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Combining parametric and nonparametric approaches for more

efficient time series prediction

Sophie Dabo-Niang∗, Christian Francq†and Jean-Michel Zakoïan‡

August 21, 2009

Abstract

We introduce a two-step procedure for more efficient nonparametric prediction of a strictly

stationary process admitting an ARMA representation. The procedure is based on the es-

timation of the ARMA representation, followed by a nonparametric regression where the

ARMA residuals are used as explanatory variables. Compared to standard nonparametric

regression methods, the number of explanatory variables can be reduced because our ap-

proach exploits the linear dependence of the process. We establish consistency and asymp-

totic normality results for our estimator. A Monte Carlo study and an empirical application

on stock market indices suggest that significant gains can be achieved with our approach.

1 Introduction

After three decades of non-linear time series models, the class of ARMA models remains the

most widely employed parametric family. Reasons can be found in the generality of the class

(when the noise is only assumed to be uncorrelated), the relative ease of implementation and the

ability to provide optimal linear predictions. If a stationary processes (Wt) is an ARMA process,
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its optimal linear prediction

EL(Wt | {Wu, u < t}) =
∞
∑

i=1

aiWt−i, (1.1)

is obtained from the ARMA model. However, ARMA models also have important drawbacks.

Their generality vanishes when strong assumptions (such as independence, martingale difference)

are made on the noise. The optimal linear prediction does not coincide, in this case, with the

optimal prediction

E(Wt | {Wu, u < t}) = φ(Wt−1,Wt−2, . . . ). (1.2)

Nonlinear models have been introduced to solve the problem, but they may be hard to identify.

In situations where parametric families cannot be adopted with confidence, nonparametric

models offer an alternative. Nonparametric kernel regressors seem attractive because they aim

at estimating the regression of the observed process Wt on its past values Wt−1, . . . ,Wt−d,

r(Wt−1, . . . ,Wt−d) = E(Wt |Wt−1, . . . ,Wt−d) (1.3)

without requiring strong assumptions on the data generating process. The choice of the number d

of lags is however crucial for the following reason. When d is chosen too small, the nonparametric

predictions are likely to be far from the optimality, even when the number of observations n

increases to infinity. On the other hand when d is large, the method is subject to the so-called

curse of dimensionality (the kernel estimator converges at a rate n2/(4+d) which is low when d is

large).

In this work we consider a third approach to the problem of time series prediction, which

combines parametric and nonparametric methods. The idea is to utilize ARMA residuals as

regressors in the nonparametric approach, to forecast the subsequent behaviour of Wt. More

precisely, we consider two approaches. In the first one we use

r̃(Wt−1, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) = E(Wt |Wt−1, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) (1.4)

as an approximation to the optimal prediction in (1.2), where ǫt = Wt − EL(Wt | {Wu, u < t})
denotes the linear innovation of the stationary process (Wt). The use of a nonlinear regression

aims to account for the underlying nonlinear structure of Wt. On the other hand, the use of linear

innovations aims to alleviate the effects of the above-mentioned curse of dimensionality. Since the

ǫt’s are not observable, they are replaced by the residuals of an ARMA model. For this method
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we will show that the rate of convergence approaches n2/(4+ℓ+m), which seems advantageous

compared to the traditional nonparametric regression when ℓ+m < d. In the second approach

we use the decomposition of the optimal prediction in (1.2) as the sum of the optimal linear

prediction and the optimal (nonlinear) prediction of the linear innovation process:

E(Wt | {Wu, u < t}) = EL(Wt | {Wu, u < t}) + E(ǫt | {ǫu, u < t}). (1.5)

The idea is to estimate the first term parametrically, and the second term nonparametrically, in

the right-hand side of (1.5). Again the innovations are replaced by residuals to obtain a feasible

predictor. Under slightly different assumptions than in the first method, we will establish the

consistency and asymptotic normality of the proposed estimator.

Our main motivation for using residuals in nonparametric estimators is parsimony. It is

well-known that, in view of the parsimony principle, the class of ARMA models is preferable to

the class of AR models (although both classes are dense in the set of the stationary processes).

This is precisely the idea which is behind the approaches based on (1.4) and (1.5). If the same

asymptotic precision is achieved with a first regression on a large number of past values and a

second regression on only few past values and past linear innovations, it is reasonable to think

that, in view of the curse of dimensionality, the second regression will do a better job in finite

samples.

The essential difficulty in the derivation of the asymptotic results is that variables depending

on a first-step estimator are included in the regressors and, for the method based on (1.5), are

also included in the regressand. To cope with this problem, the idea is to interpret the ARMA

residuals as noisy innovations, that is innovations that are corrupted by the effect of the param-

eters estimation. We therefore need to establish general asymptotic results for nonparametric

regression based on "noisy time series". Specifically, we consider the case where the time t obser-

vation is the sum of the realization of an underlying stochastic process and a disturbance, which

is allowed to depend on the sample size n.

The intuition behind this semiparametric method is simple and has obvious connections

with numerous methods already proposed in the literature, in particular i) the combination of

forecasts from individual models (see Timmermann (2006) and the references therein), ii) the

pre-whitening methods, like the one proposed by Carroll, Linton, Mammen and Xiao (2002) for

a regression model with autocorrelated errors, iii) the adaptive estimation methods, like the one

proposed by Xu and Phillips (2008) for the inference of AR models with heteroscedasticity of
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unknown form (see also Phillips and Xu (2005), iv) the convex combination of parametric and

nonparametric predictions proposed by Einsporn and Birch (1993) and Burman and Chaudhuri

(1994) for possibly misspecified regression models (see also Fan and Ullah (1999)), v) the Model-

Robust Regression method proposed by Mays, Birch, and Einsporn (2000), vi) the nonparametric

correction factor proposed by Glad (1998). The methods mentioned in v) and vi) have been

developed to protect parametric regressions against a model misspecification, which is not the

concern of the present paper, but these two methods are close in spirit to the semiparametric

method we consider in the present paper because they combine (additively in Mays et al. (2000)

and multiplicatively in Glad (1998)) a parametric fit of the raw data and a nonparametric fit of

the parametric residuals.

The paper is organized as follows. In Section 2 we consider nonparametric density estima-

tion and nonparametric regression for noisy data. Consistency and asymptotic normality are

established under mixing assumptions on the unobserved stationary process, and a control of

the size of the noise in the data. Section 3 uses these results for Kernel estimators based on

ARMA residuals. Hybrid predictors, combining parametric and nonparametric techniques, are

studied. In Section 4, their finite sample properties are investigated by means of simulations. An

application to stock return data is also presented. Concluding remarks are given in Section 5.

The symbol
L→ denotes convergence in distribution. For any function f : R

d → R, let

Di1...ikf(x) = (∂kf/∂xi1 . . . ∂xik)(x). The notation oP (1) is used for a sequence of random vectors

that converge to zero in probability. The notation Rn = OP (Sn) means that Rn = SnTn for a

sequence Tn which is bounded in probability.

2 Kernel estimators applied to noisy data

In this section we study the behavior of the kernel density and regression estimators when they

are computed on noisy data. This will be applied to ARMA residuals, considered as noisy

innovations. The section may however have its own interest.

Consider a strictly stationary process Z = (Zt)t∈Z where Zt = (Y ′
t ,X

′
t)
′, with Yt ∈ R

d0 and

Xt ∈ R
d. Let g : R

d0 → R be a measurable function. Our goal is to estimate the regression

r(x) = E (g(Yt) | Xt = x)

which is assumed to exist. We do not observe the process (Zt) but, instead, we have n consecutive

4



noisy observations of the form

Z̃1,n, . . . , Z̃n,n with Z̃ ′
t,n = (Ỹ ′

t,n, X̃
′
t,n) := (Y ′

t + V ′
t,n,X

′
t + U ′

t,n)

where the Vt,n and Ut,n are disturbance terms. Observe that the "noise" is present both in the

regressand and the regressors.

Let f = fX , fY and fZ be the densities of Xt, Yt and Zt. Since the seminal paper by Rosen-

blatt (1956), kernel estimators have been extensively employed for nonparametrically estimating

f and r. Given a kernel K : R
d → R and a sequence of scalar bandwidths (bn) > 0, the kernel

density estimator of f(x) is defined by

f̃(x) =
1

nbdn

n
∑

t=1

K

(

x− X̃t,n

bn

)

. (2.1)

When f̃(x) 6= 0, the regression r(x) can be estimated by the Nadaraya-Watson estimator

r̃(x) =
ϕ̃(x)

f̃(x)
, ϕ̃(x) =

1

nbdn

n
∑

t=1

g(Ỹt,n)K

(

x− X̃t,n

bn

)

. (2.2)

It will be convenient to consider the pseudo-estimators

f̂(x) =
1

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

, r̂(x) =
ϕ̂(x)

f̂(x)
, ϕ̂(x) =

1

nbdn

n
∑

t=1

g(Yt)K

(

x−Xt

bn

)

(2.3)

based on the non-observable variables Z1, . . . , Zn.

The main asymptotic properties of the latter estimators, when Z1, . . . , Zn are observed, are

available in the statistical literature (see e.g. the monographs by Prakasa Rao (1983), Fan and

Yao (2003)). We start by examining the consistency properties of the density and regression

estimators when applied to noisy data.

2.1 Consistency

Establishing consistency requires some technical assumptions which we are listing here. Let ‖ · ‖
denote any norm on R

d or R
d0 .

A1: K is a density with respect to the Lebesgue measure,
∫

Rd uK(u)du = 0,
∫

Rd ‖u‖2K(u)du < ∞ and lim‖u‖→∞ ‖u‖dK(u) = 0. In addition K satisfies the Lipschitz

condition |K(u) −K(v)| < C‖u− v‖ for some constant C.
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A2: The strong mixing coefficients of the process Z, defined by

αZ(k) = sup
A∈σ(Zu,u≤t), B∈σ(Zu,u≥t+k)

|P (A ∩B) − P (A)P (B)| ,

are such that
∞
∑

h=0

{αZ(h)} ν
2+ν <∞ for some ν > 0.

A3: The vector x ∈ R
d is such that f(x) > 0. The functions fZ , f and ϕ := rf are twice

derivable with continuous and bounded second order derivatives. We have E|g(Yt)|2+ν <

∞, and supu

∫

|g(y)|2+νfZ(y, u)dy < ∞, where ν is defined in A2. There exists some

constant C such that |g(y′) − g(y)| < C‖y′ − y‖ for all y, y′ ∈ R
d0 .

A4: bn → 0 and nb
d(1+ ν

2+ν )
n → ∞ as n → ∞, for the constant ν > 0 involved in

A2–A3.

