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Abstract

We consider full-truthful Nash implementation, which requires that truth
telling by each agent should be a Nash equilibrium of a direct revelation
mechanism, and that the set of Nash equilibrium outcomes of the mecha-
nism should coincide with the f -optimal outcome. We show that restricted

monotonicity together with an auxiliary condition called boundedness is
both necessary and sufficient for full-truthful Nash implementation. We
also prove that full-truthful Nash implementation is equivalent to secure
implementation (Saijo et al. (2005)). This gives us an alternative character-
ization of securely implementable social choice functions.

Keywords: Restricted Monotonicity, Direct Revelation Mechanisms, Nash
Implementation, Truthful Implementation, Secure Implementation.
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1 Introduction

The implementation problem is that a mechanism designer, who cannot ob-
serve the true preferences of each agent, devises a mechanism whose equilib-
rium outcomes always coincide with the social goal given by a social choice cor-
respondence. The Nash equilibrium concept has often been used as an equi-
librium concept in the complete information case, where each agent knows not
only own true preferences but also the true preferences of every other agent,
while the mechanism designer cannot observe agents’ true preferences. In the
seminal paper on Nash implementation, Maskin (1999) showed that monotonic-

ity is necessary for Nash implementation, and that monotonicity plus no veto

power is sufficient for Nash implementation when there are three or more agents.
The gap between necessity and sufficiency for Nash implementation has subse-
quently been closed by Moore and Repullo (1990), Dutta and Sen (1991), Sjöström
(1991), etc.

However, positive results listed above rely on complicated mechanisms used
in the constructive proofs, where agents are often forced to announce an out-
come, an integer, etc. in addition to a preference profile. Such mechanisms have
been criticized not only for practicability but also for a theoretical reason. Jack-
son (1992) criticized such mechanisms for employing an integer game, because
mechanisms involving the integer game fail to satisfy the best response prop-

erty regardless of the use of the Nash equilibrium concept. So, it is important to
investigate what kinds of social choice functions can be Nash implemented by
“simple” mechanisms which rule out integer games.

For the simplicity of mechanisms, we consider implementation by direct rev-

elation mechanisms, i.e., mechanisms where agents are required to report own
preferences only. Much attention has recently focused on the mechanisms from
a practical perspective as well as a theoretical viewpoint. For example, Roth
(1984) analyzed a direct revelation mechanism used for the National Resident
Matching Program, Abdulkadiroğlu and Sönmez (2003) studied direct revelation
mechanisms for school choice, and Roth et al. (2004) proposed direct revelation
mechanisms for kidney exchange. Besides, direct revelation mechanisms sat-
isfy self-relevancy (see Hurwicz (1960)), the requirement that each agent should
be asked to reveal information about only herself.1 So, the mechanisms seem
attractive from the viewpoint of informational decentralization. However, few
would study Nash implementation by direct revelation mechanisms. This would
be partly because the revelation principle for Nash implementation does not
hold in general.

Nevertheless, in this paper, we restrict attention to Nash implementation
by a direct revelation mechanism where truth telling by each agent is a Nash
equilibrium of the mechanism, which we call full-truthful Nash implementa-

1Tatamitani (2001) considered Nash implementation by self-relevant mechanisms, where each
agent is required to announce own preferences, an outcome, and an agent index.
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tion. This restricts the class of implementable social choice functions, since the
revelation principle for Nash implementation cannot hold. Indeed, the class
of fully-truthfully Nash implementable social choice functions is limited to the
class smaller than that of truthfully Nash implementable social choice functions,
which is equivalent to that of truthfully dominant strategy implementable so-
cial choice functions, as shown by Dasgupta et al. (1979). However, the require-
ment that truthful revelation by each agent should be a Nash equilibrium of the
mechanism would be attractive from a practical standpoint. If there are multi-
ple equilibria of a direct revelation mechanism violating the requirement, then
agents could be hard to predict each other’s actions, which could lead to mis-
coordination. But, if truthful reporting by each agent is a Nash equilibrium of
the mechanism, then it would be a focal point, and so agents would be able to
coordinate their actions.

