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 Abstract 

This paper develops an R&D-growth model and calibrates the model to aggregate data of the US 

economy to quantify a structural relationship between patent length, R&D and consumption. Under 

parameter values that match the empirical flow-profit depreciation rate of patents and other key features 

of the US economy, extending the patent length beyond 20 years leads to a negligible increase in R&D 

despite equilibrium R&D underinvestment. In contrast, shortening the patent length leads to a significant 

reduction in R&D and consumption. Finally, this paper also analytically derives and quantifies a dynamic 

distortionary effect of patent length on capital investment. 
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[T]here is much to be done to understand the pace of technological progress in frontier 

economies. Our models of endogenous technological change give us the basic framework for 

thinking about how profit incentives shape investments in new technologies. … But most of 

our understanding of these issues is qualitative. For example, in the context of the economics 

of innovation, we lack a framework – similar to that used for the analysis of the effects of 

capital and labor income taxes and indirect taxes in public finance – which could be used to 

analyze the effects of … IPR policies … on innovation and economic growth. 

– Daron Acemoglu (2009, p. 873) 

 

1. Introduction 

Is the patent length an effective policy instrument to increase R&D? The statutory term of patent in the 

US was 17 years from 1861 to 1995 and then extended to 20 years as a result of the TRIPS agreement.1 

Given that there is underinvestment in R&D in the market economy,2 why hasn’t the term of patent been 

lengthened to increase R&D? This paper attempts to provide an answer to these questions by developing 

an R&D-growth model and calibrating the model to aggregate data of the US economy to quantify a 

structural relationship between patent length, R&D and consumption. 

We find that the quantitative effects of patent length on R&D and consumption depend on the 

flow-profit depreciation rate of patents. Bessen (2008) estimates a flow-profit depreciation rate of 14% 

for US patents. At such a high depreciation rate, extending the patent length beyond 20 years leads to a 

very small percent change in the market value of patents and hence has a negligible effect on R&D. In 

contrast, shortening the patent length leads to a significant reduction in R&D and consumption. In other 

words, there is an asymmetric effect between extending and shortening the patent length. 

                                                 
1 The World Trade Organization’s Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS), 
initiated in the 1986-94 Uruguay Round, extends the statutory term of patent in the US from 17 years (counting from 
the issue date when a patent is granted) to 20 years (counting from the earliest claimed filing date) to conform with 
the international standard. Due to the difference in the starting date, the effective patent extension was minimal. 
2 See, for example, Jones and Williams (1998, 2000). 
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This study also identifies and analytically derives a dynamic distortionary effect of patent length 

on capital investment that has been neglected by previous studies, which focus mostly on the static 

distortionary effect of markup pricing. The dynamic distortion arises because when the patent length 

increases, the fraction of monopolistic industries goes up and the resulting higher aggregate markup 

increases the wedge between the social marginal product of capital and the rental price. As a result, the 

equilibrium capital-investment rate decreases and deviates from the social optimum. The numerical 

analysis also quantifies this distortionary effect on capital investment. 

Laitner (1982) is the first study to show that in an overlapping-generation (OLG) model, the 

presence of monopolistic profits creates the usual static distortion as well as a dynamic distortion on 

capital accumulation due to the crowding-out effect on portfolio space. Chou and Shy (1993) analyzes 

this crowding-out effect of patent length in an OLG model. The present study shows that in an R&D-

growth model with an infinitely-lived representative household, patent length creates a different dynamic 

distortionary effect on capital investment by driving a wedge between the social marginal product of 

capital and the rental price. 

 This paper also complements the studies in the patent-design literature that are mostly based on a 

qualitative partial-equilibrium setting by providing a quantitative dynamic general-equilibrium (DGE) 

analysis on patent length.3 The seminal study on patent length is Nordhaus (1969), and he concludes that 

the optimal patent length should balance between the static distortionary effect of markup pricing and the 

dynamic gain from enhanced innovation. In an exogenous-growth model, Judd (1985) concludes that the 

optimal patent length should be infinite. In contrast, Futagami and Iwaisako (2003, 2007) show that the 

optimal patent length can be finite in an endogenous-growth model. While it is interesting to characterize 

the optimal duration of patent, the present study complements these qualitative analyses by providing a 

quantitative framework that can be calibrated to data to quantify the extent of R&D underinvestment and 

the effects of patent length on R&D and consumption. 

                                                 
3 See Scotchmer (2004) for a comprehensive review of the patent-design literature. O’Donoghue and Zweimuller 
(2004) provide one of the first studies that merge the patent-design and endogenous-growth literatures. 
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 In terms of quantitative analysis on patent length, an important study is Kwan and Lai (2003), and 

they find substantial welfare gains from extending the effective lifetime of patent. There is an important 

reason for the contradicting results between Kwan and Lai (2003) and the present study. By using the 

same final-goods production function as in Romer (1990), Kwan and Lai (2003) necessarily restrict the 

size of the markup to the inverse of the capital share. This usually innocuous parameter restriction equates 

the balanced-growth rate of profit per patent to the population growth rate that is nonnegative. Relaxing 

this restriction implies that at the empirical flow-profit depreciation rate of patents, the amount of profit 

captured by a patent declines sharply overtime rendering patent extension ineffective in increasing R&D. 

