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Abstract

We study dominant strategy implementation especially in economic
environments. We first show that in general environments, strategy-proofness
and quasi-strong-non-bossiness together are necessary and sufficient for
dominant strategy implementation via the associated direct revelation mech-
anism. We next prove that in weak separable environments, strategy-proofness
is sufficient for dominant strategy implementation, by using an augmented
revelation mechanism similar to the one devised by Jackson et al. (1994).
Moreover, we focus on pure exchange economies without free disposal,
and try to construct another augmented revelation mechanism that sat-
isfies balancedness in and out of equilibrium, and which implements all
strategy-proof social choice functions in dominant strategy equilibria.

Keywords: Augmented Revelation Mechanism, Strategy-Proofness, Bal-
ancedness, Quasi-Strong-Non-Bossiness, The Revelation Principle.

JEL Classification Numbers: D51, C72, D71, D78.
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1 Introduction

The revelation principle asserts that if a social choice function is implementable
in dominant strategy equilibria, then it is truthfully implementable in dominant
strategy equilibria, i.e., truthful revelation by each agent is a dominant strat-
egy equilibrium of the associated direct revelation mechanism. However, the
mechanism might have an untruthful dominant strategy equilibrium, too. So,
the social choice function might not be fully dominant strategy implemented
by the associated direct revelation mechanism (e.g., see Dasgupta et al. (1979)
for dominant strategy implementation, and Postlewaite and Schmeidler (1986),
Repullo (1986), and Palfrey and Srivastava (1989) for Bayesian implementation).
This is called the multiple equilibrium problem.1

Another important topic on the revelation principle is to explore the rela-
tionship between implementation in dominant strategy equilibria and truth-
ful implementation in dominant strategy equilibria. The revelation principle
states that, in order for a social choice function to be dominant strategy imple-
mented, it is necessary for it to be truthfully implemented in dominant strategy
equilibria. In general, however, it is still an open problem whether truthful im-
plementability (i.e., strategy-proofness) is a sufficient condition for dominant
strategy implementation.

These problems do not arise when indifference in preferences is not allowed,
because three notions of dominant strategy implementation—truthful imple-
mentation, implementation by the associated direct revelation mechanism, and
implementation with indirect mechanisms—are equivalent in terms of imple-
mentability. In this case, the revelation principle has a powerful implication: in
order to find out dominant strategy implementable social choice functions, it is
necessary and sufficient to search for social choice functions that are truthfully
implementable in dominant strategy equilibria.2 However, when indifference is
possible, the revelation principle might lose the powerful implication. This is
because the equivalence might not hold in general: there might be a truthfully
implementable social choice function that cannot be fully dominant strategy
implemented not only by the associated direct revelation mechanism but also
by any indirect mechanism. In this paper, we explore the relationships among
three notions of dominant strategy implementation to examine the implication
of the revelation principle in economic environments.

This paper closely relates to two papers: one by Jackson et al. (1994) and

1The multiple equilibrium problem in dominant strategy implementation might not be dis-
turbing, because, to quote Dasgupta et al. (1979), “[i]n direct mechanisms where telling the truth
is one of several dominant strategies, it may be reasonable to suppose that players will in fact tell
the truth.” (See also Chapter 23 in Mas-Colell et al. (1995).) However, since they are each indiffer-

ent among dominant strategies irrespective of messages of the others, there is no guarantee that
they will play the truthful dominant strategy. Indeed, recent experimental results indicate that
they can choose a spiteful strategy (e.g., see Saijo (2005) for details).

2This is because every social choice function that is truthfully implementable in dominant
strategy equilibria is fully implementable in dominant strategy equilibria.
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the other by Sjöström (1994). They showed that in separable environments,
almost all social choice functions can be undominated Nash implemented by
their bounded mechanisms. This might make us think that in separable en-
vironments, all of the strategy-proof social choice functions can be dominant
strategy implemented by their mechanisms. Indeed, almost all strategy-proof
social choice functions are implementable in dominant strategy equilibria by
their mechanisms. However, not all strategy-proof social choice functions can
be dominant strategy implemented by their mechanisms in separable environ-
ments:3 their mechanisms cannot dominant strategy implement any social choice
function that assigns a common worst alternative for a preference profile. In
contrast, we construct an augmented revelation mechanism similar to the one
devised by Jackson et al. (1994), and show in Theorem 3 that our mechanism
can dominant strategy implement every strategy-proof social choice function
in weak separable environments. This is a partial answer to the open problem
mentioned above.

Weak separable environments include pure exchange economies as special
cases. So, Theorem 3 implies that in pure exchange economies, all of the strategy-
proof social choice functions can be dominant strategy implemented by our
mechanism if strict value distinction is satisfied. Our mechanism as well as the
one devised by Jackson et al. (1994) requires free disposability to ensure feasi-
bility out of equilibrium. In pure exchange economies, however, a “natural”
mechanism should be balanced in and out of equilibrium, as pointed out by
Saijo et al. (1996). So, we next focus on pure exchange economies, and try to de-
vise another augmented revelation mechanism satisfying balancedness in and
out of equilibrium. In Theorem 5, we show that in pure exchange economies
without free disposal, the new mechanism can implement every strategy-proof
social choice function in dominant strategy equilibria, provided that there are
three or more agents and that strict value distinction is satisfied.

This paper is also related to one by Jackson (1992). Jackson (1992) con-
sidered implementation in undominated strategies by a bounded mechanism,
and showed that strategy-proofness is a necessary condition for bounded im-
plementation in undominated strategies. However, Jackson (1992) left open the
question of what is a sufficient condition for implementation in undominated
strategies by a bounded mechanism. We provide a partial answer to this ques-
tion by showing that in economic environments, strategy-proofness is both nec-
essary and sufficient for bounded implementation via undominated strategies
(See Theorems 4 and 6).

The robustness of implementation has recently deserved attention in imple-
mentation theory (e.g., see Bergemann and Morris (2005) for details). From this
point of view, dominant strategy implementation has an advantage. This is be-
cause dominant strategy implementation does not need strong assumptions on

3This is why it has not yet been proved that strategy-proofness is a sufficient condition for
dominant strategy implementation in separable environments.
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the information structure: agents need neither common knowledge nor com-
mon prior beliefs about each other’s preferences.

This paper is organized as follows. Section 2 gives notation and definitions.
In Section 3, we characterize the class of social choice functions, each of which
can be dominant strategy implemented by the associated direct revelation mech-
anism in general environments. In Section 4, we demonstrate that the use of an
indirect mechanism expands the class of dominant strategy implementable so-
cial choice functions. In Sections 5 and 6, we examine a sufficient condition for
dominant strategy implementation with indirect mechanisms in weak separable
environments and in pure exchange economies, respectively. Section 7 contains
some concluding remarks. In the appendix, we briefly study a condition that is
sufficient for dominant strategy implementation in general environments with
a common worst alternative.

2 Notation and Definitions

Let N := {1,2, . . . ,n} be the set of agents, where 2 ≤ n <+∞. The set of alternatives

is denoted by A.
Each agent i ∈ N has preferences over A, which are represented by a complete

and transitive binary relation Ri . The strict preference relation and indifference
relation associated with Ri are denoted by Pi and Ii , respectively. Let Ri denote
the set of possible preferences for agent i ∈ N . A domain is denoted by R :=

R1×R2×·· ·×Rn . A preference profile is a list R = (R1,R2, . . . ,Rn) ∈R.
An environment is a collection (N , A,R).
Let LCi (a;Ri ) := {b ∈ A | aRi b } be agent i ’s lower contour set of a ∈ A at Ri ∈

Ri . For each agent i ∈ N , let argmaxĀ Ri :=
{

a ∈ Ā
∣

∣ aRi b for all b ∈ Ā
}

be the set
of maximal elements in Ā ⊆ A at Ri ∈ Ri . Note that arg maxĀ Ri 6= ; for every
i ∈ N and every Ri ∈Ri if Ā is finite, because Ri is complete and transitive.