This paper relates to one by Saijo et al. (2005), who identified conditions
necessary and sufficient for secure implementation,2 i.e., double implementa-
tion in dominant strategy equilibria and Nash equilibria. We show in Section
4 that full-truthful Nash implementation is equivalent to secure implementa-
tion, which gives us an alternative characterization of securely implementable
social choice functions (see Corollary 3). The equivalence derives mostly from
the result of Dasgupta et al. (1979) stating that truth telling by each agent is a
Nash equilibrium of a direct revelation mechanism if and only if it is a dominant
strategy equilibrium of the mechanism. So, the requirement of truthful revela-
tion by each agent being a Nash equilibrium could be agreeable, because direct
revelation mechanisms violating the requirement cannot securely implement
any social choice function.

This paper is organized as follows. Section 2 provides notation and defini-
tions. We identify necessary and sufficient conditions for full-truthful Nash im-
plementation in Section 3. In Section 4, we examine the relationship of full-
truthful Nash implementation to secure implementation. Section 5 contains
some concluding remarks.

2 Notation and Definitions

Let N := {1,2, . . . ,n} be the set of agents, where 2 ≤ n < +∞. Let A be the set of
feasible outcomes.

Each agent i ∈ N has preferences over A, which are represented by a complete
and transitive binary relation Ri . The strict preference relation and indifference
relation associated with Ri are denoted by Pi and Ii , respectively. Let Ri de-
note the set of possible preferences for agent i ∈ N . A domain is denoted by

R :=R1×R2×·· ·×Rn . A preference profile is a list R = (R1,R2, . . . ,Rn) ∈R. It is

2Cason et al. (2006) ran experiments to compare the performance of secure and non-secure
mechanisms. They reported experimental results which suggest that the notion of secure imple-
mentation is important in terms of practical applications.
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assumed that each agent can observe not only her own preferences but also all
other agents’ preferences.

An environment is a collection (N , A,R).
Let LCi (a;Ri ) := {b ∈ A | aRi b } be agent i ’s lower contour set of a ∈ A at Ri ∈

Ri . For each agent i ∈ N , let argmaxĀ Ri :=
{

a ∈ Ā
∣

∣ aRi b for all b ∈ Ā
}

be the set
of maximal elements in Ā ⊆ A at Ri ∈Ri .3

A social choice function is a single-valued function f : R → A that assigns a
feasible outcome a ∈ A to each preference profile R ∈ R. Given a social choice
function f , let Oi (R) :=

{

a ∈ A
∣

∣ a = f (R ′
i
,R−i ) for some R ′

i
∈Ri

}

be agent i ’s op-

tion set at R ∈ R. Note that Oi (R) = Oi (R ′
i
,R−i ) for all R ∈ R, all i ∈ N , and all

R ′
i
∈Ri .
Let Mi denote a message space of agent i ∈ N . We call mi ∈ Mi a message of

agent i ∈ N . A mechanism is a pair Γ = (M , g ), where M := M1 ×M2 × ·· · ×Mn

and g : M → A is an outcome function. A mechanism (M , g ) is called a direct

revelation mechanism if Mi = Ri for all i ∈ N . Given a social choice function f ,
a mechanism (M , g ) is called the associated direct revelation mechanism if Mi =

Ri for all i ∈ N and g = f . A message profile is denoted by m = (m1,m2, . . . ,mn) ∈
M .

A message profile m∗ = (m∗
1 ,m∗

2 , . . . ,m∗
n) ∈ M is a Nash equilibrium of (M , g )

at R ∈R if, for any i ∈ N , g (m∗
i

,m∗
−i

)Ri g (m′
i
,m∗

−i
) for any m′

i
∈ Mi . Let NEΓ(R) ⊆

M denote the set of Nash equilibria of Γ = (M , g ) at R ∈ R. Let g (NEΓ(R)) :=
{

a ∈ A
∣

∣ a = g (m) for some m ∈ NEΓ(R)
}

be the set of Nash equilibrium outcomes

of Γ= (M , g ) at R ∈R.
A message profile m∗ = (m∗

1 ,m∗
2 , . . . ,m∗

n) ∈ M is a dominant strategy equilib-

rium of (M , g ) at R ∈R if, for any i ∈ N , g (m∗
i

,m′
−i

)Ri g (m′
i
,m′

−i
) for any m′

i
∈ Mi

and any m′
−i

∈ M−i . Let DSEΓ(R) ⊆ M be the set of dominant strategy equilibria
ofΓ= (M , g ) at R ∈R. Let g (DSEΓ(R)) :=

