W̃i(xi) = Wi(xi)−
∆Λi(xi)

fi(xi)

It is straightforward to verify7 that for all i ∈ I

k∑
j= 1

fi(x
j
i )Wi(x

j
i ) ≥

k∑
j= 1

fi(x
j
i )W̃i(x

j
i ) for k = 1, . . . , Ni − 1

Ni∑
j= 1

fi(x
j
i )Wi(x

j
i ) =

Ni∑
j= 1

fi(x
j
i )W̃i(x

j
i )

i.e. Wi �fi W̃i. Let W+
i denote the largest non-decreasing sequence that satisfies Wi �fi W+

i

for i ∈ I, and let W+ denote their concatenation (cf. Lemma 1).

Proposition 3 (BIC–DIC Equivalence). The support function for the set of feasible interim

expected values that satisfy BIC or DIC incentive compatibility is given by

SBICinterim(W) = SDICinterim(W) = Sinterim(W+)

for any W ∈ IR
∑
i |Xi| where Sinterim is given by equation (3) in Proposition 1.

We next construct equivalent payments for the BIC and DIC mechanisms so that they deliver

the same interim expected utilities to all agents. Importantly, we show that common objectives

such as revenue or surplus maximization can be interpreted as optimizing a linear function

over the set of feasible, incentive compatible outcomes. This allows us to derive the optimal

mechanism by applying Hotelling’s lemma to the support function in Proposition 3.

3.2.2. Payments and Revenues

The incentive constraints in (4) and (5) bound the difference in payments in terms of the

difference in values times a number that lies between xn−1
i and xni . So let us define the convex

combination

xni (αni ) ≡ (1− αni )xn−1
i + αni x

n
i

where 0 ≤ αni ≤ 1 for n = 1, . . . , Ni, i ∈ I.

7Since
∑k

j=1 ∆Λi(x
j
i ) = Λi(xk

i )− Λi(x0
i ) ≥ 0 for k = 1, . . . , Ni with equality for k = Ni.

16



Lemma 2. In any dominant strategy incentive compatible, ex post individually rational mech-

anism the payments are given by

ti(x
n
i ,x−i) = vi(x

n
i ,x−i)x

n
i (αni )−

n−1∑
j= 1

(
xj+1
i (αj+1

i )− xji (α
j
i )
)
vi(x

j
i ,x−i)

for n = 1, . . . , Ni and i ∈ I. Likewise, in any Bayesian incentive compatible, interim individ-

ually rational mechanism the payments are given by

Ti(x
n
i ) = Vi(x

n
i )xni (αni )−

n−1∑
j= 1

(
xj+1
i (αj+1

i )− xji (α
j
i )
)
Vi(x

j
i )

for n = 1, . . . , Ni and i ∈ I. The lowest and highest BIC and DIC payments follow by setting

αni = 0 and αni = 1 respectively.

The BIC-DIC equivalence result of Proposition 3 implies that for any increasing Vi(xi) one can

construct vi(xi,x−i) such that Ex−i(vi(xi,x−i)) = Vi(xi). The interim expected values of the

DIC payments are therefore equal to the BIC payments, i.e. Ex−i(ti(xi,x−i)) = Ti(xi). An

important consequence is that the BIC and DIC mechanism yield the same expected utilities

for all agents, i.e. they are equivalent (see also Goeree and Kushnir, 2011). In particular, the

expected revenue from any BIC mechanism can be obtained from an equivalent DIC mechanism.

To characterize the range of possible expected revenues, let us define the cumulative prob-

abilities Fi(x
n
i ) =

∑n
j=1 fi(x

j
i ) and the marginal revenues

MRi(x
n
i ) = xni (αni )−

(
xn+1
i (αn+1

i )− xni (αni )
)1− Fi(xni )

fi(xni )

for n = 1, . . . , Ni, i ∈ I with xNi+1
i = xNii . Let MR(α) denote the vector with elements

MRi(x
n
i ), where we make explicit the dependence on the αni parameters. Any vector α with

elements between 0 and 1 ensures incentive compatibility. Of special interest are the lowest

and highest marginal revenues MR = MR(0) and MR = MR(1).

Lemma 3. The expected revenue, R, and the expected social surplus, S, can be written as

R = V ◦MR(α)

S = V ◦ x

where V ◦W =
∑

iExi(Vi(xi)Wi(xi)) for any W ∈ IR
∑
i |Xi|.
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An important corollary to this lemma is a revenue equivalence result for general social choice

environments. For mechanisms that employ the same allocation rule and, hence, result in the

same interim values, V, the revenue is completely determined by the α constants.8

Corollary 1 (Revenue Equivalence). Any interim individually rational, incentive com-

patible mechanism that results in interim expected values V yields an expected revenue in the

range

V ◦MR ≤ R ≤ V ◦MR

Another consequence of Lemma 3 is that the revenue and surplus maximizing mechanisms

can be obtained by applying Hotelling’s lemma to the support function in Proposition 3. The

next proposition establishes this more generally, i.e. for arbitrary social choice problems and

arbitrary linear objectives. For notational simplicity we set α = 1, corresponding to the highest

incentive compatible payments.