A social choice function is a single-valued function f : R → A that assigns an
alternative a ∈ A to each preference profile R ∈R.

Let Mi denote a message or strategy space of agent i ∈ N . We call mi ∈ Mi a
message or strategy of agent i ∈ N . A mechanism is a pair Γ= (M , g ), where M :=
M1 ×M2 ×·· ·×Mn and g : M → A is an outcome function. Given a social choice
function f , a mechanism (M , g ) is the associated direct revelation mechanism if
Mi = Ri for every i ∈ N and g = f . A message or strategy profile is denoted by
m = (m1,m2, . . . ,mn) ∈ M .

A strategy m∗
i
∈ Mi is a dominant strategy of mechanism (M , g ) at Ri ∈Ri if

g (m∗
i

,m−i )Ri g (m′
i
,m−i ) for all m′

i
∈ Mi and all m−i ∈ M−i . Let DSΓ

i
(Ri ) ⊆ Mi be

the set of agent i ’s dominant strategies of mechanism Γ= (M , g ) at Ri ∈Ri .
A strategy profile m∗ = (m∗

1 ,m∗
2 , . . . ,m∗

n) ∈ M is a dominant strategy equilib-

rium of mechanism (M , g ) at R ∈ R if, for any i ∈ N , g (m∗
i

,m−i )Ri g (m′
i
,m−i )

for any m′
i
∈ Mi and any m−i ∈ M−i . Let DSEΓ(R) ⊆ M be the set of all domi-

nant strategy equilibria of mechanism Γ = (M , g ) at R ∈ R. Let g (DSEΓ(R)) :=
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{

a ∈ A
∣

∣ a = g (m) for some m ∈ DSEΓ(R)
}

be the set of dominant strategy equi-

librium outcomes of mechanism Γ= (M , g ) at R ∈R. With an abuse of notation,
we sometimes write g (DSEΓ(R))= g (DSΓ

i
(Ri ),DSΓ

−i
(R−i )).

A mechanism Γ= (M , g ) dominant strategy implements a social choice func-
tion f if g (DSEΓ(R)) = f (R) for any R ∈R.4 A social choice function f is imple-

mentable in dominant strategy equilibria if there exists a mechanism Γ= (M , g )
such that g (DSEΓ(R))= f (R) for all R ∈R.

Now we introduce two properties of social choice functions. Strategy-proofness

is an incentive compatibility requirement that no agent should be able to change
her preferences in a way that results in a direct gain to her, irrespective of the
other agents’ preferences.

Definition 1 (Strategy-Proofness). A social choice function f satisfies strategy-

proofness if, for all R ∈R and all i ∈ N , there is no R ′
i
∈Ri such that

f (R ′
i ,R−i )Pi f (R).

Quasi-strong-non-bossiness,5 which is a version of non-bossiness,6 requires
that if a change in one agent’s preferences keeps her utility unchanged irrespec-

tive of the other agents’ preferences, then it should not change the alternative.

Definition 2 (Quasi-Strong-Non-Bossiness). A social choice function f satis-
fies quasi-strong-non-bossiness if, for all R ∈ R, all i ∈ N , and all R ′

i
∈ Ri , if

f (Ri ,R ′′
−i

)Ii f (R ′
i
,R ′′

−i
) for all R ′′

−i
∈R−i , then

f (R)= f (R ′
i ,R−i ).

Remark 1. Quasi-strong-non-bossiness is weaker than strong-non-bossiness,7

which is a stronger version of non-bossiness.

3 Implementation by the Direct Mechanism

In this section, we identify necessary and sufficient conditions for a social choice
function to be dominant strategy implemented by the associated direct revela-

tion mechanism in general environments.
We begin by providing a necessary condition for dominant strategy imple-

mentation via the associated direct revelation mechanism.

4To simplify notation, we write g (DSEΓ(R)) =
{

f (R)
}

as g (DSEΓ(R)) = f (R).
5Quasi-strong-non-bossiness was called weak non-bossiness by Saijo et al. (2005).
6A social choice function f satisfies non-bossiness if, for all R ∈ R, all i ∈ N , and all R′

i
∈ Ri , if

fi (R) = fi (R′
i
,R−i ), then f (R) = f (R′

i
,R−i ).

7Ritz (1983) first introduced the notion of strong-non-bossiness, called non-corruptibility. A
social choice function f satisfies strong-non-bossiness if, for all R ∈R, all i ∈ N , and all R′

i
∈Ri , if

f (R)Ii f (R′
i
,R−i ), then f (R) = f (R′

i
,R−i ).
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Theorem 1. If a social choice function f is dominant strategy implementable

by the associated direct revelation mechanism in general environments, then it

satisfies quasi-strong-non-bossiness.

Proof. Let Γ := (R, f ). For each R ∈ R and each i ∈ N , let f (DSΓ
i

(Ri ),R−i ) :=
{

a ∈ A
∣

∣ a = f (R ′
i
,R−i ) for some R ′

i
∈ DSΓi (Ri )

}

.
Pick any R ∈R, any i ∈ N , and any R ′

i
∈Ri such that

f (Ri ,R ′′
−i )Ii f (R ′

i ,R ′′
−i ) for any R ′′

−i ∈R−i . (1)

Since f is dominant strategy implementable by Γ, it holds that

f (DSEΓ(R ′′)) = f (R ′′) for all R ′′
∈R . (2)

Notice that (2) implies that f (DSEΓ(R ′′)) is a singleton for any R ′′ ∈R.
Substituting (2) for f in (1) yields f (DSΓ

i
(Ri ),DSΓ

−i
(R ′′

−i
))Ii f (DSΓ

i
(R ′

i
),DSΓ

−i
(R ′′

−i
))

for all R ′′
−i

∈ R−i . Since f (DSΓi (Ri ),DSΓ
−i (R ′′

−i
)) and f (DSΓi (R ′

i
),DSΓ

−i (R ′′
−i

)) are
each singletons for all R ′′

−i
∈ R−i , and since R ′′

−i
∈ DSΓ

−i (R ′′
−i

) for all R ′′
−i

∈ R−i

by the revelation principle, we have f (DSΓ
i

(Ri ),R ′′
−i

) = f (DSΓ
i

(Ri ),DSΓ
−i

(R ′′
−i

)) and
f (DSΓ

i
(R ′

i
),R ′′

−i
) = f (DSΓ

i
(R ′

i
),DSΓ

−i
(R ′′

−i
)) for all R ′′

−i
∈R−i . Thus,

f (DSΓi (Ri ),R ′′
−i )Ii f (DSΓi (R ′

i ),R ′′
−i ) for all R ′′

−i ∈R−i . (3)

Suppose R̂i ∈ DSΓ
i

(R ′
i
). Then, since f (DSΓ

i
(R ′

i
),R ′′

−i
) is a singleton for all R ′′

−i
∈

R−i , we have f (R̂i ,R ′′
−i

) = f (DSΓ
i

(R ′
i
),R ′′

−i
) for all R ′′

−i
∈ R−i . So, it follows from

(3) that f (R̂i ,R ′′
−i

)Ii f (DSΓ
i

(Ri ),R ′′
−i

) for all R ′′
−i

∈ R−i . This implies R̂i ∈ DSΓ
i

(Ri );
thus DSΓ

i
(R ′

i
) ⊆DSΓ

i
(Ri ).