An assumption similar to supx

∫

|g(y)|2+νfZ(y, x)dy < ∞ is also made in Mack and Silverman

(1982). Note that Pham (1986) and Carrasco and Chen (2002) have shown that, for a wide class

of processes, the mixing conditions made in Assumption A2 are satisfied.

On the disturbance terms, we make the following assumption.

B1: There exists τ < 1 such that

n
∑

t=1

‖Ut,n‖ +
n
∑

t=1

‖Vt,n‖ +
n
∑

t=1

(‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖ = OP (nτ ).

We will see that this situation arises with τ = 1/2 when the kernel estimators are applied to

residuals of parametric models.

Theorem 2.1 Under Assumptions A1–A4 and B1, the kernel density and regression estimators

based on the noisy observations satisfy

f̃(x) = f(x) + oP (1) and r̃(x) = r(x) + oP (1), (2.4)

whenever nb
(1+d)/(1−τ)
n → ∞.

When bn = cn−1/{d+4+dν/(2+ν)}, c > 0, and τ < {1 + dν/(2 + ν)} / {d+ 4 + dν/(2 + ν)},

f̃(x) − f(x) = OP

(

n−2/{d+4+dν/(2+ν)}
)

, (2.5)

r̃(x) − r(x) = OP

(

n−2/{d+4+dν/(2+ν)}
)

. (2.6)
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In the proof below we use the fact that under the assumptions of this proposition, except B1,

(2.4), (2.5), and (2.6) hold for the pseudo-estimators obtained by replacing f̃(x) and r̃(x) by f̂(x)

and r̂(x). Such a result is standard and can be obtained under many other assumptions (see

e.g. Bosq (1996) or Härdle (1990)). This proposition thus shows that the asymptotic behavior

of the kernel estimators is not affected by the presence of small disturbances. Note also that for

an exponential mixing rate αZ(h) = O(ρh) with ρ ∈ (0, 1), the constant ν > 0 can be chosen

arbitrarily small, so that the rate of convergence (2.5)–(2.6) is arbitrarily close to the optimal

rate OP

(

n−2/(d+4)
)

of the case of identically and independently distributed (iid) variables (Zt).

Proof. In this proof and the subsequent ones, C denotes a generic positive constant whose exact

value is unimportant and may vary from line to line.

Under A1–A4 we have1

f̂(x) = f(x) + oP (1) and r̂(x) = r(x) + oP (1) (2.7)

and for bn = cn−1/{d+4+dν/(2+ν)}, c > 0

max{f̂(x) − f(x), r̂(x) − r(x)} = OP

(

n−2/{d+4+dν/(2+ν)}
)

. (2.8)

Now, by A1 and B1 we have

∣

∣

∣
f̃(x) − f̂(x)

∣

∣

∣
≤ 1

nbdn

n
∑

t=1

∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

≤ C

nbdn

n
∑

t=1

∥

∥

∥

∥

Ut,n

bn

∥

∥

∥

∥

= OP

(

nτ−1b−d−1
n

)

. (2.9)

The right-hand side of the last equality tends to zero when nb
(1+d)/(1−τ)
n → ∞. The first

consistency in (2.4) then follows from (2.7) and the triangular inequality

∣

∣

∣f̃(x) − f(x)
∣

∣

∣ ≤
∣

∣

∣f̃(x) − f̂(x)
∣

∣

∣+
∣

∣

∣f̂(x) − f(x)
∣

∣

∣ .

In view of this inequality and (2.8), the optimal rate is reached since nτ−1b−d−1
n =

o(n−2/{d+4+dν/(2+ν)}) for bn = cn−1/{d+4+dν/(2+ν)}, which entails (2.5).

We now consider the consistency of the regressor r̃(x) = ϕ̃(x)/f̃(x). First note that (2.7)

implies

|ϕ̂(x) − ϕ(x)| = oP (1). (2.10)

1For the convenience of the reader, and also because we have not been able to find a reference establishing

these results with exactly the same assumptions, a complete proof of (2.7)–(2.8) is available from the authors.
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We have

ϕ̃(x) − ϕ̂(x) =
1

nbdn

n
∑

t=1

{g(Yt + Vt,n) − g(Yt)}K
(

x−Xt

bn

)

+
1

nbdn

n
∑

t=1

g(Yt + Vt,n)

{

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)}

. (2.11)

The assumptions made in A1 entail that K := supu |K(u)| < ∞. By the Lipschitz condition in

A3 we have |g(x)| = |g(x) − g(0) + g(0)| ≤ C(‖x‖ + 1). Using A3, we then obtain

|ϕ̂(x) − ϕ̃(x)| ≤ C

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

‖Vt,n‖ +
C

nbd+1
n

n
∑

t=1

|g(Yt + Vt,n)| ‖Ut,n‖

≤ CK

nbdn

n
∑

t=1

‖Vt,n‖ +
C2

nbd+1
n

n
∑

t=1

(‖Yt‖ + ‖Vt,n‖ + 1) ‖Ut,n‖ .

Thus, in view of B1,

|ϕ̂(x) − ϕ̃(x)| = OP

(

nτ−1b−d−1
n

)

. (2.12)

The consistency of the numerator of r̃(x) = ϕ̃(x)/f̃ (x) follows from (2.10) and (2.12). The

consistency of the denominator has already been established. The second equality of (2.4) then

follows by Slutsky’s lemma.

From (2.8), (2.12) and the consistency of f̂(x), we obtain

ϕ̃(x) − ϕ(x) = ϕ̃(x) − ϕ̂(x) + {r̂(x) − r(x)} f̂(x) + r(x)
{

f̂(x) − f(x)
}

= OP

(

n−2/{d+4+dν/(2+ν)}
)

when bn = cn−1/{d+4+dν/(2+ν)}, c > 0, and τ < {1 + dν/(2 + ν)} / {d+ 4 + dν/(2 + ν)} . Under

the same conditions we have

r̃(x) − r(x) =
ϕ̃(x) − ϕ(x)

f̃(x)
+ ϕ(x)

f(x) − f̃(x)

f(x)f̃(x)

= OP

(

n−2/{d+4+dν/(2+ν)}
)

which completes the proof. 2

2.2 Asymptotic normality of the regression estimator

The previous assumptions are strengthened as follows.

A1’: Assumption A1 holds and the Kernel function K is three times differentiable with bounded

derivatives, and the first two derivatives are integrable.
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A2’:
∞
∑

h=0

h̺ {αZ(h)} ν
2+ν <∞, where ν > 0 and ̺ > ν

2+ν .

A3’: Assumption A3 holds with fZ(y, x) ≤ CfY (y), for some positive constant C, for all x ∈
R

d, y ∈ R
d0 . For all h > 0, the vector (Z ′

t, Z
′
t−h) = (Y ′

t ,X
′
t, Y

′
t−h,X

′
t−h) admits a continuous

density fZh,Z0 such that fZh,Z0(y, x, ỹ, x̃) ≤ CfYh,Y0(y, ỹ), for some positive constant C, for

all x, x̃ ∈ R
d, y, ỹ ∈ R

d0 , where fYh,Y0 denotes the density of (Y ′
t , Y

′
t−h).

When fZ(y, x) ≤ CfY (y), the function fZ(y, x) is said to be uniformly in the order of

fY (y). Note that this assumption, together with E|g(Yt)|2+ν < ∞, entails the condition

supu

∫

|g(y)|2+νfZ(y, u)dy <∞ in A3. When Zt is gaussian and Yt ∈ R, one can take

C = (2π)−d0/2
∣

∣Var(Yt) − Cov(Yt,Xt)Var(Xt)
−1Cov(Xt, Yt)

∣

∣

−1/2
.

A4’: For the constants ̺ and ν involved in A2’ and A3 we have, as n→ ∞,

nb4+d
n → 0, nb

ν(4+d)
̺(2+ν)
n → ∞, nb

d(1+ ν
2+ν )

n → ∞.

For a real random variable X and a constant s > 0, let ‖X‖s =
{∫

|x|sdP (x)
}1/s

. For a

random vector X = (X1, . . . ,Xk)′, let ‖X‖s =
∥

∥

∥

∑k
i=1 |Xi|

∥

∥

∥

s
.

B2: There exist nonnegative numbers τ0 and τ1, positive constants ζ1, ζ2, γ1, γ2, γ3 with

1
ζ1

+ 1
ζ2

= 1 and 1
γ1

+ 1
γ2

+ 1
γ3

= 1, sequences of positive random variables (µt), (ρt), (hn),

(kn), (ut,n) and (vt,n), a constant C > 0 and a constant ρ ∈ (0, 1), a sequence of integers

(an), such that

an → ∞ and an = o(
√

nbdn) as n→ ∞,

and

‖Vt,n‖ ≤ ρt + knvt,n, ‖Ut,n‖ ≤ µt + hnut,n, (2.13)

where

kn = OP (n−τ0), hn = OP (n−τ1), max{ρt, µt} ≤ Cρt a.s.,

max
{

‖Yt‖ζ1 , ‖vt,n‖ζ1
,
∥

∥u3
t,n

∥

∥

ζ2
, ‖vt,n‖γ1

, ‖Yt‖γ1 ,
∥

∥u2
t,n

∥

∥

γ2

}

≤ C.
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In the following result, we establish the asymptotic distribution of r̂(x) under two sets of assump-

tions. The first one is simpler, but it cannot be used for the application developed in Section 3

since, as we shall see, the real number involved in B1 is τ = 1/2 when the noisy data consist of

ARMA residuals.

Theorem 2.2 Assume A1’-A4’ and either

1. B1 with n2τ−1b
−(2+d)
n → 0,

or

2. B2 with, for k = 1, 2,

1) n−τ0+
1
2 b

d
2
( 1

ζ2
− 1

ζ1
)

n → 0, 2) nρ2anb
−(2k+d)+ 2d

ζ2
n → 0,

3) n−1ρ2anb
−(2k+d)
n → 0, 4) n1−2k τ1b

−(2k+d)+ 2d
γ3

n → 0,

5) n1−2τ0ρ2anb
−(2k+d)+ 2d

ζ2
n → 0, 6) n1−2(τ0+k τ1)b

−(2k+d)+ 2d
γ3

n → 0,

7) nρ2anb
−(6+d)
n → 0, 8) n1−6τ1b−(6+d)

n → 0,

9) n1−2τ0ρ2anb
−(6+d)
n → 0, 10) n1−2(τ0+3τ1)b−(6+d)

n → 0. (2.14)

Then, letting F2(x) = ϕ2(x) − f(x)r2(x),

√

nbdn {r̃(x) − r(x)} L→ N
(

0,
F2(x)

f2(x)

∫

Rd

K2(u)du

)

. (2.15)

It should be noted that, under A1’-A4’, the asymptotic distribution of r̂(x) is exactly the

same as in (2.15). Hence, the asymptotic behavior of regression estimator is not affected by the

presence of a "small" noise in the data.