In a related study, Chu (2009) considers a different aspect of patent protection by quantifying the effects 

of blocking patents on R&D in a quality-ladder growth model with overlapping patent rights. 

 The rest of this study is organized as follows. Section 2 illustrates the intuition of the main 

results. Section 3 describes the model, and Section 4 defines the equilibrium. Section 5 calibrates the 

model, and the final section concludes. Proofs are relegated to Appendix A.  

 

2. Intuition of the main results 

The first result of this paper is that at the empirical flow-profit depreciation rate of patents, extending the 

patent length beyond 20 years leads to a negligible increase in R&D. Denote )(0 TM  as the market value 

of an invention patented at time 0 with a patent length of T years. Suppose that the flow profit captured by 

the invention at time t is given by )exp(0 tgt πππ = , where πg  is the flow-profit growth rate that may be 

negative. Then, )(0 TM  can be determined by the following condition 
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We consider flow-profit growth rates of {-10%, -15%, -20%} that cover the empirical estimate of a 14% 

flow-profit depreciation rate in Bessen (2008).4 Given these estimates and an asset return of 7%, the 

percent changes in the market value of an invention by extending the patent length from 20 years to 25 

years are {2.0%, 0.8%, 0.3%}, which are very small. On the other hand, the percent changes from 

shortening the patent length by 5 years are {-4.6%, -2.5%, -1.3%}, which are more significant. In other 

words, there is an asymmetric effect between extending and shortening the patent length on the market 

value of patents. The model in Section 3 provides a growth-theoretic framework that can be calibrated to 

quantify the resulting effects on R&D and consumption. 

 The second result of the paper is the dynamic distortionary effect (i.e. an increase in the patent 

length decreases the equilibrium capital-investment rate). To illustrate the intuition behind this result, the 

no-arbitrage condition equates the capital’s rental price R  to the sum of the real interest rate r  and the 

capital-depreciation rate δ  such that δ+= rR , which is constant and exogenously determined along the 

balanced-growth path. The aggregate markup creates a wedge (denoted by 1≤d ) between the rental 

price and the marginal product of capital such that  

(3) )/()( YKMPKTdR = . 

)(Td  is decreasing in the patent length T while the marginal product of capital MPK is decreasing in the 

capital-output ratio K/Y. Intuitively, an increase in the patent length raises the fraction of monopolistic 

industries and hence the aggregate markup. A higher aggregate markup increases the wedge (i.e. a smaller 

d ) between the rental price and the social marginal product of capital. As a result, the steady-state 

capital-output ratio and capital-investment rate must fall to satisfy (3). The R&D-growth model serves the 

useful purpose in providing a framework to quantify the magnitude of this wedge. 

 

 

                                                 
4 Bessen (2008) estimates that the flow-profit depreciation rate of patents is about 14% in the US. This estimate is in 
line with the earlier literature on estimating the market value of patents based on European patent renewal data. See, 
for example, Pakes (1986), Schankerman and Pakes (1986) and Lanjouw (1998).  
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3. The model 

The variety-expanding model is a modified version of Romer (1990). The basic framework is modified to 

introduce a finite patent length denoted by T for each invented variety of intermediate goods. The final 

goods are produced with labor and a composite of intermediate goods. An intermediate-goods industry is 

monopolistic if the producer owns an unexpired patent, and the industry becomes competitive once the 

patent expires. The relative price between the monopolistic and competitive goods leads to the usual static 

distortionary effect that reduces the output of final goods. The markup in the monopolistic industries 

drives a wedge between the social marginal product of capital and the rental price. Consequently, it leads 

to an additional dynamic distortionary effect that causes the equilibrium capital-investment rate to deviate 

from the social optimum. To prevent the model from overstating the social benefits of R&D and hence the 

extent of R&D underinvestment, we follow Comin (2004) to assume that total factor productivity (TFP) 

growth is driven by R&D as well as an exogenous process of productivity improvement. In addition, the 

first-generation R&D-growth models exhibit scale effects that are contradicted by the empirical evidence 

in Jones (1995a).5 In the present study, scale effects are eliminated as in Jones (1995b). Upon eliminating 

scale effects, the model becomes a semi-endogenous growth model, in which the long-run growth rate is 

determined by exogenous parameters and R&D has a level effect in the long run. The components of the 

model are presented in Sections 3.1–3.6, and the analysis focuses on the balanced-growth path. 