Since DSΓ
i

(R ′
i
) ⊆DSΓ

i
(Ri ), we have f (DSΓ

i
(R ′

i
),DSΓ

−i
(R−i )) ⊆ f (DSΓ

i
(Ri ),DSΓ

−i
(R−i )).

This implies

f (DSΓi (R ′
i ),DSΓ

−i (R−i )) = f (DSΓi (Ri ),DSΓ
−i (R−i )), (4)

because f (DSΓ
i

(R ′
i
),DSΓ

−i
(R−i )) and f (DSΓ

i
(Ri ),DSΓ

−i
(R−i )) are singletons. Sub-

stituting (2) for f in (4) produces f (R ′
i
,R−i ) = f (R).

Next, we look for sufficient conditions for dominant strategy implementa-
tion by the associated direct revelation mechanism. If a social choice function
satisfies both strategy-proofness and quasi-strong-non-bossiness, then there is
always a unique dominant strategy equilibrium outcome of the associated direct
revelation mechanism (although there may exist some dominant strategy equi-
libria of the mechanism). Since the associated direct revelation mechanism has
no undesired equilibrium outcomes, the mechanism can implement the social
choice function in dominant strategy equilibria.8

8Laffont and Maskin (1982) proposed the notion of strictly truthful implementation in domi-

nant strategy equilibria, which requires that the associated direct revelation mechanism should
have no untruthful dominant strategy equilibria. Note that even if a social choice function sat-
isfies strategy-proofness and quasi-strong-non-bossiness, it is not necessarily strictly truthfully
implementable in dominant strategy equilibria, because there may be untruthful dominant strat-
egy equilibria of the associated direct revelation mechanism.
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Theorem 2. If a social choice function f satisfies both strategy-proofness and

quasi-strong-non-bossiness, then it is dominant strategy implementable by the

associated direct revelation mechanism in general environments.

Proof. Let Γ := (R, f ). Since f satisfies strategy-proofness, f (R)Ri f (R ′
i
,R−i ) for

all R ∈R, all i ∈ N , and all R ′
i
∈Ri . This implies Ri ∈ DSΓ

i
(Ri ) for all i ∈ N and all

Ri ∈Ri .
Pick any R ∈ R and any i ∈ N . Suppose R̂i ∈ DSΓ

i
(Ri ). Then, since Ri , R̂i ∈

DSΓ
i

(Ri ), we have f (Ri ,R ′′
−i

)Ri f (R̂i ,R ′′
−i

) and f (R̂i ,R ′′
−i

)Ri f (Ri ,R ′′
−i

) for all R ′′
−i

∈

R−i . This implies f (Ri ,R ′′
−i

)Ii f (R̂i ,R ′′
−i

) for all R ′′
−i

∈ R−i . So, quasi-strong-
non-bossiness implies f (R) = f (R̂i ,R−i ). Thus, we have f (R) = f (DSΓ

i
(Ri ),R−i ),

where f (DSΓ
i

(Ri ),R−i ) =
{

a ∈ A
∣

∣ a = f (R ′
i
,R−i ) for some R ′

i
∈ DSΓ

i
(Ri )

}

.
Next, consider (R̂i ,R−i ) such that R̂i ∈ DSΓi (Ri ), and pick any j ∈ N \ {i }. Sup-

pose R̂ j ∈ DSΓj (R j ). Then, f (R j ,R ′′
− j

)R j f (R̂ j ,R ′′
− j

) and f (R̂ j ,R ′′
− j

)R j f (R j ,R ′′
− j

) for

all R ′′
− j

∈ R− j , because R j , R̂ j ∈ DSΓ
j
(R j ). So, f (R j ,R ′′

− j
)I j f (R̂ j ,R ′′

− j
) for all R ′′

− j
∈

R− j . Hence, f (R̂i ,R−i ) = f (R̂i , R̂ j ,R−i , j ) by quasi-strong-non-bossiness. Thus,
f (R)= f (DSΓ

i
(Ri ),R−i ) = f (DSΓ

i
(Ri ),DSΓ

j
(R j ),R−i , j ), where f (DSΓ

i
(Ri ),DSΓ

j
(R j ),R−i , j ) :=

{

a ∈ A
∣

∣

∣ a = f (R ′
i
,R ′

j
,R−i ,j ) for some R ′

i
∈ DSΓ

i
(Ri ) and some R ′

j
∈ DSΓ

j
(R j )

}

.

Iteration of these arguments for further agents in N establishes that f (DSEΓ(R)) =
f (R). Since similar arguments hold for any R ∈R, we can conclude that f (DSEΓ(R)) =
f (R) for any R ∈R.

The revelation principle tells us that if a social choice function is imple-
mentable in dominant strategy equilibria, then truth telling by each agent is a
dominant strategy equilibrium of the associated direct revelation mechanism,
i.e., the social choice function satisfies strategy-proofness. Therefore, when com-
bined with the revelation principle, Theorems 1 and 2 lead to the following corol-
lary.9

Corollary 1. A social choice function is dominant strategy implementable via the

associated direct revelation mechanism in general environments if and only if it

satisfies both strategy-proofness and quasi-strong-non-bossiness.

Quasi-strong-non-bossiness is automatically satisfied if indifference in pref-
erences is not allowed. So, Corollary 1 implies that strategy-proofness is neces-
sary and sufficient for dominant strategy implementation by the associated di-
rect revelation mechanism in general environments unless preferences involve
indifference.

4 Implementation by an Indirect Mechanism

In Section 3, we show that strategy-proofness and quasi-strong-non-bossiness
are both necessary and sufficient for dominant strategy implementation via the

9Saijo et al. (2005) have independently obtained the same result.
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associated direct revelation mechanism. In this section, we demonstrate that it
is possible to dominant strategy implement a social choice function that sat-
isfies strategy-proofness but violates quasi-strong-non-bossiness, if an indirect

mechanism is permitted to be used.

Example 1. Consider a two-agent, two-good pure exchange economy with ini-
tial endowment point e = ((x1

1 , x2
1), (x1

2 , x2
2)) = ((6,4), (4,6)). Agents 1 and 2 have

preferences R1,R ′
1 and R2,R ′

2, respectively, which are illustrated in Figure 1.

z

O1

O2

e

y

R ′
1

R1

R2 R ′
2

Figure 1: A Two-agent, Two-good Pure Exchange Economy

Consider an individually rational social choice function f defined by

R2 R ′
2

f =
z e R1

e e R ′
1

where z = ((4,6), (6,4)). It is easy to check that f satisfies strategy-proofness but
fails to satisfy quasi-strong-non-bossiness. So, it follows from Corollary 1 that
f cannot be dominant strategy implemented by the associated direct revelation
mechanism Γ =

({

R1,R ′
1

}

×
{

R2,R ′
2

}

, f
)

. In fact, f (DSEΓ(R1,R2)) = {z,e} 6= {z} =
f (R1,R2), since DSEΓ(R1,R2) =

{

(R1,R2), (R1,R ′
2)

}

. However, f can be dominant
strategy implemented by an indirect mechanismΓ

′ =
({

m1,m′
1,m′′

1

}

×
{

m2,m′
2

}

, g
)

such that

m2 m′
2

g =

z e m1

e e m′
1

e y m′′
1

where y = ((7.5,1.5), (2.5,8.5)).10 This is because DSEΓ
′

(R1,R2) = (m1,m2), DSEΓ
′

(R1,R ′
2) =

10This type of indirect mechanism is called an augmented revelation mechanism (see Mookher-
jee and Reichelstein (1990)).
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(m1,m′
2), DSEΓ

′

(R ′
1,R2) = (m′

1,m2), and DSEΓ
′

(R ′
1,R ′

2)= (m′
1,m′

2). ■

Example 1 illustrates that the existence of y plays a key role in constructing
Γ
′ that implements f in dominant strategy equilibria. This indicates that it de-

pends on the environment considered whether or not it is possible to construct
an indirect mechanism that dominant strategy implements a given strategy-
proof social choice function. Hereafter, we focus on economic environments to
study to what extent the use of indirect mechanisms expands the class of domi-
nant strategy implementable social choice functions.