Before proving this result, we establish the following technical lemma.

Lemma 2.1 Let (Xt) be as in Section 2 and let the density f of Xt satisfy A3. Let γ > 1 and

H : R
d → R

+ such that
∫

Rd H
γ (t) dt < ∞, and let (bn) be a sequence of positive numbers such

that bn → 0 as n→ ∞. Then we have

∥

∥

∥

∥

H

(

x−Xt

bn

)∥

∥

∥

∥

γ

= O

(

b
d
γ
n

)

.

Proof. We have, by the change of variable formula

∥

∥

∥

∥

H

(

x−Xt

bn

)∥

∥

∥

∥

γ

=

{
∫

Rd

Hγ

(

x− u

bn

)

f(u)du

} 1
γ

=

{

bdn

∫

Rd

Hγ (t) f(x− bnt)dt

} 1
γ

.
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Note that f is bounded under A3. When n → ∞ the latter integral converges to

f(x)
∫

Rd H
γ (t) dt by the dominated convergence theorem. The conclusion follows. 2

Proof of Theorem 2.2. Asymptotic normality of regression estimators under strong mixing

assumptions were first established by Robinson (1983). Under A1 and A2’-A4’ we have2

√

nbdn {r̂(x) − r(x)} L→ N
(

0,
F2(x)

f2(x)

∫

Rd

K2(u)du

)

. (2.16)

We have

r̂(x) − r̃(x) =
ϕ̂(x) − ϕ̃(x)

f̂(x)
− ϕ̃(x)

f̂(x) − f̃(x)

f̂(x)f̃(x)
. (2.17)

Under B1, by (2.9), (2.12) and (2.17),

√

nbdn(r̂(x) − r̃(x)) = OP

(

nτ−1/2b−d/2−1
n

)

= oP (1). (2.18)

Thus (2.15) follows, in view of (2.16), under the first set of assumptions.

Now suppose that B2 holds. We will show that
√

nbdn(r̂(x) − r̃(x)) converges to zero in

probability, which, by (2.16), will be sufficient to prove (2.15). In view of (2.17) it suffices to

prove that

√

nbdn |ϕ̂(x) − ϕ̃(x)| = oP (1) and
√

nbdn

∣

∣

∣
f̂(x) − f̃(x)

∣

∣

∣
= oP (1). (2.19)

In view of (2.11) and using A3 we have

√

nbdn |ϕ̂(x) − ϕ̃(x)| ≤ C
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

‖Vt,n‖

+
C

√

nbdn

n
∑

t=1

|g(Yt + Vt,n)|
∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

:= S1 + S2. (2.20)

With the notation K = supu |K(u)| introduced in the proof of Theorem 2.1, we have

S1 ≤ C
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

(ρt + knvt,n)

≤ CK
√

nbdn

n
∑

t=1

ρt +
Ckn
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

vt,n. (2.21)

2A proof is available from the authors.
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The first term in the right-hand side of the last inequality converges to 0 in probability by B2

and A4’ (implying nbdn → ∞). Moreover, using successively the Hölder inequality, Lemma 2.1

and B2 we find

E

{

1
√

nbdn

n
∑

t=1

K

(

x−Xt

bn

)

vt,n

}

≤ C
√

nbdn

n
∑

t=1

∥

∥

∥

∥

K

(

x−Xt

bn

)∥

∥

∥

∥

ζ2

‖vt,n‖ζ1

≤ Cb
d/ζ2
n

√

nbdn

n
∑

t=1

‖vt,n‖ζ1
= O

(

n1/2b
d
2
( 1

ζ2
− 1

ζ1
)

n

)

.

From B2 and 1) in (2.14) we deduce that the second term in (2.21) converges to 0 in probability.

It follows that

S1 = oP (1). (2.22)

To handle S2 we will make a third-order Taylor expansion of the Kernel function around (x −
Xt)/bn. Write Ut,n = (U1,t,n, . . . , Ud,t,n)′. We have

K

(

x−Xt − Ut,n

bn

)

= K

(

x−Xt

bn

)

− 1

bn

d
∑

i=1

Ui,t,nDiK

(

x−Xt

bn

)

+
1

2b2n

d
∑

i,j=1

Ui,t,nUj,t,nDijK

(

x−Xt

bn

)

− 1

6b3n

d
∑

i,j,k=1

Ui,t,nUj,t,nUk,t,nDijkK

(

x−Xt,n

bn

)

,

where Xt,n is between Xt and Xt + Ut,n. Thus, using the vector norm ‖a‖ =
∑ |ai|,

∣

∣

∣

∣

K

(

x−Xt − Ut,n

bn

)

−K

(

x−Xt

bn

)∣

∣

∣

∣

≤ 1

bn
‖Ut,n‖

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
1

2b2n
‖Ut,n‖2

d
∑

i,j=1

∣

∣

∣

∣

DijK

(

x−Xt

bn

)∣

∣

∣

∣

+
1

6b3n
‖Ut,n‖3

d
∑

i,j,k=1

∣

∣

∣

∣

DijkK

(

x−Xt,n

bn

)∣

∣

∣

∣

.
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Hence, with the elementary inequality (|a| + |b|)k ≤ 2k(|a|k + |b|k),

S2 ≤ C
√

nbdn

n
∑

t=an

1

bn
|g(Yt + Vt,n)| (µt + hnut,n)

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
C

√

nbdn

n
∑

t=an

1

b2n
|g(Yt + Vt,n)| (µ2

t + h2
nu

2
t,n)

d
∑

i,j=1

∣

∣

∣

∣

DijK

(

x−Xt

bn

)∣

∣

∣

∣

+
C

√

nbdn

n
∑

t=an

1

b3n
|g(Yt + Vt,n)| (µ3

t + h3
nu

3
t,n)

d
∑

i,j,k=1

∣

∣

∣

∣

DijkK

(

x−Xt,n

bn

)∣

∣

∣

∣

+
C

√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + ‖Vt,n‖)

:= S21 + S22 + S23 + S24, (2.23)

where the last term follows from the fact that the kernel function is bounded and from the

Lipschitz condition on g. We have

S21 ≤ C

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖ + ρt)µt

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Chn

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖ + ρt)ut,n

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Ckn

bn
√

nbdn

n
∑

t=an

vt,nµt

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+
Chnkn

bn
√

nbdn

n
∑

t=an

vt,nut,n

d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

:= S211 + hnS212 + knS213 + hnknS214. (2.24)

Because the derivatives of K are bounded and ρt and µt are O(ρt) with probability one, we have

S211 ≤ Cρan

bn
√

nbdn

n
∑

t=an

‖Yt‖
d
∑

i=1

∣

∣

∣

∣

DiK

(

x−Xt

bn

)∣

∣

∣

∣

+OP

(

ρan

bn
√

nbdn

)

. (2.25)

Denote by S∗
211 the first term of the right-hand side of this equality. It is easy to check that A1’

entails
∫

|DiK (t)|γ dt <∞ for any power γ ≥ 1. Using Lemma 2.1 and by the Hölder inequality,

we have

E(S∗
211) ≤ Cρan

bn
√

nbdn

n
∑

t=an

‖Yt‖ζ1

d
∑

i=1

∥

∥

∥

∥

DiK

(

x−Xt

bn

)∥

∥

∥

∥

ζ2

≤ Cρanb
d
ζ2
n

bn
√

nbdn

n
∑

t=an

‖Yt‖ζ1
≤ Cρannb

d
ζ2
n

bn
√

nbdn
= o(1),
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where the last equality follows from 2) in (2.14) with k = 1. Thus, noting that S∗
211 ≥ 0, we have

S∗
211 = oP (1). Using 3) with k = 1 and (2.25) we then obtain S211 = oP (1). By Lemma 2.1 and

the Hölder inequality, we have

E(S212) ≤ 1

bn
√

nbdn

n
∑

t=an

(1 + ‖Yt‖γ1
+ ‖ρt‖γ1

) ‖ut,n‖γ2

d
∑

i=1

∥

∥

∥

∥

DiK

(

x−Xt

bn

)∥

∥

∥

∥

γ3

≤ Cb
−1− d

2
+ d

γ3
n√

n

n
∑

t=an

(1 + ‖Yt‖γ1
+ Cρt) ‖ut,n‖γ2

= O

(

b
−1− d

2
+ d

γ3
n

√
n

)

.

Thus, 4) with k = 1 in (2.14) entails hnS212 = oP (1). For the same reasons, 5) with k = 1 entails

knS213 = oP (1), and 6) with k = 1 entails hnknS214 = oP (1). Thus, in view of (2.24), we have

shown that S21 = oP (1). By exactly the same arguments, 2)-6) with k = 2 entail S22 = oP (1).

For S23 we use the boundedness of the third derivatives (A1’) and conclude similarly using the

convergence 7)-10) in (2.14). Finally,

S24 ≤ C
√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + ρt) +
Ckn
√

nbdn

an
∑

t=1

(1 + ‖Yt‖ + vt,n) := S241 + knS242.

We have

‖S24i‖1 ≤ Can
√

nbdn
= o(1), i = 1, 2

which proves that S24i = oP (1) and thus that S24 = oP (1). Therefore we have

S2 = oP (1). (2.26)

In view of (2.22) and (2.20) this proves that the first equality in (2.19) holds. The second equality

follows along the same lines and the proof of Theorem 2.2 is complete. 2

3 Kernel estimators applied to ARMA residuals

Many non linear processes admit ARMA representations (see e.g. Romano and Thombs (1996),

Francq, Roy and Zakoïan (2005) and the references therein). This is not very surprising because,

from the Wold theorem, any purely non deterministic second-order stationary process (Xt) has

an infinite MA representation, which can be closely approximated by finite order ARMA models.

The noise in these ARMA representations is only the linear innovation of (Xt) and is not an

iid sequence (otherwise (Xt) would be a linear process). These representations are referred to

14



as weak ARMA representations, by opposition to the standard strong ARMA representations

where the noise is supposed to be iid.