Proposition 4 (Optimal Mechanism). For any social choice problem and for any linear

objective V ◦ω, the optimal dominant strategy incentive compatible, ex post individual rational

mechanism is

qk(x) =

{
1/|M| if k ∈ M
0 otherwise

(8)

where M≡ arg maxk∈K(0,
∑

i∈I a
k
i ω

+
i (xi)) and

ti(x) =
∑
k∈K

aki
(
xiq

k(x)−
∑
xji <xi

(xj+1
i − xji )qk(x

j
i ,x−i)

)
(9)

In particular, the highest possible revenue, Sinterim(MR
+

), follows by choosing ω = MR and

the highest possible surplus, Sinterim(x), follows by choosing ω = x.

The optimal mechanism is in dominant strategies since qk(x) and, hence, vi(x) =
∑

k a
k
i q
k(x)

is non-decreasing in agent i’s type, xi, for any profile of others’ types. Ex post individual

rationality follows since ti(x) ≤
∑

k a
k
i xiq

k(x) = xivi(x) so ui(x) = xivi(x)− ti(x) ≥ 0.

To illustrate, consider a multi-unit auction with I ≥ 1 ex ante symmetric bidders and K

perfectly divisible units. Bidders’ types are distributed according to a common probability

8Note that with discrete types there is a larger range of possible revenues than with continuous types. In
the continuous case, the expected revenue is pinned down by V and the payments of the lowest types – stated
differently, given V, the only degrees of freedom are 0 ≤ α1

i ≤ 1 for i ∈ I. In the discrete case, the degrees of
freedom are 0 ≤ αn

i ≤ 1 for n = 1, . . . , Ni, i ∈ I.
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distribution f(·) with support X = {x1, . . . , xN} for some N ≥ 1. Suppose bidders have

diminishing marginal valuations, i.e. they value winning q units at v(q) where v(·) is some

concave function. While the diminishing marginal value assumption is natural for many multi-

unit auctions, e.g. treasury auctions, it has proven intractable to derive closed-form solutions

for this case (see Ausubel and Cramton, 1998). In contrast, the next proposition establishes

the dominant strategy auction when bidders’ value functions obey a power law.

Proposition 5. When v(qi) = q1−γ
i for i = 1, . . . , I, with 0 < γ < 1, the ex post support

function is

Sex post(w) = v(K)
∑
x∈X

( I∑
i= 1

max(0, wi(x))1/γ
)γ

The efficient allocation rule is

qi(x) = K
x

1/γ
i∑I

j= 1 x
1/γ
j

Similarly, the optimal allocation rule is9

qi(x) = K
max(0,MR

+
(xi))

1/γ∑I
j= 1 max(0,MR

+
(xj))1/γ

In both cases, the ex post payment rule is given by

ti(x) = xiv(qi(x))−
∑
xji <xi

(xj+1
i − xji )v(qi(x

j
i ,x−i))

In the limit when γ tends to one, the efficient allocation rule assigns units proportionally

to bidders’ types while the optimal allocation rule assigns units proportionally to bidders’

marginal revenues. For intermediate values, 0 < γ < 1, the efficient and optimal allocation

rules resemble “Tullock-type” success functions. Finally, Myerson’s (1981) familiar result for

the optimal auction is obtained in the limit when γ tends to zero, which corresponds to the

linear valuation case v(q) = q. Now the efficient allocation rule is to assign all units to the

highest-type bidder while the revenue-maximizing allocation rule assigns all units to the bidder

with the highest positive marginal revenue (and assigns no units if all marginal revenues are

negative).

9Where we interpret 0/0 as 0.
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4. Incorporating Other Types of Constraints

In this section we demonstrate how our geometric approach facilitates the inclusion of other

types of ex ante or ex post constraints, such as budget balancedness in bargaining and pub-

lic goods provision. First, we consider multi-unit auctions where the bidders have capacity

constraints, i.e. their demand is “flat” up to a certain number of units.