 

3.1. Household 

There is a representative household whose lifetime utility is given by  

(4) dtceU ttn
⎟⎟
⎠
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−∞

−−∫ σ
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0

)( , 

where 0>σ  is the inverse of the elasticity of intertemporal substitution and ρ  is the exogenous 

subjective discount rate. The household has tn
t eL .=  members at time t, and 0>n  is the exogenous 

                                                 
5 See Jones (1999) for an excellent discussion on scale effects in R&D-growth models. 



 - 6 -

population growth rate. To ensure that utility is bounded, cgn )1( σρ −+>  where cg  is the balanced-

growth rate of tc , which is the per capita consumption of final goods (the numeraire). The household 

maximizes utility subject to a sequence of budget constraints ttttt cwanra −+−= )(& . Each member of 

the household inelastically supplies one unit of homogenous labor in each period to earn a wage income 

tw . ta  is the per capita holding of assets that consist of physical capital and patents, and tr  is the real 

rate of return. From the household’s intertemporal optimization, the familiar Euler equation is  

(5) σρ /)(/ −= ttt rcc& .  

The steady-state real interest rate is σρ cgr += . 

 

3.2. Final goods 

The sector producing the final goods is characterized by perfect competition, and the producers take both 

the output and input prices as given. In particular, the final-goods production function is  

(6) 
η

αηαα

/1

0

1
,

1 )( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫−−

tV

ttytt djjXLZY   

for )/1,0(
.
αη ∈ . tY  is the output of final goods. )exp(0 tgZZ Zt =  represents an exogenous process of 

productivity improvement that is freely available to final-goods firms. tyL ,  is the number of production 

workers. )( jX t  is the amount of intermediate goods of variety ],0[ tVj∈ , in which tV  is the number of 

varieties that have been invented as of time t.  

 The production function in (6) nests Romer (1990) as a special case with 1=η  and 1=tZ  for all 

t. For 1=η , the monopolistic markup μ  is equal to α/1  (i.e. roughly the inverse of the capital share). 

Therefore, Jones and Williams (2000) propose a more flexible specification that allows η  to differ from 

one. The markup becomes 1)/(1 >= αημ  that relaxes the parameter restriction between the markup and 

capital share. As for the exogenous process tZ , this study includes it to avoid the assumption that TFP 
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growth is solely driven by R&D. Later, we use the empirical flow-profit depreciation rate of patents to 

help calibrating the model. Standard profit maximization yields the following first-order conditions. 

(7) tytt LYw ,/)1( α−= , 

(8) )()()( 1
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where )( jPt  is the price of intermediate-goods ],0[ tVj∈ . 

 

3.3. Intermediate goods 

There is a continuum of industries indexed by ],0[ tVj∈  producing the differentiated intermediate goods 

)( jX t . Once a variety has been invented, the production function is )()( , jKjX tyt = , where )(, jK ty  is 

the amount of capital employed by industry j . The profit function facing the producer(s) of variety j  is  

(9) )()()()( , jKRjXjPj tytttt −=π . 

tR  is the rental price of capital. Denote the fraction of monopolistic industries at time t by ]1,0[∈tf , 

which is endogenously determined by the patent length T. Without loss of generality, the industries are 

ordered such that industries ],0[ tt fVj∈  are protected by patents and industries ],( ttt VfVj ∈′  are not 

protected by patents. Then, the equilibrium prices for ],0[ tt fVj∈  and ],( ttt VfVj ∈′  are respectively 

(10) tt RjP .)( μ= , 

(11) tt RjP =′)( . 

 

3.4. Aggregate production function and the static distortionary effect 

The total amount of capital employed by the intermediate-goods sector at time t  is  

(12) )]()1()([)(
0

, jXfjXfVdjjXK ttttt

V
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Lemma 1: The aggregate production function for the final goods is  

(13) αααα
tytytttt KLZAsY ,

1
,

11 −−−= , 

where tA  is the level of R&D-driven TFP and is defined as 

(14) ηαηα /)1(1 −− ≡ tt VA , 

and ts  is defined as 
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ts  is strictly less than one for )1,0(∈tf  and equal to one for }1,0{∈tf . In addition, 0/ <∂∂ tt fs  when 
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Proof: See Appendix A.■ 

 

 The variable ts  captures the static distortionary effect of patent length in creating a monopolistic 

markup in patent-protected industries. Intuitively, the markup in patent-protected industries distorts 

production towards competitive industries and reduces the total output of final goods. Increasing the 

fraction of monopolistic industries worsens this static distortionary effect when 
.̂

fft < . The static 

distortionary effect is non-monotonic in tf  because when all industries are monopolistic, the relative-

price distortion disappears. 

 

3.5. National income account identities and capital accumulation 

The market-clearing condition for the final goods is  

(16) ttt ICY += . 
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ttt cLC =  is aggregate consumption, and tI  is investment in physical capital. The correct value of gross 

domestic product (GDP) should include the value of investment in R&D such that  

(17) trttrttt KRLwYGDP ,, ++= .6 

trL ,  and trK ,  are respectively the number of workers and the amount of capital in the R&D sector. The 

amount of monopolistic profit and the factor payments for workers and capital in the intermediate-goods 

sector are  

(18) ttyt YLw )1(, α−= , 

(19) tttyt dYKR α=, , 

(20) )1( ttttt dYfV −=απ , 

where td  is determined by tf  (the fraction of monopolistic industries) and is defined as  

(21) ]1,[
1)(

1)(
.)1/(

)1/(1

αη
αη
αη

αηαη

αη

∈
−+
−+

≡ −

−

tt

tt
t ff

ffd . 