In this section we will show how the weak ARMA residuals can be used in nonparametric

predictors. Density estimators based on residuals of time series models have already been studied

by Robinson (1983) and Liebscher (2001), among others. Such residual-based estimators can be

used to obtain adaptive estimators (see Drost Klaassen and Werker, 1997) and to obtain
√
n-

consistent plug-in estimators for functionals of a density (see Schick and Wefelmeyer, 2004). Our

framework here is quite different, since we study the asymptotic behavior of kernel estimators

of autoregressions when lagged values of ARMA residuals are taken as explanatory variables (in

Section 3.2) and when the ARMA residuals constitute the dependent variable (in Section 3.3).

3.1 Weak ARMA residuals

We now introduce the assumptions we need. Let W = (Wt)t∈Z be a real second-order stationary

ARMA(p, q) process such that

Wt +

p
∑

i=1

φiWt−i = ǫt +

q
∑

i=1

ψiǫt−i, ∀t ∈ Z. (3.1)

The parameter θ0 = (φ1, . . . , φp, ψ1, . . . , ψq)
′ is unknown and we observe a sample

W1,W2, . . . ,Wn of W . For any θ = (θ1, . . . , θp+q)
′ ∈ R

p+q, define two polynomials by

Φθ(z) = 1 + θ1z + · · · + θpz
p and Ψθ(z) = 1 + θp+1z + · · · + θp+qz

q. For any δ > 0, let

the compact set

Θδ = {θ ∈ R
p+q; the zeros of Φθ(z) and Ψθ(z) have moduli ≥ 1 + δ}.

We make the following assumptions.

C1. ǫ = (ǫt) is a strictly stationary sequence of uncorrelated random variables with zero mean

and variance σ2 > 0.

C2. θ0 belongs to the interior of Θδ, and the polynomials Φθ0(z) and Ψθ0(z) have no zero in

common.

C3. φp and ψq are not both equal to zero (by convention φ0 = ψ0 = 1).

The sequence of the α−mixing (strong mixing) coefficients of some process (U) = (Ut)t∈Z is

denoted by {αU (h)}h≥0. We will consider, alternatively, the following mixing assumptions.
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C4. The process (W, ǫ) satisfies Model (3.1), the moment condition E|Wt|4+2ν < ∞ (or equiv-

alently E|ǫt|4+2ν <∞) and the mixing condition

∞
∑

h=0

{αW,ǫ(h)}
ν

2+ν <∞ for some ν > 0.

C5. The process (W, ǫ) satisfies Model (3.1), with E|Wt|4+2ν <∞ and

∞
∑

h=0

{αǫ(h)}
ν

2+ν <∞ for some ν > 0.

For all θ ∈ Θ, let ǫt(θ) = Ψ−1
θ (B)Φθ(B)Wt and et(θ) = Ψ−1

θ (B)Φθ(B)(Wt11≤t≤n), where

B denotes the backshift operator. Note that ǫt(θ) is not computable from the sample, but it is

introduced for theoretical purpose. Let θ̂n be a Least Squares Estimator (LSE) satisfying, almost

surely,

Qn(θ̂n) = min
θ∈Θδ

Qn(θ) where Qn(θ) =
1

2n

n
∑

t=1

e2t (θ). (3.2)

The ARMA(p, q) residuals are then defined by ǫ̂t = et(θ̂n) for t = 1, . . . , n. Francq and Zakoïan

(1998) have shown that the LSE is strongly consistent and asymptotically normal under C1-C4.

We will need the additional technical lemma, giving the behavior of the weak ARMA residuals.

Lemma 3.1 If C1-C3 and either C4 or C5 hold then

ǫ̂t = ǫt + st +OP (n−1/2) with |st| ≤ Cρt, (3.3)

where the constants ρ ∈ (0, 1) and C only depend on the initial values W0, . . . , W1−p, ǫ0, . . . ,

ǫ1−q. Moreover
∑n

t=1 |ǫt − ǫ̂t| = OP (n1/2).

Proof. Write st = st(θ0), where st(θ) = et(θ) − ǫt(θ). A Taylor expansion of et(·) around θ0

yields

ǫ̂t = et(θ̂n) = st + ǫt(θ0) + (θ̂n − θ0)
′ ∂et
∂θ

(θ∗),

where θ∗ is between θ̂n and θ0. It is shown in Francq and Zakoïan (1998, Lemma 1 and Theorem

2, and 2000, Lemmas A.1 and A.2) that supθ∈Θ |st(θ)| ≤ Cρt, where C is a measurable function

of the initial values, that ∂et

∂θj
(θ) =

∑t−1
i=1 ci,j(θ)Wt−i with ci := maxj∈{1,...,p+q} supθ∈Θ ‖ci,j(θ)‖ =

O(ρi), and that
√
n(θ̂n − θ0) = OP (1) under C4. The same results can be obtained following

the same lines of proof under C5. The proof of (3.3) follows. Now

n
∑

t=1

|ǫt − ǫ̂t| ≤
n
∑

t=1

|st| +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

n
∑

t=1

∑

i≥1

ci |Wt−i| , (3.4)
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and the conclusion follows from the
√
n-consistency of θ̂n and the fact that

E
∑n

t=1

∑

i≥1 ci |Wt−i| ≤ Cn
∑

i≥1 ρ
i = O(n). 2

We now turn to nonparametric prediction based on ARMA residuals.

3.2 Nonparametric prediction based on past observables and ARMA resid-

uals

Because we will now consider different regressions, we need to modify the notation of Section 2

for the regression functions r(x) and r̃(x). Let ℓ and m be two integers such that d := ℓ+m 6= 0.

Recall that the ǫ̂t are the residuals of the LSE of the weak ARMA(p, q) model (3.1). With some

abuse of notation and obvious conventions, write r̃ {Wt | (Wt−1, . . . ,Wt−ℓ, ǫ̂t−1, . . . , ǫ̂t−m) = x}
for the kernel estimator of the regression of Wt on Wt−1, . . . ,Wt−ℓ, ǫ̂t−1, . . . , ǫ̂t−m evaluated at

x = (x1, . . . , xd)
′. For any real sequence (Xt) and k < ℓ, let X

t−ℓ
t−k = (Xt−k,Xt−k−1, . . . ,Xt−ℓ).

Our first main result in this section is the following, showing that under mild regularity

conditions, a kernel regression on ARMA residuals is equivalent to a (theoretical) regression on

(non observed) linear innovations.

Theorem 3.1 Assume that A1 and C1–C4 hold true and that for all integers d1 and d2, and all

indices t1, . . . , td1 , t
′
1, . . . , t

′
d1

of Z, the vector (Wt1 , . . . ,Wtd1
, ǫt′1 , . . . , ǫt′d2

) has a strictly positive

density fZ which is uniformly in the order of each of its marginal densities. Assume also that the

functions fZ(z1, . . . , zd1+d2) and (z2, . . . , zd1+d2) 7→
∫

z1fZ(z1, . . . , zd1+d2)dz1 are twice derivable,

with continuous and bounded second order derivatives. Then

(i) If bn → 0 and nb
2(1+d)
n → ∞,

r̃
{

Wt | (Wt−ℓ
t−1, ǫ̂

t−m
t−1 ) = x

}

→ E
{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}

, in probability, as n→ ∞.

(ii) If, in addition, A1’, A2’ and A4’ hold with Z = (W, ǫ), if E|Wt|s < ∞ with s ≥ 4 + ν

and s > 6d/(d − 2), d > 2, and if n2b6+d
n → ∞ hold,

√

nbdn

[

r̃
{

Wt | (Wt−ℓ
t−1, ǫ̂

t−m
t−1 ) = x

}

− E
{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}]

L→ N



0,
Var

{

Wt | (Wt−ℓ
t−1, ǫ

t−m
t−1 ) = x

}

f(x)

∫

Rd

K2(u)du





where f is the density of (Wt−ℓ
t−1, ǫ

t−m
t−1 ).
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Concerning the assumptions, the following remark can be made. For a purely non determin-

istic strong ARMA process with innovations admitting a positive density over R, the vector

(Wt, . . . ,Wt−ℓ, ǫt−1, . . . , ǫt−m) has also a positive density. This a not necessarily the case for a

general weak ARMA model (3.1) because the distribution of W is not entirely defined by the

distribution of ǫ and the ARMA coefficients.

Proof. To use the results of Section 2 we set

Zt = (Wt−ℓ
t , ǫt−m

t−1 )′, Z̃t,n = (Wt−ℓ
t , ǫ̂t−m

t−1 )′, Ut,n = (0, . . . , 0, ǫt−m
t−1 − ǫ̂

t−m
t−1 )′,

Vt,n = 0, and Yt = Wt. Using (3.4), we obtain

n
∑

t=1

{‖Ut,n‖ + ‖Vt,n‖ + (‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖}

≤
m
∑

j=1

n
∑

t=1







Cρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−j−i|







(1 + |Wt|)

= OP (n1/2).

Thus B1 holds with τ = 1/2. Because αZ(h) ≤ αW,ǫ(h−max{ℓ,m}), Assumption A2 is satisfied.

Assumption A3 is satisfied because of conditions assumed in the proposition. Since d(1+ν/(2+

ν)) < 2(1 + d) for all ν > 0, A4 is satisfied. Then, the convergence of probability follows from

(2.4) of Theorem 2.1.

Now we turn to the asymptotic normality. In view of Theorem 2.2, it suffices to verify

that assumptions A3’, B2 and (2.14) are satisfied. Assumption A3’ is directly implied by the

conditions made in the proposition. Let us turn to B2. Obviously one can take ρt = kn = vt,n = 0

in (2.13). Thus τ0 can be chosen arbitrarily large. To derive the second inequality of (2.13), let

us write, as in the proof of Lemma 3.1,

ǫ̂t − ǫt = st + (θ̂n − θ0)
′ ∂et
∂θ

(θ∗) = st −
∂Qn

∂θ′
(θ0)J

−1
n

∂et
∂θ

(θ∗)

where the matrix Jn =
[

∂2

∂θ∂θ′Qn(θ∗n,ij)
]

is non-singular for sufficiently large n, the θ∗n,ij and θ∗

being between θ0 and θ̂n. Thus, using the multiplicativity of the norm ‖A‖ =
∑ |aij |, we obtain

|ǫ̂t − ǫt| ≤ |st| +
∥

∥

∥

∥

∂Qn

∂θ′
(θ0)

∥

∥

∥

∥

∥

∥J−1
n

∥

∥

∥

∥

∥

∥

∂et
∂θ

(θ∗)

∥

∥

∥

∥

,

and thus

‖Ut,n‖ ≤
m
∑

j=1

|st−j | +
∥

∥J−1
n

∥

∥

∥

∥

∥

∥

∂Qn

∂θ′
(θ0)

∥

∥

∥

∥

m
∑

j=1

∥

∥

∥

∥

∂et−j

∂θ
(θ∗)

∥

∥

∥

∥

= µt + hnut,n
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with µt =
∑m

j=1 |st−j |, hn =
∥

∥J−1
n

∥

∥

∥

∥

∥

∂Qn

∂θ (θ0)
∥

∥

∥
and ut,n =

∑m
j=1

∥

∥

∥

∂et−j

∂θ (θ∗)
∥

∥

∥
. It is shown in

Francq and Zakoïan (1998) that
√
n∂Qn

∂θ (θ0) converges in distribution to a non degenerated

gaussian distribution and that Jn converges almost surely to a non-singular matrix J . Therefore

hn = OP (n−1/2), and one can take τ1 = 1/2. Using arguments given in the proof of Lemma 3.1

and the Minkowski inequality we obtain
∥

∥

∥

∥

∂et
∂θ

(θ∗)

∥

∥

∥

∥

ζ

≤
∞
∑

i=1

p+q
∑

j=1

sup
θ∈Θ

|ci,j(θ)| ‖Wt−i‖ζ ≤ C,

for all ζ such that E|Wt|ζ < ∞. We deduce that the moment conditions of B2 are satisfied if

Wt admits moments of order ζ1, 3ζ2, γ1 and 2γ2. Since ζ1 = 3ζ2 with ζ−1
1 + ζ−1

2 = 1 if and only

if ζ1 = 4, a moment of order 4, at least, is required for Wt.