4.1. Capacity Constraints in Multi-Unit Auctions

There are K ≥ 1 perfectly divisible units for sale and I ≥ 1 bidders with linear valuations. In

the absence of any capacity constraints the ex post support function is given by

Sex post(w) = K
∑
x∈X

max
i

(0, wi(x))

Now suppose that bidder i has capacity Ki < K. This implies the following constraint on the

ex post allocation rule: qi(x) ≤ Ki, or, equivalently, q · ei ≤ Ki, where ei is the i-th unit vector

in IRI|X|. Using Fact 3 the support function of the constrained set is

Sconstrained(w) = inf
0≤λi(x)

∑
x∈X

K max
i

(0, wi(x)− λi(x)) +
∑
x∈X

∑
i

Kiλi(x)

For r = 1, . . . , I, let wi(r)(x) denote the weight with rank r for each x. The capacity of the

bidder with rank 1 is less than K, i.e. Ki(1) < K, so raising λi(1)(x) from 0 lowers the objective.

Suppose we raise λi(1)(x) to wi(1)(x)−wi(2)(x) then, as long as Ki(1) +Ki(2) < K, subsequently

raising both λi(1)(x) and λi(2)(x) at the same speed lowers the objective, etc. Let 1 ≤ r∗ ≤ I

denote the largest rank such that { ∑r∗

r= 1 Ki(r) ≤ K

wi(r∗) ≥ 0

The constrained support function can be written as

Sconstrained(w) =
∑
x∈X

r∗∑
r= 1

Ki(r)wi(r)(x) + (K −
r∗∑
r= 1

Ki(r))
∑
x∈X

max(0, wi(r∗+1)(x))

where wi(r∗+1) = 0 if r∗ = I. The revenue-maximizing allocation rule follows from Hotelling’s

lemma, i.e. from ∇Sconstrained(MR
+

).
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Proposition 6. The revenue-maximizing mechanism assigns to the bidders with the highest

positive marginal revenues their capacities until the total quantity K is exhausted or all bidders

with positive marginal revenues have been served.

This result was previously derived by Maskin and Riley (1989) for the case where each bidder

has a capacity of 1 (see also Ausubel and Cramton, 1998).

4.2. Public Goods Provision with Ex Post Budget Balancedness

Consider I ≥ 1 agents whose valuations for a public good are high, x, with probability p and

low, x, with probability 1 − p. There are only K = 2 alternatives, i.e. either the public good

is produced or not. Let q(x) denote the probability that the public good is produced when the

realized type profile is x. If the marginal cost of producing the public good production is C,

the ex post budget balance constraint can be written as

∑
i∈I

ti(x) ≥ Cq(x),

for each x ∈ X, and the public good is produced if and only if this condition is met. In the

absence of the budget balance constraint, the support function is

S(w) =
∑
x∈X

max(0, w(x))

We focus on symmetric mechanisms and denote by q(m), m = 0, . . . , I, the probability that

the public good is produced when m agents are of high type and I −m agents are of low type.

Similarly, t(x,m) and t(x,m) are the payments of a low-type agent and a high-type agent in

this event. The individual rationality and ex post incentive compatibility constraints imply the

following upper bound on the agents’ payments:

t(x,m) = q(m)x

t(x,m) = (q(m)− q(m− 1))x+ q(m− 1)x

For convenience, let us parameterize the cost of the public good as C = γx + (I − γ)x where

γ ∈ {0, . . . , I}. The ex post budget balance constraint becomes βm · q ≥ 0 for m = 0, . . . , I,

where

βm = (0, . . . , 0,m(x− x)︸ ︷︷ ︸
m−1

, (m− γ)(x− x)︸ ︷︷ ︸
m

, 0, . . . , 0)
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The constrained support function can be computed using Fact 3

Sconstrained(w) = inf
0≤λm

I∑
m= 0

max
(
0, wm + (x− x)(λm(m− γ)− λm+1(m+ 1)

)
(10)

with λI+1 = 0. For m < γ the coefficients multiplying λm are non-positive so the infimum is

achieved for λm =∞. Hence, for these profiles the public good is not provided. For m ≥ γ, the

λm can be solved recursively by pushing the second argument of the max function to 0, except

for the final term of the sum (i.e. when m = I).

Proposition 7. The support function that includes ex post budget balance is given by

Sconstrained(w) =
I∑

m= γ

wm

(m
γ

)
/
( I
γ

)

The optimal allocation rule follows from q = ∇Sconstrained

q(m) =


(m
γ

)
/
( I
γ

)
if m ≥ γ

0 otherwise

The ex ante probability that the public good is produced is equal to

I∑
m= γ

pm(1− p)I−mq(m) = pγ

Mailath and Postlewaite (1990) consider the limit when the number of people grows large,

I → ∞, and the per-capita cost of producing the public good is constant. This implies that

γ is proportional to I and also diverges, so the probability that the public good is produced

tends to 0. This is true even when the per-capita cost is low, say 9
10
x+ 1

10
x, and the probability

of a high type is high, say p = 9
10

, so that the per-capita value of the public good, 1
10
x + 9

10
x,

far exceeds its cost. In other words, the public good is not produced even when it is common

knowledge that it would be efficient to do so.