A larger tf  reduces td  and increases the wedge between the social marginal product of capital and the 

rental price. As will be shown below, this decrease in td  also leads to a lower capital-investment rate. 

Therefore, td  captures the dynamic distortionary effect of patent length on capital accumulation. 

 The market-clearing condition for physical capital is  

(22) trtyt KKK ,, += .  

tK  is the total amount of capital in the economy at time t. The law of motion for capital is  

(23) ttt KIK .δ−=& . 

                                                 
6 In the national income account, private spending in R&D is treated as an expenditure on intermediate goods. 
Therefore, the values of capital investment and GDP in the data are tI  and tY  respectively. The Bureau of 
Economic Analysis and the National Science Foundation’s R&D satellite account provides preliminary estimates on 
the effects of including R&D as an intangible asset in the national income accounts.  
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δ  is the capital-depreciation rate. Denote the balanced-growth rate of capital by Kg . Then, the steady-

state capital-investment rate can be expressed as  

(24) ttKtt YKgYIi /)(/ δ+=≡  . 

The no-arbitrage condition δ−= tt Rr  implies that the steady-state capital-output ratio is  

(25) 
))(1(

.
.

δ
α

+−
=

rk
d

Y
K

rt

t , 

where ttrr KKk /,≡  is the steady-state R&D share of capital. Substituting (25) into (24) yields 

(26) 
δ
δα

+
+

⎟⎟
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⎞
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⎝

⎛
−

=
r

g
k
di K

r1
.

. 

In the Romer model, (skilled) labor is the only input for R&D (i.e. 0=rk ). Therefore, the distortionary 

effect of patent length on the capital-investment rate is unambiguously negative (i.e. as T increases, d  

decreases and hence i  decreases as well). In the present model with 0>rk , there is an opposing effect 

through rk . Intuitively, extending the patent length raises the private return to R&D and increases rk . 

Proposition 1 in Section 4.3 shows that the negative distortionary effect dominates this positive effect. 

 

3.6. R&D 

The market value of a patent on a variety invented at time t is the present value of the stream of 

monopolistic profits captured by the patent until it expires at time t + T given by 

(27) t

Tt

t

tr
t TdeTM πτπτ

τ )()( )( Ω== ∫
+

−− , 

where )/()1()( )(
π

π greT Tgr −−≡Ω −−  is the present-value discount factor. The marginal effect of the 

patent length on )(TΩ  is given by TgreT )()( π−−=Ω′ , and this marginal effect depends positively on the 

profit growth rate πg . Therefore, a highly negative profit growth rate (i.e. a high flow-profit depreciation 

rate) renders patent extension ineffective in raising the market value of a patent. 



 - 11 -

 The number of inventions obtained by R&D entrepreneur ]1,0[∈k  is  

(28) )()()( ,
1

, kKkLk trtrtt
ββϕλ −= , 

where tϕ  is R&D productivity that entrepreneurs take as given. This specification nests the “knowledge-

driven” specification in Romer (1990) as a special case with 0=β  and the “lab equipment” specification 

in Rivera-Batiz and Romer (1991) and Jones and Williams (2000) with αβ = . The R&D sector is 

characterized by perfect competition, and the amount of profit earned by R&D entrepreneur k  is  

(29) )()()()( ,,, kKRkLwkMk trttrttttr −−= λπ . 

The first-order conditions for the R&D sector are  

(30) ttrtrtt wLKM =− βϕβ )/()1( ,, ,  

(31) ttrtrtt RLKM =−1
,, )/(

.

βϕβ .  

(30) and (31) together with (18) and (19) determine the resource allocation between production and R&D. 

To eliminate scale effects and introduce R&D externalities, we follow Jones and Williams (2000) 

to assume that R&D productivity tϕ  is given by 

(32) 11
,, )(

.

−−= γββφϕϕ trtrtt LKV . 

)1,(−∞∈φ  captures the positive externality )1,0(∈φ  or the negative externality )0,(−∞∈φ in 

intertemporal knowledge spillovers. ]1,0(∈γ  captures the negative intratemporal-duplication externality 

or the so-called “stepping-on-toes” effects. The law of motion for the number of varieties is  

(33) γββφββ ϕϕλ )()( 1
,,

1
,,

1

0
.

−− === ∫ trtrttrtrttt LKVLKdkkV& . 

On the balanced-growth path, ∫=
1

0
,, )( dkkKK trtr  increases at Kg  and ∫=

1

0
,, )( dkkLL trtr  increases at 

the exogenous population growth rate n . Therefore, the balanced-growth rate of tV  denoted by Vg  is  
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Finally, the steady-state fraction f  of varieties that are patent-protected is given by  

(35) Tg

t

Ttt

t

t Ve
V

VV
V
VTf −− −=

−
=≡ 1

~
)( &

&&
, 

where tV~  is the number of patent-protected varieties and Ttt VV −− &&  is the net increase in the number of 

patent-protected varieties at time t.  