5 Economic Environments

In this section, we concentrate on weak separable environments, a weaker ver-
sion of separable environments introduced by Jackson et al. (1994), and iden-
tify a condition that is sufficient for social choice functions to be implemented
in dominant strategy equilibria. It should be noted that weak separable envi-
ronments include as special cases pure exchange economies and economies
with a transferable private good, because separable environments include such
economies (see Jackson et al. (1994) or Jackson (2001)).

Before proceeding, let us introduce the definitions of weak separable envi-
ronments and weakly dominated strategies. An environment is called a weak

separable environment if the following three properties are satisfied.

Property 1 (Existence of a Common Worst Alternative). There exists w ∈ A such
that aRi w for all i ∈ N , all Ri ∈Ri , and all a ∈ f (R), where f (R) :=

{

a ∈ A
∣

∣ a = f (R) for some R ∈R

}

.

Property 2 (Weak Separability). For all a ∈ A, all i ∈ N , and all Ri ∈ Ri , there
exists a−i ∈ A such that wR′

j
a−i for all j ∈ N \ {i } and all R ′

j
∈R j , while aIi a−i .

Property 3 (Strict Value Distinction with a Reference Point w ). For all i ∈ N and
all Ri ,R ′

i
∈ Ri , if Ri 6= R ′

i
, then there exist a,b ∈ A such that aPi b, bP ′

i
a, aPi w ,

and bP ′
i
w .

Note that Properties 1 and 2, respectively, are weaker than those introduced
by Jackson et al. (1994) for separable environments, while Property 3 is the same
as the one presented by Jackson et al. (1994).

A strategy mi ∈ Mi is a weakly dominated strategy of mechanism (M , g ) at
Ri ∈ Ri if there exists a strategy m′

i
∈ Mi that weakly dominates mi at Ri ∈ Ri :

g (m′
i
,m−i )Ri g (mi ,m−i ) for all m−i ∈ M−i and g (m′

i
,m−i )Pi g (mi ,m−i ) for some

m−i ∈ M−i .
We are now ready to state a main result regarding a sufficient condition for

dominant strategy implementation in weak separable environments.

Theorem 3. If a social choice function f satisfies strategy-proofness, then it is

dominant strategy implementable in weak separable environments.

10



Proof. Fix an arbitrary w ∈ A that satisfies Property 1. Given a ∈ A, i ∈ N , and
Ri ∈ Ri , let [a]Ri

denote an arbitrary alternative in A such that aIi [a]Ri
and

wR′
j
[a]Ri

for all j ∈ N \ {i } and all R ′
j
∈ R j . Note that Property 2 guarantees the

existence of [a]Ri
for any a ∈ A, any i ∈ N , and any Ri ∈Ri .

Now we construct an augmented revelation mechanism Γ= (M , g ), by using
ideas similar to those of the mechanism constructed by Jackson et al. (1994) for
undominated Nash implementation. Agent i ’s message space is

Mi :=Ri ∪ (A× A).

That is, each agent announces either own preferences or a pair of alternatives. A
typical message for agent i ∈ N is denoted by mi = R i

i
or (ai ,bi ). The outcome

function g is defined as follows.

Rule 1: If mi = R i
i
∈ Ri for all i ∈ N , then g (m) := f (R1

1 ,R2
2 , . . . ,Rn

n ). Note that
g (m)R i

i
w for all i ∈ N by Property 1.

Rule 2: If mi = R i
i
∈ Ri for some i ∈ N and m j = (a j ,b j ) ∈ (A × A) for any j 6= i ,

then g (m) :=
[

argmaxB∪{w} R i
i

]

R i
i

, where B :=
{

a j ,b j ∈ A
∣

∣ j 6= i
}

. Ties are bro-

ken in some arbitrary manner unless argmaxB∪{w} R i
i

is a singleton. Note that
g (m)R i

i
w and wR′

j
g (m) for all j 6= i and all R ′

j
∈R j by construction.

Rule 3: In all other cases, g (m) := w .

We want to show that DSΓ
i

(Ri ) = {Ri } for all i ∈ N and all Ri ∈Ri .

Step 1: For each agent, announcing a pair of alternatives is always weakly
dominated by the truthful revelation of own preferences.

Pick any i ∈ N . Suppose that her true preference relation is R∗
i
∈Ri . Let mi ∈ Mi

be such that mi = (ai ,bi )∈ (A× A), and m′
i
∈ Mi be such that m′

i
= R∗

i
.

Case 1-1: n ≥ 3.

Subcase 1: m j =R
j

j
∈R j for all j 6= i .

We have g (mi ,m−i ) = w and g (m′
i
,m−i ) = f (R∗

i
,R−i

−i
) by Rules 3 and 1, respec-

tively. Since f (R∗
i

,R−i
−i

)R∗
i

w by Property 1, g (m′
i
,m−i )R∗

i
g (mi ,m−i ).

Subcase 2: m j = (a j ,b j ) ∈ (A× A) for all j 6= i .
We have g (mi ,m−i ) = w by Rule 3, whereas g (m′

i
,m−i ) =

[

arg maxB∪{w} R∗
i

]

R∗
i

by

Rule 2, where B =
{

a j ,b j ∈ A
∣

∣ j 6= i
}

. Since
[

argmaxB∪{w} R∗
i

]

R∗
i

R∗
i

w , we obtain

g (m′
i
,m−i )R∗

i
g (mi ,m−i ). In particular, if m j = (a, a) for all j 6= i , and if aP∗

i
w ,11

then g (m′
i
,m−i )P∗

i
g (mi ,m−i ).

Subcase 3: m j = R
j

j
∈ R j for some j 6= i and mk = (ak ,bk ) ∈ (A × A) for all k ∈

N \ {i , j }.

It follows from Rule 2 that g (mi ,m−i ) =
[

argmaxB∪{w} R
j

j

]

R
j

j

, where B =
{

ah ,bh ∈ A
∣

∣ h 6= j
}

.

On the other hand, g (m′
i
,m−i ) = w by Rule 3. Since wR∗

i

[

argmaxB∪{w} R
j

j

]

R
j

j

,

we have g (m′
i
,m−i )R∗

i
g (mi ,m−i ).

11Property 3 assures that there exists a ∈ A such that aP∗
i

w .
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Subcase 4: All other cases.
Rule 3 implies g (mi ,m−i ) = w and g (m′

i
,m−i ) = w , implying g (m′

i
,m−i )R∗

i
g (mi ,m−i ).