{

a ∈ A
∣

∣ a = g (m) for some m ∈ DSEΓ(R)
}

be the set of dominant strategy equilibrium outcomes of Γ= (M , g ) at R ∈R.
A mechanismΓ= (M , g ) Nash implements a social choice function f if g (NEΓ(R)) =

f (R) for any R ∈R.4 A social choice function is Nash implementable if there ex-
ists a mechanism that Nash implements it. A social choice function is directly

implementable in Nash equilibria if there exists a direct revelation mechanism
which Nash implements it.

A direct revelation mechanism Γ = (R, g ) truthfully Nash implements a so-
cial choice function f if R ∈ NEΓ(R) and g (R) = f (R) for any R ∈ R.5 A social
choice function is truthfully implementable in Nash equilibria if there exists a
direct revelation mechanism which truthfully Nash implements it.

A direct revelation mechanism Γ = (R, g ) fully-truthfully Nash implements

a social choice function f if R ∈ NEΓ(R) and g (NEΓ(R)) = f (R) for any R ∈ R.
A social choice function is fully-truthfully implementable in Nash equilibria if

3Note that argmaxĀ Ri may be empty.
4To simplify notation, we write f (R) instead of

{

f (R)
}

.
5As we focus on social choice functions, truthful Nash implementation can be defined as R ∈

NEΓ(R) and g (R) = f (R) for any R ∈R, instead of as R ∈NEΓ(R) and g (R) ∈ f (R) for any R ∈R.
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there exists a direct revelation mechanism which fully-truthfully implements it
in Nash equilibria.

A mechanism Γ= (M , g ) dominant strategy implements a social choice func-
tion f if g (DSEΓ(R)) = f (R) for any R ∈R. A social choice function is dominant

strategy implementable if there exists a mechanism that dominant strategy im-
plements it. A direct revelation mechanism Γ= (R, g ) truthfully dominant strat-

egy implements a social choice function f if R ∈ DSEΓ(R) and g (R) = f (R) for any
R ∈R.

3 Characterizations

In this section, we seek to characterize social choice functions which are fully-
truthfully implementable in Nash equilibria.

We begin by proving the associated direct revelation principle, which says
that when attention is restricted to truthfully implementable social choice func-
tions, the class of social choice functions that are directly implementable in
Nash equilibria is equivalent to that of social choice functions which can be
Nash implemented by the associated direct revelation mechanisms.

Theorem 1 (The Associated Direct Revelation Principle). A social choice func-

tion f is fully-truthfully implementable in Nash equilibria if and only if it is

fully-truthfully implemented in Nash equilibria by the associated direct revela-

tion mechanism.

Proof. The if part. This part follows straight from the definition of full-truthful
Nash implementation.

The only if part. Let Γ= (R, f ) denote the associated direct revelation mech-
anism. Since f is fully-truthfully implementable in Nash equilibria, there is a
direct revelation mechanism Γ̄ = (R, g ) such that R ∈ NEΓ̄(R) and g (NE Γ̄(R)) =
f (R) for all R ∈ R. Since Γ̄ truthfully implements f in Nash equilibria, we have
g = f by definition, which implies Γ̄ = Γ. Hence, R ∈ NEΓ(R) and g (NEΓ(R)) =
f (R) for all R ∈R.

The following example demonstrates that if we give up truthful implemen-
tation in Nash equilibria, then there is a social choice function that cannot be
Nash implemented by the associated direct revelation mechanism, but which is
directly Nash implementable.

Example 1. Consider an environment (N , A,R) such that #N = 2, A = {a,b,c},

R = {R1, R̄1}× {R2, R̄2}, and aPi bPi c and cP̄i aP̄i b for all i ∈ N . A social choice
function f is given as follows.