 

4. Decentralized equilibrium 

This section firstly defines the equilibrium and characterizes the balanced-growth path. Then, we derive 

the socially optimal allocations and discuss the dynamic distortionary effect on capital investment. The 

decentralized equilibrium is a sequence of allocations ∞
=0,,,, },,,,,,,),(,,{ ttttrtrtytyttttt LKLKLKIYjXac  

and a sequence of prices ∞
=0}),(,,,{ tttttt MjPRrw . Also, in each period,  

(a) the representative household chooses },{ tt ac  to maximize utility taking },{ tt rw  as given;  

(b) final-goods firms choose }),({ ,tyt LjX  to maximize profits taking }),({ tt wjP  as given; 

(c) monopolistic firms ],0[ tt fVj∈  in the intermediate-goods sector choose )}(),({ , jKjP tyt  to 

maximize profits taking }{ tR  as given;  

(d) competitive firms ],( ttt VfVj ∈′  in the intermediate-goods sector choose )}({ , jK ty ′  to 

maximize profits taking }),({ tt RjP ′  as given;  

(e) entrepreneurs ]1,0[∈k  in the R&D sector choose )}(),({ ,, kKkL trtr  to maximize profits taking 

},,{ ttt MRw  as given;  

(f) the market for final goods clears such that ttt ICY += ; 
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(g) there is full employment of capital such that trtyt KKK ,, += ; and 

(h) there is full employment of labor such that trtyt LLL ,, += . 

 

4.1. Balanced-growth path 

Equating (18) and (30) and then imposing the following balanced-growth condition  

(36) Vtrtrtt gLKV /1
,,
ββϕ −=  

on the resulting expression yield the steady-state R&D share of labor given by  

(37) 
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where ttrr LLl /,≡ . Similarly, equating (19) and (31) and then imposing (36) yield  

(38) 
f

d
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ge
k

k V
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r
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The balanced-growth rates of various variables are given as follows. From the aggregate 

production function in (13) and the steady-state capital-investment rate in (26), we see that  

(39) ngggggg ZACIKY ++==== . 

Therefore, ZACc ggngg +=−= . From the definition of R&D-driven TFP in (14),   

(40) VA gg ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=
η
αη

α
1

1
1

. 

Finally, from (20), the balanced-growth rate of monopolistic profit per patent is  

(41) VZAVY gnggggg −++=−=π . 

Note that πg  must equal 0>+ ngZ  when 1=η  because VA gg = . However, as η  increases (i.e. a 

smaller markup αημ /1= ), Vg  increases relative to Ag . Therefore, holding Ag  constant, an increase in 

η  leads to a decrease in πg . Eventually, πg  becomes negative for a small enough markup.  
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Denote ξ  as the fraction of long-run TFP growth driven by R&D such that ATFP gg )1(
.

αξ −=  

and ZTFP gg )1()1( αξ −=− . If 1=ξ , then the value of πg  is pinned down by TFPg , n , α  and η  

according to (40) and (41). However, this implied value of πg  may be biased due to the misspecification 

of the model. Therefore, we allow ξ  to differ from one and calibrate this parameter from the data. Firstly, 

we use the empirical estimate of πg  in (41), which pins down a unique value of Vg  for given values of 

TFPg , α  and n  from the data. Then, given Vg , (40) determines a unique value of Ag  and hence ξ  for 

given values of TFPg , α  and η . Finally, combining (34), (39) and (40) yields the following balanced-

growth condition that can be used to calibrate the externality parameters γ  and φ .  

(42) )(1
1

1
.

1

ngg ZV +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

−
−

=
−

β
η
αη

α
β

γ
φ

. 

We impose the following parameter restriction ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

>
−

η
αη

α
β

γ
φ 1

1
1

 to ensure that 0>Vg . 

 

4.2. Socially optimal allocations 

To derive the socially optimal capital-investment rate *i  and R&D shares of labor *
rl  and capital *

rk , the 

social planner maximizes  

(43) ∫
∞ −

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

0

1
)(

1
1]/)1[( dtLYieU ttttn

σ

σ
ρ  

subject to (i) the aggregate production function expressed in terms of trl ,  and trk ,  given by 

(44) αααααηαη −−−− −−= 11
,,

1/)1( )1()1( tttrtrttt LKlkZVY , 

(ii) the law of motion for capital expressed in terms of ti  given by 

(45) tttt KYiK .δ−=& , 

and (iii) the law of motion for the number of varieties expressed in terms of trl ,  and trk ,  given by 
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(46) ϕγββγγββγφ )1()1(
,, )()( −−= tttrtrtt LKlkVV& . 

After deriving the first-order conditions, the social planner solves for *i , *
rl  and *

rk  on the balanced-

growth path.7 The socially optimal capital-investment rate *i  is  

(47) 
δ
δα

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
r

g
k

i K

r
*

*

1
, 

and the socially optimal R&D shares of labor *
rl  and capital *

rk  are respectively 

(48)  
η
αη

φ
γ

α
β −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−

−
=

−
1

)1(1
1

1
.

*

*

VY

V

r

r

ggr
g

l
l

, 

(49) 
η
αη

φ
γ

α
β −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

=
−

1
)1(1

.