Case 1-2: n = 2.

Subcase 1: m j =R
j

j
∈R j for j 6= i .

Rule 2 implies g (mi ,m j ) =
[

argmaxB∪{w} R
j

j

]

R
j

j

where B =
{

ai ,bi
}

, while Rule

1 implies g (m′
i
,m j ) = f (R∗

i
,R

j

j
). Since f (R∗

i
,R

j

j
)R∗

i
w by Property 1, and since

wR∗
i

[

arg maxB∪{w} R
j

j

]

R
j

j

, we obtain g (m′
i
,m j )R∗

i
g (mi ,m j ) by transitivity.

Subcase 2: m j = (a j ,b j ) ∈ (A× A) for j 6= i .
See Case 1-1 Subcase 2.

The above cases together establish that mi is weakly dominated by m′
i

at R∗
i

.

Step 2: For every agent, misrepresenting own preferences is always weakly
dominated by the truthful announcement of own preferences.

Pick any i ∈ N . Suppose that her true preference relation is R∗
i
∈Ri . Let mi ∈ Mi

be such that mi = R i
i
∈Ri \{R∗

i
}, and m′

i
∈ Mi be such that m′

i
= R∗

i
.

Case 2-1: m j = R
j

j
∈R j for all j 6= i .

Rule 1 implies g (mi ,m−i ) = f (R i
i
,R−i

−i
) and g (m′

i
,m−i ) = f (R∗

i
,R−i

−i
). Since strategy-

proofness implies f (R∗
i

,R−i
−i

)R∗
i

f (R i
i
,R−i

−i
), we obtain g (m′

i
,m−i )R∗

i
g (mi ,m−i ).

Case 2-2: m j = (a j ,b j ) ∈ (A× A) for all j 6= i .
It follows from Rule 2 that g (mi ,m−i ) =

[

argmaxB∪{w} R i
i

]

R i
i

and g (m′
i
,m−i ) =

[

argmaxB∪{w} R∗
i

]

R∗
i

, where B =
{

a j ,b j ∈ A
∣

∣ j 6= i
}

. Since agent i ’s true pref-

erence relation is now R∗
i

,
[

argmaxB∪{w} R∗
i

]

R∗
i

R∗
i

[

argmaxB∪{w} R i
i

]

R i
i

. So, we

have g (m′
i
,m−i )R∗

i
g (mi ,m−i ). Suppose in turn that agent i ’s true preference

relation is R i
i
. Then, since

[

argmaxB∪{w} R i
i

]

R i
i

R i
i

[

argmaxB∪{w} R∗
i

]

R∗
i

, we obtain

g (mi ,m−i )R i
i
g (m′

i
,m−i ). Especially, if m j = (a,b) for all j 6= i , and if aP∗

i
b, bP i

i
a,

aP∗
i

w , and bP i
i

w ,12 then g (m′
i
,m−i )P∗

i
g (mi ,m−i ) and g (mi ,m−i )P i

i
g (m′

i
,m−i ).

Case 2-3: All other cases.
By Rule 3, g (mi ,m−i ) = w and g (m′

i
,m−i ) = w , which implies g (m′

i
,m−i )R∗

i
g (mi ,m−i ).

The above cases together establish that mi is weakly dominated by m′
i

at R∗
i

.

Steps 1 and 2 together imply that, for each agent, the truthful revelation
of own preferences always weakly dominates both announcements of a pair
of alternatives and false reports of own preferences. Thus, we establish that
DSΓ

i
(Ri ) = {Ri } for all i ∈ N and all Ri ∈ Ri ; i.e., DSEΓ(R) = {R} for all R ∈ R.

Therefore, we can conclude from Rule 1 that g (DSEΓ(R))= f (R) for all R ∈R.

Note that our mechanism works not only when n ≥ 3 but also when n = 2,
as the mechanism of Jackson et al. (1994) works. Note also that our mechanism

12Property 3 ensures that there exist a,b ∈ A such that aP∗
i

b, bP i
i

a, aP∗
i

w , and bP i
i

w .
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uses not only Property 1 but also Property 2 to punish agents who do not an-
nounce their truthful preferences.

The following corollary follows immediately from the revelation principle
and Theorem 3.

Corollary 2. A social choice function is dominant strategy implementable in weak

separable environments if and only if it satisfies strategy-proofness.

Corollary 2 tells us that all strategy-proof social choice functions are imple-
mentable in dominant strategy equilibria if indirect mechanisms are allowed to
be used. This is in stark contrast to Corollary 1, which states that only strategy-
proof and quasi-strong-non-bossy social choice functions are dominant strat-
egy implementable if the associated direct revelation mechanisms are used.

Our mechanism appears to be similar to the one devised by Jackson et al.
(1994) for undominated Nash implementation in separable environments. It is
true that their mechanism as well as the one constructed by Sjöström (1994)
can dominant strategy implement almost all strategy-proof social choice func-
tions in weak separable environments. But, an important difference is that our
mechanism can dominant strategy implement the strategy-proof social choice
function that assigns a common worst alternative to some preference profile,
whereas their mechanisms cannot.13 Thus, our mechanism has the advantage
of being able to dominant strategy implement every strategy-proof social choice
function (although the advantage is somewhat limited because our mechanism
is not necessarily useful for undominated Nash implementation).

We conclude this section with a brief discussion of implementation in an-
other equilibrium concept. It is easy to check that our mechanism is bounded,
and that in weak separable environments, our bounded mechanism can imple-
ment every strategy-proof social choice function even in undominated strate-
gies. So, Theorem 3 implies the following theorem, when coupled with Corollary
1 in Jackson (1992) which says that strategy-proofness is necessary for bounded
implementation in undominated strategies.

Theorem 4. A social choice function is implementable in undominated strate-

gies by a bounded mechanism in weak separable environments if and only if it

satisfies strategy-proofness.

Theorem 4 indicates that in weak separable environments, implementation
in dominant strategy equilibria is equivalent to bounded implementation in un-
dominated strategies, in the sense that the set of social choice functions imple-
mentable in dominant strategy equilibria coincides with that of social choice
functions boundedly implementable in undominated strategies.

13The difference stems from the fact that Jackson et al. (1994) and Sjöström (1994) needed a
slightly stronger property than Property 1.
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6 Pure Exchange Economies

In this section, we explore a condition which is sufficient for dominant strategy
implementation in pure exchange economies.

Now let us introduce some notation and two kinds of definitions of l -good
pure exchange economies. Let ai ∈R

l
+ and ei ∈R

l
+ denote agent i ’s consumption

bundle and initial endowment, respectively. The set of consumption bundles is
C :=

{

ai ∈R
l
+

∣

∣ ai ≤
∑

i∈N ei

}

. In this section, we assume that each agent has pref-
erences over C ⊆ R

l
+. Let R

E
i

be agent i ’s set of preferences: Ri ∈R
E
i

only if Ri is

complete, transitive, and monotone. Let AE :=
{

(a1, a2, . . . , an) ∈R
ln
+

∣

∣

∑

i∈N ai ≤
∑

i∈N ei

}

and AEB

:=
{

(a1, a2, . . . , an) ∈R
ln
+

∣

∣

∑

i∈N ai =
∑

i∈N ei

}

. A pure exchange economy

is the environment (N , AE ,RE), and a pure exchange economy without free dis-

posal is the environment (N , AEB

,RE).
We begin by identifying a necessary and sufficient condition for dominant

strategy implementation in pure exchange economies. Since Properties 1 and 2
are satisfied in pure exchange economies by setting w = (0,0, . . . ,0) ∈ AE for any
social choice function, Corollary 3 below follows immediately from Corollary 2.