In contrast, Hellwig (2003) assumes that the total cost of producing the public good is

constant, which means that γ will tend to 0 as the number of people diverges. Now the

probability of efficient public goods provision goes to 1 for all p > 0.
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4.3. Bargaining with Ex Ante Budget Balancedness

Following Myerson and Satterthwaite (1983) we consider a simple bargaining setting with a sin-

gle seller and a single buyer. Seller and buyer values are discrete, i.e. xb, xs ∈ X = {x1, . . . , xN}
for N ≥ 1, with probability distributions fb(x) and fs(x) that are not necessarily the same. Let

q(xb, xs) denote the probability of trade given profile x = (xb, xs), then the value gain to the

buyer is her type times q(xb, xs) and the gain to the seller is her type times −q(xb, xs). The ex

post support function, ignoring budget balance, is therefore

Sex post(w) =
∑
x∈X

max(0, wb(x)− ws(x))

The interim expected probability of trade from the buyer’s point of view is given by Qb(xb) =

Exs(q(xb, xs)) and from the seller’s point of view it is Qs(xs) = Exb(q(xb, xs)). The implied

interim support function is

Sinterim(W) = Ex

(
max(0,Wb(xb)−Ws(xs))

)
We consider ex ante budget balance, which can be stated as Q ◦ MR ≥ 0 where Q =

(Qb(xb),−Qs(xs)) and the buyer and seller marginal revenues are

MRb(x
j) = xj − (xj+1 − xj)1− Fb(xj)

fb(xj)

MRs(x
j) = xj + (xj − xj−1)

Fs(x
j−1)

fs(xj)

for j = 1, . . . , N with x0 = 0 and xN+1 = xN . Using Fact 3, the interim support function that

satisfies ex ante budget balance is

Sconstrained(W) = inf
0≤λ

Ex

(
max(0,Wb(xb)−Ws(xs) + λ(MRb(xb)−MRs(xs)))

)
When the constrained support function is evaluated at Wb(xb) = xb and Ws(xs) = xs, the

argument of the max function is positive if and only if MRλ
b (xb) > MRλ

s (xs) where we defined

the generalized marginal revenues

MRλ
b (xj) = xj − (xj+1 − xj) λ

1 + λ

1− Fb(xj)
fb(xj)

MRλ
s (xj) = xj + (xj − xj−1)

λ

1 + λ

Fs(x
j−1)

fs(xj)

The surplus-maximizing allocation rule can be read off from the gradient ∇Sconstrained.
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Proposition 8. The trading rule that maximizes social surplus is given by

q(xb, xs) =

{
1 if MRλ

b (xb) > MRλ
s (xs)

0 otherwise
(11)

with 0 < λ <∞ determined by

EMRλb (xb)>MRλs (xs)

(
MRb(xb)−MRs(xs)

)
= 0

In particular, in the second-best outcome, neither ”no trade” (λ =∞) nor ”fully efficient trade”

(λ = 0) occur.

5. Extensions

When we relax one of the assumptions of the main model, i.e. that values are linear in types

and types are private, independent, and one-dimensional, the equivalence between Bayesian and

dominant strategy implementation breaks down. Importantly, however, this does not mean that

our geometric approach cannot be applied. Let vki (x) denote agent i’s value when alternative

k is selected and the profile of types is x = (x1
1, . . . , x

T1
1 , . . . , x

1
I , . . . , x

TI
I ), i.e. agent i’s type is

Ti dimensional. Let Xi =
∏Ti

j=1Xij where each Xij = {x1
ij, . . . , x

Nij
ij } and let X =

∏
iXi. We

allow for correlation in types and denote the joint probability distribution by f(x).

Note that this setup relaxes all assumptions of the main model: the values vki can be non-

linear functions of the types, the values are not private since they depend on others’ types,

and types are correlated and multi-dimensional. While the setup is much more general, the

derivation of the ex post and interim support functions parallels that of Proposition 1.

Proposition 9. The support function Sex post : IRI|X| → IR for the feasible ex post values is

Sex post(w) =
∑
x∈X

max
k∈K

(0,
∑
i∈I

vki (x)wi(x))

and the support function Sinterim : IR
∑
i |Xi| → IR for the feasible interim values is

Sinterim(W) = Ex

(
max
k∈K

(0,
∑
i∈I

vki (x)Wi(xi))
)

These support functions determine the set of feasible values without any incentive constraints

imposed. For the general model, determining the consequences of Bayesian or dominant strategy
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incentive compatibility is complicated and requires more than comparing adjacent types only.

We leave a complete analysis to future research but illustrate how our methodology applies to

the case of linear value interdependencies for which adjacent comparisons are sufficient.