*

*

VY

V

r

r

ggr
g

k
k

. 

Comparing (37) and (38) with (48) and (49) shows the various sources of R&D externality (i) the 

negative externality in intratemporal duplication ]1,0(∈γ , (ii) the positive or negative externality in 

intertemporal knowledge spillovers )1,(−∞∈φ , (iii) the positive externality from the dynamic surplus-

appropriability problem (due to the finite patent length) given by 11 )( <− −− Tgre π , and (iv) the positive 

externality from the static surplus-appropriability problem given by ηαηα /)1(/)1( −<− fd  for all T.8 

Given the presence of positive and negative externalities, it requires a numerical calibration that will be 

performed in Section 5 to determine whether the market economy overinvests or underinvests in R&D.  

 

4.3. The dynamic distortionary effect 

If the market economy underinvests in R&D, the government may want to increase the patent length to 

reduce the extent of this market failure. However, an increase in patent length would worsen the dynamic 

distortionary effect on capital accumulation. Therefore, the government needs to trade off the gains from 

increasing R&D against the losses from the dynamic distortion as well as the static distortion. Proposition 
                                                 
7 The derivations are provided in an appendix available from the author upon request. 
8 It can be shown that fd /)1( −  is increasing in T . As ∞→T , ηαηαηαα /)1()1(/)1( −<−=− fd . 
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1 provides the condition under which an increase in patent length would move the equilibrium capital-

investment rate i  away from the social optimum *i . 

 

Proposition 1: The decentralized equilibrium capital-investment rate i  is below the socially optimal rate 

*i  if either (i) there is underinvestment in R&D or (ii) labor is the only factor input for R&D. In addition, 

an increase in the patent length always reduces the equilibrium capital-investment rate i . 

Proof: See Appendix A.■ 

 

The second part of the proposition is quite intuitive. When the patent length increases, the 

fraction of monopolistic industries rises. The resulting higher aggregate markup drives a larger wedge 

between the social marginal product of capital and the rental price. Therefore, the equilibrium capital-

investment rate decreases. As for the first part of the proposition, the discrepancy between the equilibrium 

capital-investment rate and the socially optimal rate arises due to (i) the aggregate markup and (ii) the 

discrepancy between the equilibrium R&D share of capital rk  and the optimal R&D share *
rk . Given that 

the equilibrium capital-investment rate i  is increasing in rk , R&D underinvestment (i.e. *
rr kk < ) is 

sufficient for *ii < . When there is R&D overinvestment, whether i  is below or above *i  depends on the 

relative magnitude of the markup effect and the R&D-overinvestment effect. For the case in which labor 

is the only factor input for R&D, rk  equals zero and hence, only the markup effect is present. 

 

5. Calibration 

This section firstly calibrates the structural and externality parameters using long-run aggregate data of 

the US economy and then computes the changes in R&D and consumption by varying the patent length. 

After that, the dynamic distortionary effect on capital investment is also quantified.  
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5.1. Structural parameters 

The statutory patent length T in the US is 20 years, and the average annual labor-force growth rate n  is 

0.0166.9 The annual discount rate ρ  and the annual rate of depreciation δ  for physical capital are set to 

conventional values of 0.04 and 0.08 respectively. β  is set equal to α  corresponding to the lab-

equipment specification in Rivera-Batiz and Romer (1991) and Jones and Williams (2000).10 Once the 

above parameters are determined, the model provides five steady-state conditions (summarized in (50)-

(54) below) to determine the remaining structural parameters },,,,{ Vgξηασ  by matching five empirical 

moments.11 To identify σ , the ratio of private investment to GDP is set to 0.202.12 To identify α , the 

labor share of GDP is set to a conventional value of 0.7. To identify η  through the markup, the R&D 

share of GDP is set to 0.0149.13 To identify Vg , πg  is set to {-20%, -15%, -10%} based on the estimate 

in Bessen (2008). Finally, to identify ξ , the long-run TFP growth rate ))(1( ZATFP ggg +−≡ α  is set to 

0.0102.14 

(50) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

−
=

δσρ
δα

c

c

r g
gn

k
d

Y
I

1
.

, 

(51) 
rlY

wL
−
−

=
1
1 α

, 

(52) 
r

r

r

rrr

k
kd

l
l

Y
RKwL

−
+

−
−=

+
11

)1( .αα , 

(53) VTFP gngg −+−= )1/( απ , 

                                                 
9 This number is calculated using data from 1956 to 2006, and the data is from the Bureau of Labor Statistics.  
10 We have considered different values of }3,2,,0{ αααβ ∈  as a sensitivity analysis, and the results are robust to 
these parameter changes. 
11 Technically, vg  is not a parameter but determined by exogenous parameters according to (42). 
12 This number is calculated using data from 1956 to 2006, and the data is from the Bureau of Economic Analysis. 
GDP is net of government spending.  
13 This number is calculated using data from 1956 to 2004. The data is from the Bureau of Economic Analysis and 
the National Science Foundation. R&D is net of federal spending, and GDP is net of government spending.  
14 This number is calculated using data on multifactor productivity (available from 1956 to 2002) for the private 
non-farm business sector. The data is from the Bureau of Labor Statistics.  
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(54) VTFP gg ⎟⎟
⎠

⎞
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⎛ −
=

η
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ξ
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. 