Because τ0 can be chosen arbitrarily large, the conditions 1), 6), 9) and 10) in (2.14) are

always satisfied.

With an = [(log n)2] (the integer part of (log n)2) we have nkρan → 0 as n → ∞ for all k.

Thus 2), 3), 5) and 7) in (2.14) are also always satisfied. Because nb2n → ∞ it is easy to see that

Condition 4) with k = 1 entails Condition 4) with k = 2. Condition 4) with k = 1 is satisfied

when γ3 < 2d/(2 + d). Since γ3 must also be strictly greater than 1, this is only possible when

d > 2. Taking γ1 = 2γ2 the required moment condition is E|Wt|3γ3/(γ3−1) < ∞. Note that the

minimum of the function γ3 7→ 3γ3/(γ3 − 1) is 6d/(d − 2) on (1, 2d/(2 + d)). It is thus possible

to find a suitable γ3 when Wt admits moments of order greater than 6d/(d− 2). Condition 8) is

satisfied when n2b6+d
n → ∞, which completes the proof.

2

3.3 Linear prediction plus nonlinear prediction of ARMA residuals

An alternative estimator can be constructed as follows. Note that under C2, (ǫt) is the linear

innovation process of (Wt), that is

Wt = EL(Wt | {Wu, u < t}) + ǫt

and that the σ-fields generated by {Wu, u < t} and {ǫu, u < t} coincide. It follows that (1.5)

holds true. Let ŴL
t denote the linear prediction of Wt based on the estimated ARMA model,

ŴL
t = −

t−1
∑

i=1

π̂iWt−i, where

∞
∑

i=0

π̂iz
i = Ψ−1

θ̂n
(z)Φθ̂n

(z), |z| ≤ 1. (3.5)
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Write r̃(x) = r̃ {ǫ̂t | (ǫ̂t−1, . . . , ǫ̂t−d) = x} for the kernel estimator of the regression of ǫ̂t on

ǫ̂t−1, . . . , ǫ̂t−d evaluated at x = (x1, . . . , xd). The use of

W̃t = ŴL
t + r̃(ǫ̂t−1, . . . , ǫ̂t−d)

as an estimator of E(Wt | {Wu, u < t}) is legitimated by the following result.

Theorem 3.2 Let A1, C1–C3 and C5 hold true. For all integer d1, the vector (ǫt, . . . , ǫt−d1) is

assumed to have a strictly positive density fǫ which is uniformly in the order of each of its marginal

densities, and the functions fǫ(x1, . . . , xd1+1) and (x2, . . . , xd1+1) 7→
∫

x1fǫ(x1, . . . , xd1+1)dx1 are

supposed to be twice derivable, with continuous and bounded second order derivatives. Then

(i) If bn → 0 and nb
2(1+d)
n → ∞,

r̃
{

ǫ̂t | ǫ̂
t−d
t−1 = x

}

→ E
{

ǫt | ǫ
t−d
t−1 = x

}

, in probability, as n→ ∞.

(ii) If, in addition, A1’, A2’ and A4’ hold with Z = ǫ, if d > 2 and E|Wt|s < ∞ with

s ≥ 4 + ν and s > 6d/(d − 2), if n2b6+d
n → ∞ hold,

√

nbdn

[

r̃
{

ǫ̂t | ǫ̂
t−d
t−1 = x

}

−E
{

ǫt | ǫ
t−d
t−1 = x

}]

L→ N



0,
Var

{

ǫt | ǫ
t−d
t−1 = x

}

f(x)

∫

Rd

K2(u)du





where f is the density of ǫ
t−d
t−1.

Note that the assumptions are slightly weaker than those of Theorem 3.1, since no assumption

is made on the density or the mixing coefficients of (W, ǫ). Note also that when (ǫt) is a strong

noise, fǫ is uniformly in the order of its marginal densities if and only if ǫt admits a bounded

density.

Proof. We now set

Zt = ǫ
t−d
t , Yt = ǫt, Z̃t,n = ǫ̂

t−d
t , Vt,n = ǫt − ǫ̂t, Ut,n = ǫ

t−d
t−1 − ǫ̂

t−d
t−1.

Thus
n
∑

t=1

{‖Ut,n‖ + ‖Vt,n‖ + (‖Yt‖ + ‖Vt,n‖) ‖Ut,n‖} ≤ C

n
∑

t=1

ρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

n
∑

t=1

∑

i≥1

ci |Wt−i|

+
d
∑

j=1

n
∑

t=1







Cρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−j−i|







×







1 + |ǫt| + Cρt +
∥

∥

∥
θ̂n − θ0

∥

∥

∥

∑

i≥1

ci |Wt−i|







= OP (n1/2),
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by arguments already used to prove (3.4). In particular we used the fact that E|ǫt||Wt′ | are

E|Wt||Wt′ | finite for any t, t′. We also argue that the LSE is
√
n-consistent under C5 (see Francq

and Zakoïan, 1998). The consistency follows as in the proof of Theorem 3.1.

To show the asymptotic normality, an adaptation of the proof of Theorem 3.1 is needed. One

can take ‖Vt,n‖ ≤ ρt + knvt,n with ρt = |st|, kn =
∥

∥J−1
n

∥

∥

∥

∥

∥

∂Qn

∂θ (θ0)
∥

∥

∥
and vt,n =

∥

∥

∂et

∂θ (θ∗)
∥

∥, and

we still have ‖Ut,n‖ ≤ µt + hnut,n with µt =
∑d

j=1 |st−j |, hn = kn and ut,n =
∥

∥

∥

∑d
j=1

∂et−j

∂θ (θ∗)
∥

∥

∥ .

The arguments given in the proof of Theorem 3.1 then show that one can take τ0 = τ1 = 1/2 in

B2, and that the moment conditions of B2 are satisfied if Wt admits moments of orders ζ1, 3ζ2,

γ1 and 2γ2.

Convergence 1) in (2.14) only requires the condition ζ1 > 2, which can be satisfied when Wt

admits a moment of order greater than 4. By already given arguments, conditions 2), 3), 5), 7)

and 9) in (2.14) are always satisfied. Moreover, Condition 4) is satisfied when γ3 < 2d/(2 + d),

which requires d > 2 and the moment condition E|Wt|s < ∞ with s > 6d/(d − 2). Noting that

Condition 6) is entailed by Condition 4, and Condition 10) by Condition 8), we conclude as in

the proof of Theorem 3.1. 2

3.4 Implementation

For simplicity, assume that W1−d, . . . ,Wn is observed, and consider the one-step ahead prediction

of Wn+1. Three predictors of Wn+1 can be investigated:

1) the purely nonparametric estimator

ŴNP
n+1 = r̂ (Wn, . . . ,Wn−d+1) ,

where r̂ is defined by (2.3), replacing Xt by (Wt−1, . . . ,Wt−d), Yt by Wt and g by the

identity function;

2) the purely parametric estimator ŴL
n+1 defined by (3.5);

3) the mixed predictor of Section 3.3

ŴM
n+1 = ŴL

n+1 + r̃ (ǫ̂n, . . . , ǫ̂n−d+1) ,

where the ǫ̂t’s are the ARMA residuals and r̃ is defined by (2.2), replacing X̃t,n by

(ǫ̂t−1, . . . , ǫ̂t−d), Ỹt,n by ǫ̂t and g by the identity function.

21



The mixed predictor of Section 3.2 could be implemented as well, but for the numerical

illustrations we have chosen to concentrate on that of Section 3.3.

3.5 Testing the nullity of the autoregression function of the linear innovation

process

Note that if the observed process (Wt) is a strong ARMA model, or more generally if the linear

innovation process (ǫt) of (Wt) is a sequence of martingale differences, then the following null

hypothesis holds :

H0 : r (ǫt−1, . . . , ǫt−d) := E (ǫt | ǫt−1, . . . , ǫt−d) ≡ 0.

It is important to test for H0 because, if H0 holds then the mixed predictor defined in 3) of

Section 3.4 has no chance to improve the purely linear predictor 2). Conversely, when H0 is

rejected then the linear model is not optimal in terms of prediction mean squared error(MSE),

and it is worth considering the alternative predictors 1) and 3).

The problem of testing a particular specification of a regression against a nonparametric

alternative has been intensively studied in the literature (for recent references see Gao and Tong

(2002), Hall and Yatchewa (2005), and the references therein). For iid observations, Härdle and

Mammen (1993) proposed a goodness-of-fit test based on a distance between a Nadaraya-Watson

estimator and the specification of the regression under the null. Kreiss, Neumann and Yao (2008)

(denoted by KNY hereafter) extended the test to a time series context. If the linear innovations

were observed, the test statistic of KNY would be in our framework

Sn =

∫

Rd

{

1

nbdn

n
∑

t=1

ǫtK

(

x− (ǫt−1, . . . , ǫt−d)

bn

)

}2

ω(x)dx

where ω(·) is a weight function, which is ω(·) ≡ 1 in the forthcoming applications. Because the

ǫt are not observed, it is natural to replace Sn by the statistic

S̃n =

∫

Rd

{

1

nbdn

n
∑

t=1

ǫ̂tK

(

x− (ǫ̂t−1, . . . , ǫ̂t−d)

bn

)

}2

ω(x)dx (3.6)

where the ǫ̂t’s are the ARMA residuals obtained in the purely parametric prediction step. It

is clear that the kernel and bandwidth involved in (3.6) are not necessarily the same as those

involved in the mixed and purely nonparametric predictors (but in our applications we employed
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the same parameters). Note that when ω(·) ≡ 13 and the kernel K is the gaussian density, we

simply have

S̃n =
1

2dπd/2n2bdn

n
∑

t=1

n
∑

s=1

ǫ̂tǫ̂s

d
∏

i=1

exp

(

−(ǫ̂t−i − ǫ̂s−i)
2

4b2n

)

.