5.1. Interdependent Values

Consider a single-unit auction with two bidders and two equally likely and independent types,

x = 1 and x = 10. Bidders’ values depend on both their types in a simple linear way

vi(xi, xj) = xi + αxj

for i 6= j = 1, 2. A continuous-type version of this example was first studied by Maskin (1992),

who showed that when α > 1 the first-best efficient outcome is not Bayesian implementable

(and, hence, not dominant strategy implementable). Hernando-Veciana and Michelucci (2011)

show that, with two bidders, the second-best outcome can be implemented via an English

auction, although its equilibrium is not in dominant strategies. In other words, when α > 1,

the second-best outcome is Bayesian but not dominant strategy implementable and BIC-DIC

equivalence fails.

We show these results are neatly explained by comparing the sets of feasible outcomes that

satisfy Bayesian and dominant strategy incentive compatible respectively. Since the bidders are

ex ante symmetric, the allocation rule has no player specific subscript and can be represented

by a four-dimensional vector

q(x) = (q(x, x), q(x, x), q(x, x), q(x, x))

The dominant strategy incentive compatibility constraints can be written as βm · q ≥ 0 for

m = 1, 2 where

β1 = (−1, 1, 0, 0)

β2 = (0, 0,−1, 1)

The VPS, i.e. the set of interim expected values, consists of two-dimensional vectors

V = (V (x), V (x))

that follow from applying the linear transformation

P =
1

2

(
1 + α 0 1 + 10α 0

0 10 + α 0 10 + 10α

)
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to the ex post allocation probabilities q(x). The Bayesian incentive compatibility constraint is

most easily expressed in terms of the ex post allocation probabilities, i.e. B · q ≥ 0 where

B = (−1, 1,−1, 1)

Note that for α > 0 it is no longer the case that Pβ1 and Pβ2 are proportional to PB. This

is the simple reason that BIC-DIC equivalence fails.

To make this precise we next compare the support functions for the feasible interim expected

values that satisfy Bayesian and dominant strategy incentive compatibility respectively. Using

Proposition 9 and Fact 3 we have

SDICinterim = min
0≤λ,λ

1

4
max(0, (1 + α)W − λ) +

1

2
max(0, (1 + 10α)W − λ, (10 + α)W + λ)

+
1

4
max(0, (10 + 10α)W + λ)

and

SBICinterim = min
0≤Λ

1

4
max(0, (1 + α)W − Λ) +

1

2
max(0, (1 + 10α)W − Λ, (10 + α)W + Λ)

+
1

4
max(0, (10 + 10α)W + Λ)

For α = 0 the support functions reduce to those in Section 3 and BIC-DIC equivalence holds.

However, for α > 0 the DIC and BIC minimization problems will in general yield different

values for λ, λ, and Λ, resulting in different sets.10

Figure 5 shows the sets of interim feasible values that result when α = 0 (left panel), α = 1
2

(middle panel), and α = 2 (right panel). In each of the panels, the light area corresponds

to the set of feasible outcomes without any incentive constraints imposed, the medium dark

area to the Bayesian implementable outcomes, and the dark area to the dominant strategy

implementable outcomes. When α = 0 the latter two sets coincide as shown by the left panel,

but BIC-DIC equivalence generally fails when α > 0 as shown by the middle and right panels.

The easiest way to describe the different sets is by their vertices,11 which correspond to

certain specific allocation rules. For instance, the set of feasible outcomes that are dominant

10For (1 + 10α)W ≤ (10 +α)W the solutions are λ = λ = Λ = 0, while for (1 + 10α)W ≥ (10 +α)W possible
solutions are Λ = 1

2 ((1 + 10α)W − (10 + α)W ), λ = (1 + α)W , and λ = 9αW + min((1 + α)W,−(10 + α)W ).
11The vertices follow from the gradient of the support function at points of differentiability. Using the solutions

in footnote 10 yields the five DIC vertices (0, 0), (0, 15+6α), ( 1
2 + 1

2α, 15+6α), (1+ 11
2 α, 10+ 11

2 α), ( 1
2 +5α, 5+5α).

The first four plus ( 3
4 + 15

2 α,
15
2 + 21

4 α), ( 1
2 + 5α, 5 + 1

2α) constitute the six BIC vertices.