Corollary 3. Suppose that Property 3 is satisfied.14 Then, a social choice function

is dominant strategy implementable in pure exchange economies if and only if it

satisfies strategy-proofness.

We turn next to a sufficient condition for dominant strategy implementa-
tion in pure exchange economies without free disposal. Contrary to the case of
pure exchange economies, Properties 1 and 2 do not necessarily hold in pure
exchange economies without free disposal, partly because it is impossible to
choose w ∈ AEB

for some social choice functions. So, Theorem 3 leaves open the
question of what condition is sufficient for dominant strategy implementation
in pure exchange economies without free disposal. Theorem 5 below provides a
partial answer to this question.

Property 4 (Strict Value Distinction). For all i ∈ N and all Ri ,R ′
i
∈Ri , if Ri 6= R ′

i
,

then there exist a,b ∈ A such that aPi b and bP ′
i
a.

Theorem 5. Suppose that n ≥ 3 and Property 4 is satisfied. Then, if a social

choice function f satisfies strategy-proofness, then it is dominant strategy imple-

mentable in pure exchange economies without free disposal.

Proof. We construct an augmented revelation mechanism Γ= (M , g ) in the fol-
lowing way. The message space for agent i ∈ N is

Mi :=R
E
i ∪(C ×C ).

That is, each agent reports either own preferences or a pair of consumption bun-
dles. A typical message for agent i ∈ N is denoted by mi = R i

i
or (c i ,d i ). Given

14In pure exchange economies, Property 3 is equivalent to Property 4 defined below by setting
w = (0,0, . . . ,0) ∈ AE .
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m ∈ M , let S(m) :=
{

i ∈ N
∣

∣ mi ∈R
E
i

}

and Sc(m) := {i ∈ N | mi ∈ (C ×C ) }. Note
that S(m)∩Sc(m) =; and S(m)∪Sc(m) = N for every m ∈ M . Given m ∈ M , let

ı̂(m) :=

{

n if 1,n ∈ S(m),

minS(m) otherwise.

Let fi and gi denote agent i ’s consumption bundle assigned by f and g , respec-
tively. The outcome function g is as follows.

Rule 1: If #S(m)=n and #Sc(m) = 0, then gi (m) := fi (R1
1 ,R2

2 , . . . ,Rn
n ) for all i ∈ N .

Rule q for q = 2,3, . . . ,n −1: If #S(m)= n −q +1 and #Sc(m) = q −1, then

g ı̂(m)(m) := argmax
D

R ı̂(m)
ı̂(m) ,

g j (m) :=

∑

h∈N eh − g ı̂(m)(m)

#S(m)−1
for all j ∈ S(m) \ {ı̂(m)}, and

gk (m) := 0 for all k ∈ Sc(m),

where D :=
{

ck ,d k ∈C
∣

∣ k ∈ Sc(m)
}

. Unless argmaxD R ı̂(m)
ı̂(m) is a singleton, ties are

broken in a lexicographic way (e.g., in a way where a good with a lower index has
a higher priority). Notice that for all i ∈ N , there exists m ∈ M with #S(m) = 2
such that ı̂(m) = i .

Rule n: If #S(m) = 1 and #Sc(m) = n −1, then

gi (m) :=
∑

h∈N

eh for i ∈ S(m) and g j (m) := 0 for all j ∈ Sc(m).

Rule n +1: If #S(m)= 0 and #Sc(m) = n, then gi (m) = ei for all i ∈ N .

We want to show that DSΓ
i

(Ri ) = {Ri } for every i ∈ N and every Ri ∈R
E
i

.

Step 1: For each agent, reporting a pair of consumption bundles is always
weakly dominated by the truthful announcement of own preferences.

Pick any i ∈ N . Suppose that her true preference relation is R∗
i
∈R

E
i

. Let mi ∈ Mi

be such that mi = (c i ,d i ) ∈ (C ×C ), and m′
i
∈ Mi be such that m′

i
= R∗

i
.

Case 1-1: m j = R
j

j
∈R

E
j

for all j 6= i .

Rules 2 and 1 imply that gi (mi ,m−i ) = 0 and gi (m′
i
,m−i ) = fi (R∗

i
,R−i

−i
), respec-

tively. So, we have gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ), because fi (R∗

i
,R−i

−i
) ≥ 0.

Case 1-2: m j = (c j ,d j ) ∈ (C ×C ) for all j 6= i .
We have gi (mi ,m−i ) = ei and gi (m′

i
,m−i ) =

∑

h∈N eh by Rules n +1 and n. Since
∑

h∈N eh ≥ ei , we have gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ).

Case 1-3: m j = R
j

j
∈ R

E
j

for some j 6= i and mk = (ck ,d k ) ∈ (C ×C ) for all
k ∈ N \ {i , j }.

Subcase 1: ı̂(m′
i
,m−i ) = i .

Rules n and n − 1, respectively, imply that gi (mi ,m−i ) = 0 and gi (m′
i
,m−i ) =

argmaxD R∗
i

, where D =
{

ch ,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

. Since arg maxD R∗
i
≥ 0, it
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holds that gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ). In particular, gi (m′

i
,m−i )P∗

i
gi (mi ,m−i ) if

mk = (
∑

h∈N eh ,
∑

h∈N eh) for some k ∈ N \ {i , j }.

Subcase 2: ı̂(m′
i
,m−i ) = j .

We have gi (mi ,m−i ) = 0 by Rule n, while gi (m′
i
,m−i ) =

∑

h∈N eh−g j (m′
i
,m−i ) by

Rule n−1. Since g j (m′
i
,m−i ) = argmaxD R

j

j
, where D =

{

ch ,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

,

we obtain
∑

h∈N eh − g j (m′
i
,m−i )≥ 0. Hence, gi (m′

i
,m−i )R∗

i
gi (mi ,m−i ).

Case 1-4: All other cases.
Assume without loss of generality that #S(m′

i
,m−i ) = n−q+1 and #Sc(m′

i
,m−i ) =

q −1 for some q = 2,3, . . . ,n −2.

Subcase 1: ı̂(m′
i
,m−i ) = i .

We obtain gi (mi ,m−i ) = 0 and gi (m′
i
,m−i ) = argmaxD R∗

i
by Rules q+1 and q re-

spectively, where D =
{

ch,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

. So, we have gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ),

because argmaxD R∗
i
≥ 0.

Subcase 2: ı̂(m′
i
,m−i ) = j for some j ∈ S(m′

i
,m−i ) \ {i }.

Rule q+1 implies gi (mi ,m−i ) = 0, whereas Rule q implies gi (m′
i
,m−i ) =

∑

h∈N eh−g j (m′
i
,m−i )

#S(m′
i
,m−i )−1 .

Since g j (m′
i
,m−i ) = argmaxD R

j

j
, where D =

{

ch ,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

, it holds

that
∑

h∈N eh−g j (m′
i ,m−i )

#S(m′
i
,m−i )−1 ≥ 0. So, gi (m′

i
,m−i )R∗

i
gi (mi ,m−i ).

The above cases together establish that mi is weakly dominated by m′
i

at R∗
i

.

Step 2: For every agent, falsely reporting own preferences is always weakly
dominated by truthfully reporting own preferences.