KNY showed that, under a set of regularity conditions, the asymptotic distribution of nb
d/2
n (Sn−

ESn) is gaussian under the null. The approximation of the finite-sample distribution of Sn by

a normal distribution is however too crude in practice, and Härdle and Mammen (1993) and

KNY implement the wild bootstrap to determine the critical values of their tests. We employed

exactly the same resampling scheme as in KNY to obtain the critical value t∗α of a test of critical

region {S̃n > t∗α}. More precisely, conditionally on ǫ̂1, . . . , ǫ̂n, the critical value t∗α is defined as

the (1 − α) quantile of the distribution of the bootstrap statistic

S∗
n =

∫

Rd

{

1

nbn

n
∑

t=1

ξtǫ̂tK

(

x− (ǫ̂t−1, . . . , ǫ̂t−d)

bn

)

}2

ω(x)dx,

where the ξt’s are iid N (0,1), and are independent of the ǫ̂t’s.

4 Numerical illustrations

We first investigate the performance of the three procedures presented in Section 3.4 on simulated

data. Then we present an illustration to the prediction of the volatility of stock market returns.

4.1 Monte Carlo experiments

We propose an illustrative example based on a chaotic process (see May (1976)). Let

ǫt = ut −
1

2
+ ηt, ut = 4ut−1(1 − ut−1), t ≥ 1 (4.1)

where u0 has the arc-sinus density f(x) = π−1{x(1 − x)}−1/2 on the interval [0, 1], (ηt)t≥1 is an

iid sequence, independent of u0, with mean 0 and finite variance σ2
η . Since f is the invariant

density of (ut), this process is stationary. We have Eǫt = 0 and, since ut and 1 − ut have the

same law,

Cov(ǫt, ǫt−1) = Cov(ut, ut−1)

= Cov{4ut−1(1 − ut−1), ut−1} = Cov(ut, 1 − ut−1) = 0.

3With constant weights, the test enjoys the property of scale invariance.
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The same symmetry argument shows that Cov(ǫt, ǫt−h) = 0 for all h 6= 0. Therefore (ǫt) is a

white noise. Consequently, given {ǫu, u ≤ t}, the best linear predictor of ǫt+h is equal to zero,

for any horizon h. However, in general, the best (nonlinear) predictor is quite different. For

illustrative purpose, Figure 1 displays the scatter plot of the pairs (ǫt−1, ǫt), for t = 1, . . . , 1 000,

obtained by simulation, and the nonlinear regression obtained by tedious computation, in the

case where ηt is uniformly distributed over [−0.6,−0.4]. This example illustrates the, possibly

dramatic, differences between linear and nonlinear predictions of a given weak ARMA process.

One can interpret the ratio

τ :=
Var ut

Var ǫt
=

Var ut

Var ut + σ2
η

=
1
8

1
8 + σ2

η

as the proportion of the deterministic part in the noise.

To illustrate our method, we will therefore simulate for different values of θ the MA(1) process

Wt = ǫt − θǫt−1,

where the noise (ǫt) is given by (4.1). We will compare three predictors: the purely nonparametric

predictor defined in 1) of Section 3.4 with d = 1, the MA(1) predictor, and the mixed predictor

defined in 3) Section 3.4. For the implementation of the nonparametric predictors we used the

function sm.autoregression() contained in the package sm of the statistical software R (see

http://cran.r-project.org/). We simulated N = 50 independent replications of a simulation of

length n+m of the MA(1) process Wt. For each replication, the first n = 500 simulated values

served to adjust the 3 predictors, and the last m = 100 values were used to compare the actual

simulated values and their one-step ahead predictions. Figure 2 compares the distributions of the

Nm = 5000 prediction errors obtained with the 3 predictors. As expected, the parametric esti-

mator is slightly superior to the purely nonparametric one when |θ| is large and the deterministic

proportion τ is not too important (lower panel), whereas the purely nonparametric predictor is

often more accurate than the MA(1) predictor when τ is high (upper panels). The distribution

of the purely nonparametric predictor presents however more extreme values. In all situations

considered in Figures 2, the mixed predictor is always more accurate and seems to cumulate

the advantages of the linear and nonparametric predictors. To summarize, the predictor can be

ranked, in decreasing order of efficiency, as

ŴM ≻ ŴL ≻ ŴNP when |θ| ∼ 1 and τ ≪ 1

24



-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 1: Scatter plot of 1,000 pairs (ǫt, ǫt−1), simulated from (4.1) with ηt uniformly distributed over

[−0.6,−0.4]. The full line is the theoretical (nonlinear) regression of ǫt on ǫt−1.

and

ŴM ≻ ŴNP ≻ ŴL otherwise.

The simulations clearly show the superiority of our approach on this model.

4.2 Application to the prediction of the squares of stock market returns

Our application concerns daily returns of the following world stock market indices : BEL 20

(Brussels), CAC 40, DAX, FTSE, HSI (Hong Kong), Nikkei, NSE (India), SMI (Swiss) , IGBM

(Madrid), SP500, SP TSX (Toronto) and SSE (Shanghai), from January 2, 1991 to July 3, 2009

(except for the indices for which such historical data do not exist). The number of observations

varies from n = 1130 for the BEL 20 index (which begins on February 11, 2005) to n = 4591

for the HSI index. Standard models for such financial series are weak white noises of the form

rt = σtηt where rt is the log-return, ηt is an iid noise, with variance equal to 1, and σ2
t is the

so-called volatility. For the GARCH-type models, σt is a measurable function of {rs, s < t}.
In the sequel, we compare the prediction of the volatility (that is the prediction of the squared

returns) obtained with the parametric, nonparametric, and mixed methods of Section 3.4. 4

4For the purely nonparametric predictor, and also for the nonparametric component of the mixed predictor,
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Figure 2: Comparison of the prediction errors of the purely nonparametric, the purely parametric, and the

mixed predictors. The simulated process is the MA(1) Wt = ǫt−1 + θǫt−1, with θ = 0.9 or θ = 0.1, where (ǫt) is

the weak white noise (4.1) in which ηt ∼ N (0, σ2
η) with ση = 0.01 (deterministic proportion τ = 99.9%), ση = 0.1

(τ = 92.5%) and ση = 0.5 (τ = 33.3%).
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Table 1: RMSE of the MA(1), nonparametric (NP) and mixed (Mixed) predictions. For each

series, the smallest RMSE is underlined.

MA(1) NP Mixed

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

BEL 8.365 9.165 8.901 8.592 8.450 8.327 8.396

CAC 6.739 6.764 6.767 6.746 6.718 6.614 6.615

DAX 7.131 7.133 7.077 6.973 7.030 6.940 6.865

FTSE 5.229 5.246 5.234 5.230 5.167 5.075 5.132

HSI 9.100 9.359 9.244 9.177 8.871 8.861 8.775

Nikkei 7.971 7.973 7.975 7.961 7.962 7.888 7.911

NSE 13.790 13.693 13.545 13.654 13.687 13.475 13.528

SMI 4.845 4.974 5.025 5.017 4.801 4.773 4.761

IGBM 7.694 7.777 8.392 8.242 7.632 7.633 7.576

SP500 6.232 6.244 6.292 6.349 6.160 6.142 6.160

SPTSX 6.634 6.963 7.061 7.214 6.663 6.682 6.603

SSE 8.476 8.625 8.628 8.563 8.565 8.541 8.474

Denote by Wt, t = 1, . . . , n the sequence of the squared returns. In a first set of experiments,

for the purely linear predictor, as well as for the parametric component of the mixed predictor, a

MA(1) model has been chosen. Results not reported here, based on the test of Section 3.5, show

that the assumption that the best predictor is provided by the MA(1) model is clearly rejected

on the data.

To compare the effective predictions of the different methods, a part of the observations is

used to fit the predictors and a part is reserved for forecasting exercises. Consider the case when

n is an even number of the form n = 2k (the case when n is odd is handled similarly). For

t = 1, . . . , k, we used Wt, . . . ,Wt+k−1 to define predictors of Wt+k with the methods 1)-3) of

Section 3.4. Table 1 indicates that the root mean squared error (RMSE) of prediction is always

lower with the mixed method.

In a second set of experiments, we use an ARMA(1,1) as parametric predictor of Wt, both

for the purely parametric and mixed methods. Note that an ARMA(1,1) for the squared returns

is obtained when the returns follow a GARCH(1,1), that is the most widely-used model for such

we used the default implementation of the R function sm.autoregression().
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Table 2: Test that the optimal predictor is a constant and test that the optimal predictor is

ARMA(1,1): p-value of the tests of null hypotheses HW
0 (d) : E(Wt | Wt−1, . . . ,Wt−d) ≡ EWt

and Hǫ
0(d) : E(ǫt | ǫt−1 . . . , ǫt−d) ≡ 0, where the ǫt’s are approximated by ARMA(1,1) residuals.

In the last four columns, the p-values are underlined when they are less than 5%.

HW
0

(d) Hǫ
0
(d)

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

BEL 0 0 0 0 0.814 0.320 0.342 0.304

CAC 0.006 0 0 0 0.818 0.518 0.318 0.428

DAX 0.026 0 0 0 0.128 0.232 0.272 0.238

FTSE 0 0 0 0 0.008 0.062 0.242 0.274

HSI 0 0 0 0 0.062 0.022 0.004 0.012

Nikkei 0.004 0 0 0 0.160 0.030 0.090 0.116

NSE 0.016 0.002 0 0 0.814 0.338 0.194 0.046

SMI 0 0 0 0 0.762 0.292 0.268 0.384

IGBM 0.004 0 0 0 0.642 0.558 0.286 0.188

SP500 0.016 0 0 0 0.380 0.174 0.228 0.246

SPTSX 0 0 0 0 0.410 0.358 0.310 0.286

SSE 0.178 0.006 0 0 0.226 0.164 0.026 0.052

financial series.