26



v

v

v

v

v

v

Figure 5. Illustration of BIC-DIC equivalence and its failure. Shown are the feasible outcomes
with no incentive constraints imposed (light), Bayesian implementable outcomes (medium dark), and
dominant strategy implementable outcomes (dark) for α = 0 (left panel), α = 1

2 (middle panel), and
α = 2 (right panel). The largest blue dot indicates the first-best outcome, the medium-sized blue dot
the second-best outcome under BIC, and the smallest blue dot the second-best outcome under DIC.

strategy incentive compatible can be described by five vertices, which (clockwise starting at the

origin) correspond to the following allocation rules

qDIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 1

2

0 1
2

)
where we organize the four-dimensional vector representing the allocation rule by a matrix with

entries q11 = q(x, x), q12 = q(x, x), q21 = q(x, x), and q22 = q(x, x). Likewise, for the Bayesian

implementable outcomes the six vertices correspond to the allocation rules

qBIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 3

4
1
4

1
2

)
,
( 0 1

2
1
2

0

)
Bayesian incentive compatibility requires that the sum of entries in the top row does not exceed

the sum of entries in the bottom row. In contrast, dominant strategy incentive compatibility

requires that the entries in the top row do not exceed the entries in the bottom row for both

columns. Notice that the final two BIC matrices violate this more stringent condition.

The blue dots in Figure 5 indicate first and second-best outcomes. For α ≤ 1, the first-best

outcomes under BIC and DIC are the same and correspond to the third DIC or BIC matrix.

When α > 1, the penultimate DIC matrix, which implies complete randomization, yields the

second-best outcome under dominant strategy implementation. Similarly, the penultimate BIC

matrix yields the second-best outcome under Bayesian implementation. BIC implementation

now leads to more social surplus than DIC, although it is no longer first best.12

12For α = 2, the second-best outcomes under DIC and BIC are V = (12, 21) and V = ( 63
4 , 18) respectively,

while the first-best outcome is V = ( 45
2 , 15).
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6. Conclusions

This paper introduces a novel approach to mechanism design, one that brings it closer to

standard micro-economic analyses of consumer and producer choice. The main insight is to

characterize the entire set of feasible and incentive compatible outcomes so that the optimal

mechanism can be derived using standard tools such as Hotelling’s lemma. We do so by

providing a geometric interpretation of the incentive compatibility constraints, which puts

them on an equal footing with basic resource constraints. Employing techniques from convex

analysis we are able to characterize the resulting high-dimensional set via its support function.

We demonstrate the usefulness of our geometric approach in several ways. First, we charac-

terize the set of feasible outcomes for a general class of social choice problems. The geometric

interpretation of the incentive compatibility constraints translates into a well-defined minimiza-

tion process for the associated support function. Using arguments from majorization theory, we

show that this minimization problem naturally generates the “ironing” procedure first described

by Mussa and Rosen (1978) and Myerson (1981). Second, we provide a simple geometric proof

that when values are linear in types and types are independent, private, and one-dimensional,

the feasible sets that remain after imposing Bayesian or dominant strategy incentive compati-

bility coincide. Third, we derive the optimal mechanism for any social choice problem and any

linear objective, including revenue and surplus maximization. Fourth, we show how to incor-

porate other types of constraints, e.g. capacity constraints and budget balancedness. Finally,

when the equivalence between Bayesian and dominant strategy implementation breaks down

our approach naturally produces second-best outcomes for both types of incentive constraints.

Our geometric approach can be extended to continuous type spaces in a straightforward

manner, either by starting with support functions for infinite dimensional sets or by considering

limit results of our discrete setting. For instance, the optimal allocation rule of Proposition

4 already applies to continuous types and the payment rule extends trivially by replacing the

sum with an integral. Throughout the paper, the interim support functions are expressed

as expectations over type profiles, reflecting either sums over discrete types or integrals over

continuous types. Indeed, we consider it a benefit that our methodology produces parallel

results, e.g. optimal mechanisms and revenue equivalence, for continuous and discrete types.

Importantly, our geometric approach applies beyond the main assumptions of linear value

functions and independent, private, and one-dimensional types, see Proposition 9. As such

it may provide a powerful tool to study mechanism design problems that have hitherto re-

sisted thorough analysis because of analytical intractability, e.g. when type spaces are multi-

dimensional. We leave this exciting prospect as a topic for future research.
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A. Appendix

Proof of Lemma 1. We first show that, without loss of generality, we can restrict attention

to sequences ς that are non-decreasing. Suppose not and ςj > ςk for j < k. Then define the

sequence ς̃ with elements ς̃j = ςj − ε(ςj − ςk)/pj and ς̃k = ςk + ε(ςj − ςk)/pk while ς̃i = ςi for

i 6= j, k. The sequence ς̃ also satisfies σ �p ς̃. Since g(·) is convex we have

pjg(ς̃j) + pkg(ς̃k) ≤ pjg(ςj) + pkg(ςk)

and, hence,
∑n

i= 1 pig(ς̃i) ≤
∑n

i= 1 pig(ςi). Repeatedly applying this procedure results in a

non-decreasing sequence ς̃ that satisfies σ �p ς̃. But any such sequence is p-majorized by σ+

and Fact 6 proves the claim. �

Proof of Proposition 1. The proof follows from the basic definition of the support function