Pick any i ∈ N . Suppose that her true preference relation is R∗
i
∈R

E
i

. Let mi ∈ Mi

be such that mi = R i
i
∈R

E
i

\{R∗
i

}, and m′
i
∈ Mi be such that m′

i
=R∗

i
.

Case 2-1: m j = R
j

j
∈R

E
j

for all j 6= i .

By Rule 1, gi (mi ,m−i ) = fi (R i
i
,R−i

−i
) and gi (m′

i
,m−i ) = fi (R∗

i
,R−i

−i
). This implies

gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ), because fi (R∗

i
,R−i

−i
)R∗

i
fi (R i

i
,R−i

−i
) by strategy-proofness.

Case 2-2: m j = (c j ,d j ) ∈ (C ×C ) for all j 6= i .
Rule n implies gi (mi ,m−i ) =

∑

h∈N eh and gi (m′
i
,m−i ) =

∑

h∈N eh , which implies
gi (m′

i
,m−i )R∗

i
gi (mi ,m−i ).

Case 2-3: All other cases.
Assume without loss of generality that #S(m′

i
,m−i ) = n−q+1 and #Sc(m′

i
,m−i ) =

q − 1 for some q = 2,3, . . . ,n − 1. Note that ı̂(m′
i
,m−i ) = ı̂(mi ,m−i ), because

S(m′
i
,m−i ) = S(mi ,m−i ).

Subcase 1: ı̂(m′
i
,m−i ) = i .

Rule q implies gi (mi ,m−i ) = argmaxD R i
i

and gi (m′
i
,m−i ) = argmaxD ′ R∗

i
, where

D =
{

ch ,d h ∈C
∣

∣ h ∈ Sc(mi ,m−i )
}

and D ′ =
{

ch ,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

. Notice
that D = D ′, because Sc(mi ,m−i ) = Sc(m′

i
,m−i ). So, since agent i ’s true prefer-

ence relation is now R∗
i

, we have (arg maxD ′ R∗
i

)R∗
i

(argmaxD R i
i
). This implies

gi (m′
i
,m−i )R∗

i
gi (mi ,m−i ). Suppose in turn that her true preference relation

is R i
i
. Then, (argmaxD R i

i
)R i

i
(arg maxD ′ R∗

i
), implying gi (mi ,m−i )R i

i
gi (m′

i
,m−i ).
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Moreover, gi (m′
i
,m−i )P∗

i
gi (mi ,m−i ) and gi (mi ,m−i )P i

i
gi (m′

i
,m−i ), provided that

mh = (c ,d ) for all h ∈ Sc(mi ,m−i ) = Sc(m′
i
,m−i ) and that cP∗

i
d and dP i

i
c .15

Subcase 2: ı̂(m′
i
,m−i ) = j for some j ∈ S(m′

i
,m−i ) \ {i }.

It follows from Rule q that g j (mi ,m−i ) = argmaxD R
j

j
and g j (m′

i
,m−i )= argmaxD ′ R

j

j
,

where D =
{

ch,d h ∈C
∣

∣ h ∈ Sc(mi ,m−i )
}

and D ′ =
{

ch,d h ∈C
∣

∣ h ∈ Sc(m′
i
,m−i )

}

.
Note that D = D ′, since Sc(mi ,m−i ) = Sc(m′

i
,m−i ). These imply g j (mi ,m−i ) =

g j (m′
i
,m−i ).16 Hence, together with the fact that #S(mi ,m−i ) = #S(m′

i
,m−i ),

it follows from Rule q that gi (mi ,m−i ) =
∑

h∈N eh−g j (mi ,m−i )
#S(mi ,m−i )−1 =

∑

h∈N eh−g j (m′
i
,m−i )

#S(m′
i
,m−i )−1 =

gi (m′
i
,m−i ). This implies gi (m′

i
,m−i )R∗

i
gi (mi ,m−i ).

The above cases together establish that mi is weakly dominated by m′
i

at R∗
i

.

Steps 1 and 2 together imply that, for every agent, truthfully reporting own
preferences always weakly dominates both announcing a pair of consumption
bundles and misrepresenting own preferences. Thus, we establish that DSΓ

i
(Ri ) =

{Ri } for all i ∈ N and all Ri ∈R
E
i

; i.e., DSEΓ(R)= {R} for all R ∈R
E . Therefore, we

can conclude from Rule 1 that g (DSEΓ(R))= f (R) for all R ∈R
E .

It should be noted that if there are only two agents, our mechanism used to
prove Theorem 5 does not work well: for each agent, misrepresenting own pref-
erences is not necessarily weakly dominated by reporting own true preferences.
This is because, when there are only two agents, Case 2-3 is dropped from Step
2 in the proof of Theorem 5.

As pointed out by Saijo et al. (1996), balancedness in and out of equilibrium
would be a requirement that a “natural” mechanism should satisfy in pure ex-
change economies. So, our mechanism devised in the proof of Theorem 5 has
the advantage of satisfying balancedness in and out of equilibrium. This is in
contrast not only to our mechanism used to prove Theorem 3 but also to many
of the mechanisms constructed in the past (e.g., Palfrey and Srivastava (1989),
Jackson et al. (1994), Sjöström (1996), etc.).

Theorem 5 together with the revelation principle leads to the following corol-
lary.

Corollary 4. Suppose that n ≥ 3 and Property 4 is satisfied. Then, a social choice

function is dominant strategy implementable in pure exchange economies with-

out free disposal if and only if it satisfies strategy-proofness.

As mentioned before, Properties 1 and 2 are not necessarily satisfied in pure
exchange economies without free disposal. So, even if strict value distinction
holds, Corollary 3 cannot guarantee that in pure exchange economies without
free disposal, every strategy-proof social choice function is implementable in

15The existence of c,d ∈C such that cP∗
i

d and dP i
i

c is assured by Property 4.
16The lexicographic tie breaking rule guarantees that g j (mi ,m−i ) = g j (m′

i
,m−i ) even if

argmaxD R
j

j
and argmaxD ′ R

j

j
are not singletons.
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dominant strategy equilibria. However, Corollary 4 tells us that even in pure ex-
change economies without free disposal, all strategy-proof social choice func-
tions17 are dominant strategy implementable, provided that there are at least
three agents and that strict value distinction is satisfied. Thus, it turns out that
if there are three or more agents, dominant strategy implementability is not af-
fected by whether or not free disposal is assumed.

In Example 1, we succeed in implementing a strategy-proof social choice
function in dominant strategy equilibria by an augmented revelation mecha-
nism in a two-agent pure exchange economy without free disposal. This might
suggest that even in such economies, all strategy-proof social choice functions
are dominant strategy implementable. However, it is an open question what is
a necessary and sufficient condition for dominant strategy implementation in
two-agent pure exchange economies without free disposal. This is because, as
mentioned above, our mechanism devised in the proof of Theorem 5 cannot
work well in such economies.