The first four columns of Table 2 give the p-values of the KNY test that the regression ofWt on

Wt−1, . . . ,Wt−d is constant. This assumption is clearly rejected. The next four columns give the

p-values of the KNY-type test of the null hypothesis that the best predictions of the ARMA(1,1)

residuals by d past values are identically equal to zero. One can see that the assumption that

the ARMA(1,1) model is optimal is rejected for five series at least for one d. Table 3 gives

the prediction RMSE of the different methods. For the series for which the tests of Table 2 do

not reject the assumption that the best predictor is ARMA(1,1), the purely linear prediction is

indeed the best, in general. The mixed predictor can however improve the purely linear predictor

when the tests of Section 3.5 reject the assumption that the ARMA(1,1) predictor is optimal.

Finally, note that the purely non parametric method is always far from the optimal method.
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Table 3: RMSE of the ARMA(1,1), nonparametric (NP) and mixed (Mixed) predictions. For

each series, the smallest RMSE is underlined.

ARMA(1) NP Mixed

d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

BEL 7.632 9.165 8.901 8.592 7.763 7.965 7.680

CAC 6.177 6.764 6.767 6.746 6.227 6.255 6.190

DAX 6.512 7.133 7.077 6.973 6.531 6.591 6.585

FTSE 4.753 5.246 5.234 5.230 4.773 4.766 4.776

HSI 8.733 9.359 9.244 9.177 8.656 8.686 8.532

Nikkei 7.338 7.973 7.975 7.961 7.331 7.299 7.340

NSE 13.505 13.693 13.545 13.654 13.489 13.450 13.407

SMI 4.480 4.974 5.025 5.017 4.523 4.549 4.502

IGBM 7.322 7.777 8.392 8.242 7.244 7.337 7.322

SP500 5.613 6.244 6.292 6.349 5.625 5.685 5.619

SPTSX 6.243 6.963 7.061 7.214 6.281 6.305 6.267

SSE 8.234 8.625 8.628 8.563 8.309 8.276 8.296

5 Conclusion

The basic idea behind the method proposed in this paper is to improve linear parametric pre-

dictions by predicting non parametrically what is not linearly predictable. We considered two

approaches using ARMA models to capture the linear part of the process, and nonparametric

regressions involving ARMA residuals to capture the nonlinear part. In order to avoid the curse

of dimensionality inherent to nonparametric estimation, a small number of regressors seems rea-

sonable, whereas the orders p and q of the parametric model are allowed to be relatively large.

Compared to a purely nonparametric regressor of the form E (Xt | Xt−1, . . . ,Xt−d) , such a mixed

method presents the advantage of being able to take into account mid-term linear dynamics. This

mixed method could thus be worth considering for time series whose dynamics can not be well

taken into account by a very small number of lagged values of the observed process (as it is the

case for MA and mixed ARMA models or for seasonal models) and, at the same time, exhibit

nonlinearities. This method could be also of interest to distinguish or compare the purely linear

and the purely nonlinear dynamics.

In this paper regularity conditions were given for consistency and asymptotic normality of
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the residual-based nonparametric regressor. We established intermediate results which are also

applicable in a more general context of triangular arrays of noisy observations. We presented

simulation experiments, and an illustration to the volatility prediction of 12 stock market indices,

in which the mixed method outperforms both the linear predictor and the purely nonparametric

predictor.

The R code used for the numerical illustrations is available on the web pages of the authors.
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Combining parametric and nonparametric approaches for time
series prediction:

complementary results

A Proof of (2.7) and (2.8).

The dominated convergence theorem entails that, under A1 and A3,

E f̂(x) − f(x) =
1

bdn

∫

Rd

K

(

x− y

bn

)

f(y)dy − f(x)

=

∫

Rd

K (t) {f(x− bnt) − f(x)} dt → 0 (A.1)

when bn → 0.
By stationarity, we have

Var f̂(x) =
1

nb2d
n

n−1
∑

h=−n+1

(

n− |h|
n

)

Cov

{

K

(

x−Xt

bn

)

,K

(

x−Xt−|h|

bn

)}

.

Davydov’s inequality (1968) entails
∣

∣

∣

∣

Cov

{

K

(

x−Xt

bn

)

,K

(

x−Xt−|h|

bn

)}∣

∣

∣

∣

≤ C

∥

∥

∥

∥

K

(

x−Xt

bn

)∥

∥

∥

∥

2

2+ν

{αX(|h|)} ν
2+ν .

Note that, in view of the Lipschitz condition A1, the density K is (uniformly) continuous. Thus
it is bounded and satisfies

∫

K2+ν (t) dt <∞. Thus, using A1–A3 and Lemma 2.1, Var f̂(x) → 0

as nb
d(1+ ν

2+ν )
n → ∞. The first part of (2.7) is shown.

Now we will show that ϕ̂(x) = ϕ(x) + oP (1). The second part of (2.7) will follow, using the
Slutsky lemma. With the arguments used to handle Var f̂(x) we obtain

Var ϕ̂(x) ≤ C

nb2d
n

∥

∥

∥

∥

g(Yt)K

(

x−Xt

bn

)∥

∥

∥

∥

2

2+ν

=
C

nb2d
n

{

bdn

∫

|g(y)|2+ν K2+ν (t) fZ(y, x− bnt)dydt

}
2

2+ν

≤ C

nb
d(1+ ν

2+ν
)

n

{

sup
u∈Rd

∫

Rd0

|g(y)|2+ν fZ(y, u)dy

∫

Rd

K2+ν (t) dt

} 2
2+ν

= o(1)

under A1–A4. Now note that

E ϕ̂(x) = b−d
n

∫

Rd

{
∫

Rd0

g(y)
fZt(y, u)

f(u)
dy

}

K

(

x− u

bn

)

f(u)du

= b−d
n

∫

Rd

r(u)f(u)K

(

x− u

bn

)

du =

∫

Rd

K(t)ϕ(x− bnt)dt

=

∫

Rd

K(t)

{

ϕ(x) − bnt
′∂ϕ

∂x
(x) +

b2n
2
t′
∂2ϕ

∂x∂x′
(x∗)t

}

dt,
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where x∗ is between x and x− bnt, which shows that the bias of ϕ̂(x) tends to zero. The proof
of (2.7) is complete.

A Taylor expansion yields

f(x− bnt) = f(x) − bnt
′∂f

∂x
(x) +

b2n
2
t′
∂2f

∂x∂x′
(x∗)t,

where x∗ is between x and x− bnt. Using (A.1), A1 and A3, we obtain

Ef̂(x) − f(x) = O(b2n) and Var f̂(x) = O

(

n−1b
−d(1+ ν

2+ν )
n

)

. (A.2)

Thus

E
{

f̂(x) − f(x)
}2

= O

(

b4n + n−1b
−d(1+ ν

2+ν )
n

)

is asymptotically minimal for bn = O
(

n−1/{4+d+dν/(2+ν)}
)

. We obtain the result for the regres-
sion estimator by the same arguments. We deduce that (2.8) holds. 2

B Proof of (2.16).

Write
√

nbdn{r̂(x) − r(x)} =

√

nbdn{ϕ̂(x) − ϕ(x)}
f̂(x)

− ϕ(x)

√

nbdn{f̂(x) − f(x)}
f̂(x)f(x)

, (B.1)

and let Hn(x) =
(

√

nbdn{f̂(x) − f(x)},
√

nbdn{ϕ̂(x) − ϕ(x)}
)′
. For any c = (c1, c2)

′ ∈ R
2, letting

gc(Yt) = c1 + c2g(Yt), we have

c′Hn(x) =
1

√

nbdn

n
∑

t=1

gc(Yt)K

(

x−Xt

bn

)

−
√

nbdn{c1f(x) + c2ϕ(x)}

=
1√
n
Sn +Rn, (B.2)

where Sn =
∑n

t=1 xn,t,

xn,t =
1

b
d/2
n

{

gc(Yt)K

(

x−Xt

bn

)

− E

[

gc(Yt)K

(

x−Xt

bn

)]}

,

and

Rn =
1

√

nbdn

n
∑

t=1

{

E

[

gc(Yt)K

(

x−Xt

bn

)]

− bdn{c1f(x) + c2ϕ(x)}
}

.

To establish the asymptotic normality of c′Hn(x), for c 6= 0, we will verify the conditions for a
Central Limit Theorem for triangular arrays. Notice that the strong mixing coefficients αn(h) of
the process (xn,t)t∈Z are such that αn(h) ≤ αZ(h). By stationarity, we have

1

n
VarSn =

n−1
∑

h=−n+1

(

n− |h|
n

)

Cov(xn,t, xn,t−|h|). (B.3)
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Davydov’s inequality (1968) and a direct extension of Lemma 2.1 entail

∣

∣Cov(xn,t, xn,t−|h|)
∣

∣ ≤ C

bdn

∥

∥

∥

∥

gc(Yt)K

(

x−Xt

bn

)∥

∥

∥

∥

2

2+ν

{αZ(|h|)} ν
2+ν

≤ Cb
−dν
2+ν
n {αZ(|h|)} ν

2+ν . (B.4)

Now we will show that

∣

∣Cov(xn,t, xn,t−|h|)
∣

∣ ≤







C if h = 0

Cbdn if |h| > 0.
(B.5)

First considering the case h = 0, we have

Var(xn,t) ≤ 1

bdn

∫

g2
c (y)K

2

(

x− u

bn

)

fZ(y, u)dydu

=

∫

g2
c (y)K

2 (v) fZ(y, x− vbn)dydv

≤ C

∫

g2
c (y)K

2 (v) fY (y)dydv < +∞,

where the second inequality follows from A3’ and the last one from A1 and A3. This establishes
(B.5) in the case h = 0. Now we consider the case h > 0 which will be sufficient to conclude.
Note that

Egc(Yt)K

(

x−Xt

bn

)

= c1b
d
n

∫

K(v)f(x− vbn)dv

+c2b
d
n

∫

g(y)K(v)fZ(y, x− vbn)dydv

= c1b
d
nf(x) + c2b

d
nϕ(x) + o(bdn). (B.6)

It follows that

|Cov(xn,t, xn,t−h)|

≤ 1

bdn

∫

|gc(y1)|K
(

x− u1

bn

)

|gc(y2)|K
(

x− u2

bn

)

fZh,Z0
(y1, u1, y2, u2)dy1du1dy2du2 + Cbdn

≤ Cbdn

{∫

|gc(y1)|K (v1) |gc(y2)|K (v2) fZh,Z0
(y1, x− v1bn, y2, x− v2bn)dy1dv1dy2dv2 + 1

}

≤ Cbdn

{∫

|gc(y1)|K (v1) |gc(y2)|K (v2) fYh,Y0
(y1, y2)dy1dv1dy2dv2 + 1

}

≤ Cbdn,

using A3’ and the Schwarz inequality. Now we consider a truncation of the right-hand side of
(B.3). Let ς = d/(4 + d). We have, by (B.5) and A4’

[nς ]
∑

|h|=1

(

n− |h|
n

)

Cov(xn,t, xn,t−|h|) ≤ Cbdnn
ς = o(1).
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Moreover, by (B.4) and A4’

n
∑

|h|=[nς]+1

(

n− |h|
n

)

Cov(xn,t, xn,t−|h|) ≤ Cb
−dν
2+ν
n

∑

|h|>[nς ]

{αZ(|h|)} ν
2+ν

≤ Cb
−dν
2+ν
n n−̺ς = o(1).