Sinterim(W) = max
{∑

i
Exi(Vi(xi)Wi(xi)) |V ∈ VPS

}
= max

{∑
k
Ex

(
qk(x)

∑
i
akiWi(xi)

)
|q is feasible

}
= Ex

(
maxk (0,

∑
i
akiWi(xi))

)
Alternatively, we can derive the interim support function directly from the ex post support

function by applying Fact 4 to the linear transformation that corresponds to going from the ex

post to the interim stage (i.e. taking expectations over others’ types). We have fi(xi)Vi(xi) =∑
x−i

f(x)vi(x) where the interim expected value is multiplied by the probability to reflect

that the inner product at the interim stage is probability weighted. Using Fact 4, the interim

support function follows by evaluating the ex post support function at wi(x) = f(x)Wi(xi). �

Proof of Proposition 2. The implications of the DIC constraints for the ex post support

function in (2) follows from Fact 3:

SDICex post(w) = min
0≤λi(x)

∑
x∈X

max
k∈K

(
0,
∑
i∈I

aki (wi(x)−∆λi(x))
)

with ∆λi(x
j
i ,x−i) ≡ λi(x

j
i ,x−i)−λi(x

j−1
i ,x−i) for j = 1, . . . , Ni, and λi(x

0
i ,x−i) = λi(x

Ni
i ,x−i) =

0. As in the proof of Proposition 1, the interim support function simply follows by evaluat-

ing the ex post support function at wi(x) = f(x)Wi(xi). If we also replace λi(xi,x−i) with

λi(xi,x−i)f−i(x−i) we can write the result as

SDICinterim(W) = min
0≤λi(x)

Ex

(
max
k∈K

(
0,
∑
i∈I

aki (Wi(xi)−
∆λi(x)

fi(xi)
)
))

Similarly, the interim support function that incorporates BIC constraints can be written as

SBICinterim(W) = min
0≤Λi(xi)

Ex

(
max
k∈K

(
0,
∑
i∈I

aki (Wi(xi)−
∆Λi(xi)

fi(xi)
)
))

with ∆Λi(x
j
i ) ≡ Λi(x

j
i )− Λi(x

j−1
i ) for j = 1, . . . , Ni, and Λi(x

0
i ) = Λi(x

Ni
i ) = 0. �
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Proof of Proposition 3. Consider the minimization of the interim BIC support function (7)

with respect to shifted weights W̃i(xi) for given weights W̃j(xj) of others j 6= i:

min
Wi�fi W̃i

∑
xi

fi(xi)Gi(W̃i(xi))

where Gi(y) =
∑

x−i
f−i(x−i) maxk∈K

(
0, aki y+

∑
j 6=i a

k
j W̃j(xj)

)
is a convex function of y. Recall

from Lemma 1 that W+
i solves this minimization problem. Repeating this argument for each

agent i = 1, . . . , I yields SBICinterim(W) = Sinterim(W+).

Next consider the minimization of the interim DIC support function (6) with respect to the

shifted weights W̃i(x) = Wi(xi) − ∆λi(x)/fi(xi). Assume W̃j(x) = W̃+
j (xj) for x ∈ IR|X| and

j 6= i, and consider the minimization problem with respect to agent i’s shifted weights only.

In other words, for each x−i, consider the minimization problem with respect to the vector

W̃i(·,x−i), which satisfies Wi �fi W̃i(·,x−i):∑
x−i

min
Wi�fi W̃i(·,x−i)

∑
xi

fi(xi)gi(W̃i(xi,x−i))

where gi(y) = f−i(x−i) maxk∈K
(
0, aki y +

∑
j 6=i a

k
j W̃j(xj)

)
is a convex function of y. For each

x−i, W̃i(·,x−i) = W+
i solves the minimization problem. Therefore, one cannot lower the value

by changing W̃i(x) for agent i only when W̃j(x) = W+
j (xj) for j 6= i are fixed. This implies

that W+
i (xi) is a local minimum of the interim DIC support function (6) and since the support

function is convex it is also the global minimum (e.g. Rockafellar, 1997). Hence, the interim

support functions coincide: SBICinterim(W) = SDICinterim(W) = Sinterim(W+). �

Proof of Lemma 3. Expected social surplus is given by

S =
I∑

i= 1

Ex(xivi(x)) =
I∑

i= 1

Exi(xiVi(xi)) ≡ V ◦ x

Expected revenue is

R =
I∑

i= 1

Ni∑
t= 1

fi(x
t
i)Ti(x

t
i)

=
I∑

i= 1

Ni∑
t= 1

fi(x
t
i)Vi(x

t
i)x

t
i(α

t
i)−

I∑
i= 1

Ni∑
t= 1

t−1∑
j= 1

fi(x
t
i)Vi(x

j
i )(x

j+1
i (αj+1

i )− xji (α
j
i ))