For βα = , 
f

d
ggn
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−
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Table 1 lists the calibrated structural parameters along with the implied markup )/(1 αημ =  and 

the implied real interest rate σρ cgr += .  

gπ σ α η ξ gV μ r
-0.10 2.87 0.31 2.97 0.34 0.13 1.08 0.08
-0.15 2.91 0.31 3.01 0.39 0.18 1.07 0.08
-0.20 2.93 0.31 3.02 0.46 0.23 1.07 0.08

Table 1: Calibrated structural parameters

 

The implied markup is within the empirically plausible range. For example, Laitner and Stolyarov’s 

(2004) estimated markup is 1.09-1.11, and Basu and Fernald (1997) estimate that the aggregate profit 

share in the US is about 3%. Also, the implied real interest rate is roughly in line with the historical rate 

of return in the US stock market. The calibrated values for ξ  suggest that about 35% to 45% of long-run 

TFP growth in the US is driven by R&D.  

 

5.2. Externality parameters 

For each set of calibrated parameter values, the balanced-growth condition in (42) determines a unique 

value for )1/( φγ − , which is sufficient to determine the effect of R&D on the balanced-growth level of 

consumption. However, holding )1/( φγ −  constant, a larger γ  implies a faster rate of convergence to the 

balanced-growth path. Therefore, it is important to consider different values of γ  (i.e. the negative 

externality in intratemporal duplication). Table 2 presents the calibrated values of φ  (i.e. the externality 

in intertemporal knowledge spillovers), and the positive values suggest positive knowledge spillovers (i.e. 

the standing-on-shoulder effect). 
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gπ / γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.10 0.98 0.97 0.95 0.94 0.92 0.90 0.89 0.87 0.85 0.84

-0.15 0.99 0.98 0.96 0.95 0.94 0.93 0.92 0.91 0.89 0.88

-0.20 0.99 0.98 0.97 0.96 0.95 0.95 0.94 0.93 0.92 0.91

Table 2: Calibrated values of ϕ

 

 

5.3. Socially optimal R&D 

This section computes the socially optimal R&D share of GDP )1/()1/()1( ****

. rrrr kkll −+−− αα . 

[insert Figure 1 here] 

Figure 1 shows that there is underinvestment in R&D unless γ  is very small. To reduce the plausible 

parameter space for γ , we consider the empirical estimates of the social rate of return to R&D. Following 

Jones and Williams’ (1998) derivation, Appendix B shows that the net social rate of return to R&D can be 

expressed as 

(55) 1
1

1
1

1~ −




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



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g
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Holding other things constant, r~  is increasing in γ . Table 3 shows that for the range of values 2.0≤γ  

that exhibits R&D overinvestment, the implied social rates of return r~  are less than 8%, which are far 

below the empirical estimates summarized in Jones and Williams (1998).  

gπ / γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.10 5.0% 7.0% 8.9% 10.8% 12.7% 14.6% 16.5% 18.4% 20.3% 22.2%

-0.15 5.3% 7.4% 9.6% 11.7% 13.9% 16.0% 18.1% 20.3% 22.4% 24.6%

-0.20 5.6% 8.0% 10.5% 12.9% 15.3% 17.8% 20.2% 22.7% 25.1% 27.5%

Table 3: Implied social rates of return to R&D

  

Given that the empirical estimates of the social return to R&D vary across studies, we will leave 

it to the readers to decide on their preferred values. For the relevant range 2.0>γ , there is R&D 

underinvestment, and this finding is due to the calibration result that a non-negligible fraction of long-run 

TFP growth is driven by R&D. If the calibrated values for ξ  were smaller, then the socially optimal 
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levels of R&D would be lower because a smaller ξ  implies a smaller )1/( φγ − , which in turn implies 

that R&D would have a smaller effect on consumption. 

 

5.4. Patent extension 

Given the above finding of R&D underinvestment, a natural question to ask is whether extending the 

patent length can effectively mitigate this problem. Figure 2 shows that the magnitude of the increase in 

R&D depends on the flow-profit depreciation rate of patents. 

[insert Figure 2 here] 

At a high flow-profit depreciation rate of 20%, the effect of extending the patent length on R&D is almost 

negligible. At a lower patent-value depreciation rate of 10%, extending the patent length from 20 to 50 

years increases the R&D share of GDP from 0.015 to 0.017, but this level of R&D is still far below the 

social optimum. This exercise suggests that patent extension is not an effective method to increase R&D. 

However, shortening the patent length can reduce R&D significantly. Therefore, we find that there is an 

important asymmetric effect between extending and shortening the patent length on R&D.  

 The next exercise computes the percent changes in long-run consumption, which also determines 

steady-state welfare. After dropping some exogenous terms, the balanced-growth level of consumption 

can be expressed as  

(56) 
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for βα = .15 Figure 3 plots the percent changes in long-run consumption.  