The last inequality follows from {αZ(|h|)} ν
2+ν = O(h−(̺+1)), which is a consequence of A2’, and

from a standard comparison with an integral. It follows that

lim
n→∞

1

n
VarSn = lim

n→∞
Var xn,t = E(g2

c (Yt) | Xt = x)f(x)

∫

Rd

K2(u)du,

where the second equality is a consequence of (B.6). Thus, applying a CLT for triangular
sequences of mixing sequences (see e.g. the book by Davidson (1994) and the references therein),

n−1/2Sn
d
; N

(

0, {c21f(x) + 2c1c2ϕ1(x) + c22ϕ2(x)}
∫

Rd

K2(u)du

)

.

Now we have, in view of (A.2) and a similar expression for the difference Eϕ̂(x)−ϕ(x), by A4’,

Rn = c1

√

nbdn{Ef̂(x) − f(x)} + c2

√

nbdn{Eϕ̂(x) − ϕ(x)} = o(1).

Thus, (B.2) entails that c′Hn(x) has the same asymptotic distribution as n−1/2Sn. Finally, in
view of (B.1) and (2.7)

√

nbdn {r̂(x) − r(x)} has the same asymptotic distribution as c′Hn(x)
with c = (−r(x)/f(x), 1/f(x))′, which completes the proof of (2.16). 2

C Simulations of the model of Section 4.1.

Figure 3 plots simulations of the noise (ǫt) and of the weak MA(1) process (Wt). The empirical
autocorrelation functions are in accordance with the theoretical second-order structure of the
two simulated processes. In particular, on the basis of the correlogramm, a practitioner would
certainly select the MA(1) as a plausible model. One can observe that the distribution of the
noise is symmetric, whereas that of the MA(1) is clearly asymmetric. Such an asymmetry is not
possible for a MA(1) process with an iid symmetric noise. The simulated trajectories displayed in
Figure 3 correspond to a noise with a deterministic proportion τ = 92.6%. The asymmetry is of
course less marked when the deterministic proportion τ is smaller or when the MA(1) parameter
θ is close to 0.

D Complements on the stock index data of Section 4.2.

Figure 6 displays the autocorrelation functions of the returns. In this figure, the dotted lines
±1.96/

√
n define the standard significance band in which the autocorrelations of an iid noise

should stay with asymptotic probability 95%. These significance bands, obtained from an ap-
plication of the well-known standard Bartlett’s formula, are not valid when the observations are
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Simulation of the noise
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Figure 3: A simulation of the weak white noise ǫt defined by (4.1) with ηt ∼ N (0, σ2
η) and ση = 0.1, and a

simulation of the MA(1) process Wt = ǫt−1 + 0.9ǫt−1. The right panels display the autocorrelation functions of

the two simulations.
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Figure 4: World financial indices between January 2, 1991 and July 3, 2009.

uncorrelated but not independent, as it is the case for GARCH processes, and more generally
for weak white noises. Significant bands obtained from the generalized Bartlett’s formula re-
cently proposed by Francq and Zakoïan (2009), are given in full lines. Given that most of the
autocorrelations fall into the generalized Bartlett’s bands, it is reasonable to consider the returns
as weak white noises. This is in agreement with the standard economic theory which asserts
that such stock returns should be martingale differences. In view of Figure 7, displaying the
autocorrelation functions of the squares of the returns, it is however clear that the squares of the
returns are correlated.
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Figure 6: Autocorrelation functions of the series of the returns.
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Figure 7: Autocorrelation functions of the squares of the returns.
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Figure 8: Nadaraya-Watson estimator r̂(x) of the regression r(x) = E(Wt | Wt−1 = x), where Wt denotes the

squares of the returns.

Figures 8-10 display, for each index, the Nadaraya-Watson estimator r̂(x) of the regression
r(x) = E(Wt | Wt−k = x) for the lag k = 1 and k = 7. The dotted lines are 95% confidence
bands for the regression, deduced from (2.16). It is interesting to note that the general allure of
all these regressions is that of increasing functions. This is in accordance with the usual finding
of strong positive correlations for the squared returns.
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Figure 9: As Figure 8, but for the lag 2 regression r(x) = E(Wt | Wt−2 = x).
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Figure 10: As Figure 8, but for the higher lag regression r(x) = E(Wt | Wt−7 = x).
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Figure 11: Non parametric estimator of r(x) = E(ǫt|ǫt−1 = x) where ǫt is the MA(1) error term.

The first columns of Table 4 give the p-values of the KNY test that the regression of Wt on
Wt−1, . . . ,Wt−d is constant. This assumption is clearly rejected, confirming the visual aspect of
the regressions displayed in Figures 8–10, and also the strong autocorrelations of (Wt) displayed
in Figure 7. The last columns of Table 4 concern the test described in Section 3.5 that the best
predictor is the MA(1) model. Since the assumption is clearly rejected, the MA(1) predictor is
likely to be beaten by a purely non parametric predictor or by a mixed-predictor. Figure 11
confirms the output of the tests, since numerous regressions have a "smile" form which leads to
predict a positive ǫt (and thus a larger volatility) when the innovation ǫt−1 is far from zero. The
asymmetry of the smile indicates that the volatility increases more when Wt−1 is higher than
when it is lower than expected.
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Table 4: Test that the optimal predictor is a constant and test that the optimal predictor is
MA(1): p-value of the tests of null hypotheses HW

0 (d) : E(Wt | Wt−1, . . . ,Wt−d) ≡ EWt and
Hǫ

0(d) : E(ǫt | ǫt−1 . . . , ǫt−d) ≡ 0, where the ǫt’s are approximated by MA(1) residuals.

HW
0 (d) Hǫ

0(d)
d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

BEL 0 0 0 0 0.010 0 0 0
CAC 0.006 0 0 0 0.084 0 0 0
DAX 0.026 0 0 0 0.370 0 0 0
FTSE 0 0 0 0 0.070 0 0 0
HSI 0 0 0 0 0 0 0 0
Nikkei 0.004 0 0 0 0.002 0 0 0
NSE 0.016 0.002 0 0 0.118 0.014 0.002 0
SMI 0 0 0 0 0.044 0 0 0
IGBM 0.004 0 0 0 0.088 0 0 0
SP500 0.016 0 0 0 0.008 0 0 0
SPTSX 0 0 0 0 0.006 0 0 0
SSE 0.178 0.006 0 0 0.998 0.128 0 0

E R code

This section contains programs written in the R language (see http://cran.r-project.org/). We
begin with three auxiliary routines: the function K() for the multivariate gaussian kernel, the
function rn() for the Nadaraya-Watson regressor of Y on the columns of X at the point x with
the bandwidth h, and the function bandwidth.x() for an approximation of the local optimal
bandwidth at the point x (as described in Bosq, 1996, Chapter 2).

# Gaussian Kernel

K<- function (x) prod(dnorm(x))

# Nadaraya-Watson estimator

rn<- function (x,h,X,Y) {

n<-length(Y)

dum<-sapply(1:n,function (i) K((x-X[i,])/h))

sum(Y*dum)/sum(dum) }

# approximation of the local optimal bandwidth at the point x

bandwidth.x<- function (x,X) {

n<-length(X[,1]); d<-length(X[1,]); sdv<-sd(X[,1])

f<-prod(dnorm(x,sd=sdv))

dum<-(sum(x^2)/sdv^4 -d/sdv^2)^2/d

c0<-(dum*f*(2*sqrt(pi))^2)^(-1/(d+4))

c0*n^(-1/(d+4)) }

Given a time series W[1:n], the function prevNP() uses the function rn() to compute the non
parametric Nadaraya-Watson predictor of W[n+1] as function of d past values.

# nonparametric prediction of W[n+1] as a function of x=(W[n], ..., W[n-d+1])

prevNP<- function (W,d) {
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n<-length(W); x<-W[n:(n-d+1)]

X<-matrix(nrow=(n-d),ncol=d)

for (j in(1:d))X[,j]<-W[(d+1-j):(n-j-delay)]

h<- bandwidth.x(x,X)

prev<-rn(x,h,X,W[(d+1+delay):n]) }

The function prevPara.arma11() uses the function arma() of the library tseries to compute
the ARMA(1,1) prediction of W[n+1].

## ARMA(1,1) prediction

library(tseries)

prevPara.arma11<- function (W){

n<-length(W) # (y_t-c)-a*(y_{t-1}-c)=e_t+b*e_{t-1}

arma11<-arma(W,coef=c(0.9,-0.85,mean(W)*0.1))

ahat<-as.numeric(arma11$coef[1])

bhat<-as.numeric(arma11$coef[2])

chat<-as.numeric(arma11$coef[3])/(1-ahat)

prev<-chat+bhat*arma11$residuals[n]+ahat*(W[n]-chat) }

The function prevMixte.arma11() provides a mixed prediction, sum of an ARMA(1,1) prediction
of W[n+1] and of a non parametric prediction of res[n+1].

## mixed ARMA(1,1) + nonparametric prediction

prevMixte.arma11<- function (W,d,trim) {

n<-length(W)

arma11<-arma(W,coef=c(0.9,-0.85,mean(W)*0.1))

ahat<-as.numeric(arma11$coef[1])

bhat<-as.numeric(arma11$coef[2])

chat<-as.numeric(arma11$coef[3])/(1-ahat)

prev<-chat+bhat*arma11$residuals[n]+ahat*(W[n]-chat)

res<-arma11$residuals[2:n]

res.tronc<-pmin(res,quantile(res,probs=trim))# to deal with outliers

res<-res.tronc

n<-length(res); x<-res[n:(n-d+1)]

X<-matrix(nrow=(n-d),ncol=d)

for (j in(1:d))X[,j]<-res[(d+1-j):(n-j)]

h<- bandwidth.x(x,X)

prevres<-rn(x,h,X,res[(d+1):n])

prevmixtes<-max(prevres+prev,0); prevmixtes }
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