=
I∑

i= 1

Ni∑
t= 1

fi(x
t
i)Vi(x

t
i)x

t
i(α

t
i)−

I∑
i= 1

Ni∑
j= 1

Ni∑
t= j+1

fi(x
t
i)Vi(x

j
i )(x

j+1
i (αj+1

i )− xji (α
j
i ))

=
I∑

i= 1

Ni∑
t= 1

fi(x
t
i)Vi(x

t
i)
(
xti(α

t
i)− (xt+1

i (αt+1
i )− xti(αti))

1− Fi(xti)
fi(xti)

)
= V ◦MR(α)

where xNi+1
i = xNii . �
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Proof of Proposition 4. From Proposition 3

SBICinterim(ω) = Sinterim(ω+) = Ex

(
maxk (0,

∑
i
aki ω

+
i (xi))

)
and from the basic definition of the interim support function

Sinterim(ω+) = max
{∑

k
Ex

(
qk(x)

∑
i
aki ω

+
i (xi)

)
|q is feasible

}
which establishes optimality of the allocation rule in equation (8). The payment rule in equation

(9) follows from Lemma 2. �

Proof of Proposition 5. The ex post support function is given by

Sex post(w) =
∑
x∈X

max
{∑

i
qi(x)1−γwi(x) |

∑
i
qi(x) = K

}
= v(K)

∑
x∈X

(∑
i
max(0, wi(x))1/γ

)γ
The optimal allocation rule follows from Hotelling’s lemma, i.e. q = ∇Sex post(w):

qi(x) = K
max(0, wi(x))1/γ∑
j max(0, wj(x))1/γ

,

where we interpret 0/0 as 0. The payment rule follows from Lemma 2. �

Proof of Proposition 7. A solution to (10) must satisfy

λm+1(m+ 1)(x− x) = wm + λmm(1− γ

m
)(x− x)

for m = γ − 1, . . . , I − 1. Define λ̂m = m(x− x)λm to obtain the recursive equation

λ̂m+1 = wm + λ̂m(1− γ

m
)

The support function can now be calculated as

Sconstrained(w) = wI + λ̂I(1−
γ

I
)

= wI +
∑I−γ

m= 1
wI−m

∏m−1

j= 0
(1− γ

I − j
)

=
∑I−1

m= γ
wm
∏I

j=m+1
(1− γ

j
) + wI

=
∑I

m= γ
wm

(
m

γ

)
/

(
I

γ

)
The other statements follow from Fact 5 and direct calculations. �

31



Proof of Proposition 8. The constrained support function is given by

Sconstrained(W) = inf
0≤λ

Ex

(
max(0,Wb(xb)−Ws(xs) + λ(MRb(xb)−MRs(xs)))

)
Hotelling’s lemma Q = ∇Sconstrained(W) evaluated at Wb(xb) = xb and Ws(xs) = xs yields13

Qb(xb) = Exs(1(MRλ
b (xb) > MRλ

s (xs))

Qs(xs) = Exb(1(MRλ
b (xb) > MRλ

s (xs))

where 1(·) denotes an indicator function. The ex post allocation rule can now easily be read

off since Qb(xb) = Exs(q(xb, xs)) and Qs(xs) = Exb(q(xb, xs)).

The optimal λ can be found by equating the derivative of the constrained support function

with respect to λ to 0, which yields the condition

EMRλb (xb)>MRλs (xs)

(
MRb(xb)−MRs(xs)

)
= 0

When λ = 0 the left side is equal to

−
N∑
j= 1

(xj − xj−1)Fs(x
j−1)(1− Fb(xj−1)) < 0,

Hence, fully efficient trade cannot occur. Likewise, no trade requires λ =∞, but then the left

side is strictly positive since MR∞b (xb) = MRb(xb) and MR∞s (xs) = MRs(xs). �

Proof of Proposition 9. The support function for the qk(x) is

S(w) =
∑
x∈X

max
k∈K

(0, wk(x))

and applying Fact 4 yields the ex post support function for vi(x) =
∑

k v
k
i (x)qk(x):

Sex post(w) =
∑
x∈X

max
k∈K

(0,
∑
i∈I

vki (x)wi(x))

The interim expected values are given by Vi(xi) =
∑

x−i
f(x|xi)vi(x) and applying Fact 4 once

more yields

Sinterim(W) = Ex

(
max
k∈K

(0,
∑
i∈I

vki (x)Wi(xi))
)

where, as before, we multiplied by fi(xi), i.e. we used the probability weighted inner product

◦ to define the set of interim expected values. �

13Since the inner product ◦ is probability weighted, the components ∂Wi(xi) of ∇ are multiplied by 1/fi(xi).
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