In pure exchange economies, a fixed-price social choice function (Barberà
and Jackson (1995)), as well as a dictatorial one, satisfies both strategy-proofness
and quasi-strong-non-bossiness; so Corollary 1 implies that these social choice
functions are dominant strategy implementable via the associated direct reve-
lation mechanisms. In contrast, an inversely dictatorial social choice function
(Zhou (1991)) satisfies strategy-proofness but fails to satisfy quasi-strong-non-
bossiness. It might appear that the inversely dictatorial social choice function
cannot be dominant strategy implemented not only by the associated direct rev-
elation mechanism but also by any indirect mechanism. However, it follows
from Corollaries 1 and 4 that even in pure exchange economies without free
disposal, every inversely dictatorial social choice function is implementable in
dominant strategy equilibria.18

Like our mechanism used to prove Theorem 3, our mechanism used in the
proof of Theorem 5 can boundedly implement all strategy-proof social choice
functions in undominated strategies. So, in conjunction with Corollary 1 in Jack-
son (1992), Theorem 5 implies Theorem 6.

Theorem 6. Suppose that n ≥ 3 and Property 4 is satisfied. Then, a social choice

function is implementable in undominated strategies by a bounded mechanism

in pure exchange economies without free disposal if and only if it satisfies strategy-

proofness.

17In pure exchange economies without free disposal where there are three or more agents, Bar-
berà and Jackson (1995) characterized the class of social choice functions that are strategy-proof,
tie-free, non-bossy, and anonymous. Moreover, they pointed out that relaxing non-bossiness
and/or anonymity introduces a number of substantial variations on the social choice functions
characterized by them.

18Notice that in two-agent pure exchange economies without free disposal, the inversely dicta-
torial social choice function is equivalent to the dictatorial one.

18



7 Conclusion

In this paper, we have considered the relationships among three notions of dom-
inant strategy implementation especially in economic environments. Our theo-
rems together with the revelation principle have established the following rela-
tionships in economic environments: from the point of view of implementabil-
ity, (i) dominant strategy implementation via the associated direct revelation
mechanism implies, but is not implied by, dominant strategy implementation
by a certain indirect mechanism, and (ii) dominant strategy implementation via
a certain indirect mechanism is equivalent to truthful implementation in domi-
nant strategy equilibria. As mentioned in the introduction, when preferences in-
volve indifference, the revelation principle might lose the powerful implication.
However, the relationships tell us that in economic environments, the revelation
principle has the same powerful implication as in the case when indifference is
impossible.

It would be worth discussing relationships among dominant strategy imple-
mentation, Nash implementation, and bounded implementation in undomi-
nated Nash equilibria. It might seem at first glance that all of the dominant
strategy implementable social choice functions are both Nash implementable
and boundedly implementable in undominated Nash equilibria. However, there
is no relationship among them in general. This is because, in pure exchange
economies, inversely dictatorial social choice functions are dominant strategy
implementable but are not boundedly implementable in undominated Nash
equilibria as well as not being Nash implementable.

In this paper, we have focused mainly on economic environments. So, we
leave open the question of what conditions are necessary and sufficient for dom-
inant strategy implementation in general environments.19

19See the appendix for a partial answer to the open question.
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Appendix

In the appendix, by constructing a mechanism similar to the one devised to
prove Theorem 3, we briefly examine a condition that is sufficient for domi-
nant strategy implementation in general environments where there is a com-
mon worst alternative, i.e., Property 1 is satisfied. Notice that in general envi-
ronments, Property 2 does not necessarily hold even if Property 1 holds. So, in
general environments with a common worst alternative, there is a strategy-proof
social choice function that cannot be dominant strategy implemented by any in-
direct mechanism even if Property 3 is satisfied, as demonstrated in Example 2.

Example 2. Consider an environment (N , A,R) such that N = {1,2}, A = {a,b,c},
and R = {R1}×{R2,R ′

2}, where aP1cP1b, aP2cP2b, and cP ′
2aI ′2b. A strategy-proof

social choice function f is given as follows.

R2 R ′
2

f = a b R1

Note that b is a common worst alternative. Note also that Property 3 holds (but
Property 2 does not hold).

Now suppose that f is dominant strategy implemented by an indirect mech-
anism Γ= (M , g ). Then, g must be as follows.

M2

DSΓ2 (R2) DSΓ2 (R ′
2) · · ·

DSΓ1 (R1) a b · · ·

M1 m′
1 x y · · ·

...
...

...
. . .

Since DSΓ2 (R ′
2) is a dominant strategy of Γ at R ′

2, it must hold that yP ′
2x because

bI ′2a. So, we have y = c , which contradicts the fact that DSΓ1 (R1) is a dominant
strategy of Γ at R1 because cP1b. Thus, f cannot be implemented in dominant
strategy equilibria by any indirect mechanism. ■

Example 2 suggests that, in order to use in general environments with a com-
mon worst alternative a mechanism similar to the one used to prove Theorem 3,
we need a stronger version of Property 3 (but which is weaker than Properties 3
plus 2).

Property 5. Given i ∈ N , let T i :=
{

a ∈ A
∣

∣ wR j a for all j ∈ N \ {i } and all R j ∈R j

}

.20

For all i ∈ N and all Ri ,R ′
i
∈Ri , if Ri 6=R ′

i
, then there exist a,b ∈ T i ⊆ A such that

aPi b, bP ′
i
a, aPi w , and bP ′

i
w .

Theorem 7. Suppose that Properties 1 and 5 are satisfied. Then, if a social choice

function f satisfies strategy-proofness, then it is dominant strategy implementable

in general environments.

20Note that T i 6= ; for every i ∈ N .
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Proof. Fix an arbitrary w ∈ A that satisfies Property 1. We construct an aug-
mented revelation mechanismΓ= (M , g ) which is similar to the one constructed
in the proof of Theorem 3. Agent i ’s message space is

Mi :=Ri ∪ (T i+1
×T i+1),

where T i+1 =
{

a ∈ A
∣

∣ wR j a for all j ∈ N \ {i +1} and all R j ∈R j

}

. A typical mes-
sage for agent i ∈ N is denoted by mi = R i

i
or (ai ,bi ). Let g be defined as follows.

Rule 1: If mi = R i
i
∈ Ri for all i ∈ N , then g (m) := f (R1

1 ,R2
2 , . . . ,Rn

n ). Note that
Property 1 assures that g (m)R i

i
w for all i ∈ N .

Rule 2: If mi = R i
i
∈ Ri for some i ∈ N and m j = (a j ,b j ) ∈ (T j+1 ×T j+1) for

all j 6= i , then g (m) := argmax{a i−1,bi−1,w} R i
i
. Ties are broken in some arbitrary

manner unless argmax{a i−1,bi−1,w} R i
i

is a singleton. Notice that g (m)R i
i
w and

wR′
j
g (m) for all j 6= i and all R ′

j
∈R j by construction.

Rule 3: In all other cases, g (m) := w .

A reasoning similar to that in the proof of Theorem 3 establishes that g (DSEΓ(R))=
f (R) for all R ∈R.

When coupled with the revelation principle, Theorem 7 leads to the follow-
ing corollary.

Corollary 5. Suppose that Properties 1 and 5 are satisfied. Then, a social choice

function is dominant strategy implementable in general environments if and only

if it satisfies strategy-proofness.

In the appendix, we concentrate on general environments where there is
a common worst alternative, and explore a sufficient condition for dominant
strategy implementation by using a mechanism similar to the one constructed
to prove Theorem 3. So, Corollary 5 is a partial answer to the open question
mentioned in the conclusion. It leaves open the question of when Property 5 is
relaxed, whether or not it is possible for a mechanism that may be fundamen-
tally different from the one used in the proof of Theorem 7 to dominant strategy
implement every strategy-proof social choice function in general environments
with a common worst alternative. It also leaves open the question of what con-
ditions are necessary and sufficient for dominant strategy implementation in
general environments without a common worst alternative.
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