[insert Figure 3 here] 

Given the small increases in R&D from patent extension, the maximum effect on consumption is no more 

than 3% (percent change) at a 10% flow-profit depreciation rate and is as small as 0.6% at a 20% flow-

                                                 
15 The derivations are provided in an appendix available upon request. Also, note that rr kl =  under βα = . 
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profit depreciation rate. On the other hand, shortening the patent length can lead to a substantial decrease 

in consumption. Furthermore, the changes in consumption mostly come from the direct technology effect 

of R&D on consumption, i.e. )(ln
)1()1)(1(

)1( TkrΔ
−−−−

−
αηγααφη

αηγ
. 

 

5.5. Dynamic distortion on capital investment 

Proposition 1 derives the sufficient condition under which the equilibrium capital-investment rate is 

below the socially optimal rate in (47). The next numerical exercise quantifies this discrepancy. Figure 4 

plots the socially optimal capital-investment rates along with the US long-run capital-investment rate, and 

the difference is about 0.017 on average.  

[insert Figure 4 here] 

The equilibrium capital-investment rate is decreasing in the aggregate markup; therefore, extending the 

patent length decreases the capital-investment rate and causes it to deviate from the social optimum. 

Figure 5 plots the equilibrium capital-investment rates at different patent length and shows that extending 

the patent length would slightly worsen the dynamic distortionary effect on capital investment. 

[insert Figure 5 here] 

 

6. Conclusion 

This paper provides a growth-theoretic framework that can be calibrated to aggregate data to quantify a 

structural relationship between patent length, R&D and consumption. At the empirical flow-profit 

depreciation rate of patents, extending the patent length beyond 20 years has a negligible effect on R&D. 

Therefore, patent length is not an effective instrument in solving the R&D-underinvestment problem. 

Although the analysis focuses on the balanced-growth path, taking into consideration the transition 

dynamics would not alter this policy implication. This is because if the long-run effect of patent extension 

on consumption is so small, accounting for the potential short-run consumption losses would make the 

overall welfare gains even more negligible. This finding of a small effect of patent extension on R&D 
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rationalizes the fact that the patent policy changes in the US during the 80’s were related to other aspects 

of patent protection, such as patentability requirement, patent breadth and blocking patents.16  

Finally, the readers are advised to interpret the numerical results with some important caveats in 

mind. Although the variety-expanding model has been generalized to capture more realistic features of 

the US economy, it is still an oversimplification of the real world. Furthermore, the finding of R&D 

underinvestment is based on the assumption that the empirical estimates of the social return to R&D and 

the data on R&D expenditure are not incorrectly measured by an order of magnitude. If it is indeed the 

opposite case that there is R&D overinvestment in the US economy, then the quantitative analysis 

suggests that shortening the patent length would be an effective method to reduce R&D. 

 

                                                 
16 See Jaffe (2000), Gallini (2002) and Jaffe and Lerner (2004) for a discussion on these policy changes. 
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Appendix A: Proofs 

Proof of Lemma 1: Combining (8), (10) and (11) yields )()()( )1/(1 jXjX tt ′= −αηαη . Substituting this 

condition into (12) and then (6) yields (13). For }1,0{∈tf , ts  equals one. Simple differentiation yields 
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Proof of Proposition 1a ( *ii < ): From (47), the socially optimal capital-investment rate *i  is  
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From (26), the market equilibrium capital-investment rate i  is 
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Therefore, either (i) labor being the only input for R&D (i.e. 0* == rr kk ) or (ii) R&D underinvestment 

(i.e. *
rr kk < ) is sufficient for *ii < . Recall that 1<d  for 0>T .■ 

 

Proof of Proposition 1b ( 0/ <∂∂ Ti ): Recall that )(Td  is a function of T and is given by 
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where TgVeTf −−=1)( . Differentiating )(Td  with respect to T  yields 
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where VVc gggngr >+−−−=− )1( σρπ . Also, note that )1/( xTxT exe −− −  is decreasing in x  for 

),0( ∞∈T . To complete the proof, we need to show that  
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Appendix B: The social rate of return to R&D 

Jones and Williams (1998) define the social rate of return to R&D as the sum of the additional output 

produced and the reduction in R&D that is made possible by reallocating one unit of output from 

consumption to R&D in the current period and then reducing R&D in the next period to leave the 

subsequent path of technology unchanged. We rewrite the law of motion for R&D technology as  
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−≡Ψ . The aggregate production function is rewritten as  

(B2) αααηαη
tytyttttytytttt KLZVsKLZVsFY ,

1
,

1/)1(
,, ),,,,( −−−≡= . 

Using the above definition, Jones and Williams (1998) show that the gross social return to R&D is   
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After imposing the balanced-growth conditions, the net social return to R&D becomes  
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Appendix C: Figures 

Figure 1: Socially optimal R&D shares of GDP
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Figure 2: R&D shares of GDP at different patent length
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Figure 3: Percent changes in consumption
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Figure 4: Socially optimal capital-investment rates
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Figure 5: Equilibrium capital-investment rates at different patent length
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