R2 R̄2

f =
a a R1

a c R̄1
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Then, f cannot be Nash implemented by the associated direct revelation
mechanism Γ = (R, f ). This is because f (NEΓ(R̄1, R̄2)) = {a,c} 6= {c} = f (R̄1, R̄2),
since NEΓ(R̄1, R̄2) =

{

(R1,R2), (R̄1, R̄2)
}

.
However, another direct revelation mechanism Γ̄ = (R, g ) can Nash imple-

ment f , where g is defined below.

R2 R̄2

g =
c a R1

a b R̄1

Since NEΓ̄(R1,R2) =
{

(R1, R̄2), (R̄1,R2)
}

, NEΓ̄(R1, R̄2) =
{

(R̄1,R2)
}

, NEΓ̄(R̄1,R2) =
{

(R1, R̄2)
}

, and NEΓ̄(R̄1, R̄2) = {(R1,R2)}, we have g (NEΓ̄(R1,R2)) = {a} = f (R1,R2),

g (NEΓ̄(R1, R̄2)) = {a} = f (R1, R̄2), g (NEΓ̄(R̄1,R2)) = {a} = f (R̄1,R2), and g (NEΓ̄(R̄1, R̄2)) =
{c} = f (R̄1, R̄2), respectively. Thus, f can be Nash implemented by the direct
revelation mechanism Γ̄, although it cannot be Nash implemented by the asso-
ciated direct revelation mechanism Γ. Note that f cannot be truthfully imple-
mented in Nash equilibria by Γ̄, although it can be truthfully implemented in
Nash equilibria by Γ. ä

Invoking the associated direct revelation principle, we restrict attention to
the associated direct revelation mechanisms hereafter. We next identify a condi-
tion which is necessary for full-truthful Nash implementation by the associated
direct revelation mechanisms.

Restricted monotonicity is a version of monotonicity6 (Maskin (1999)), which
requires the following. Suppose a change from R to R ′. Then, for each agent
i ∈ N , if any outcome that was weakly worse for her than f (R) in her option set

at R when her preference relation was Ri remains weakly worse for her than f (R)
when her preference relation is R ′

i
, then f (R) must still be f -optimal at R ′.

Definition 1 (Restricted Monotonicity). A social choice function f satisfies re-

stricted monotonicity if, for all R ,R ′ ∈ R, if LCi ( f (R);Ri )∩Oi (R) ⊆ LCi ( f (R);R ′
i
)

for all i ∈ N , then f (R ′) = f (R).

Remark 1. Restricted monotonicity is stronger than monotonicity by definition.

Remark 2. The definition of restricted monotonicity can be rewritten as follows.
A social choice function f satisfies restricted monotonicity if, for all R ∈R and all
i ∈ N , there is a set Ci ( f (R);R) ⊆Oi (R) with f (R) ∈ argmaxCi ( f (R);R) Ri such that
for all R ′ ∈ R, if f (R) ∈ argmaxCi ( f (R);R) R ′

i
for all i ∈ N , then f (R ′) = f (R). This

way of defining restricted monotonicity is analogous to that of defining Condi-
tion µ (Moore and Repullo (1990)).

6A social choice function f satisfies monotonicity if, for all R,R′ ∈ R, if LCi ( f (R);Ri ) ⊆

LCi ( f (R);R′
i
) for all i ∈ N , then f (R′) = f (R). Note that monotonicity is a necessary condition

for Nash implementation and is part of the sufficient condition for Nash implementation when
there are three or more agents.
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Since restricted monotonicity is stronger than monotonicity by Remark 1, it
is not clear whether restricted monotonicity is a necessary condition for Nash
implementation. The following lemma states that restricted monotonicity is
necessary for full-truthful implementation in Nash equilibria by the associated
direct revelation mechanisms.

Lemma 1. If a social choice function f is fully-truthfully implemented in Nash

equilibria by the associated direct revelation mechanism, then it satisfies restricted

monotonicity.

Proof. Pick any R , R̄ ∈ R such that LCi ( f (R);Ri )∩Oi (R) ⊆ LCi ( f (R); R̄i ) for all
i ∈ N . Let Γ = (R, f ) denote the associated direct revelation mechanism. Since
f is truthfully implemented in Nash equilibria by Γ, we have R ∈ NEΓ(R).

Since R ∈ NEΓ(R), it holds that for all i ∈ N , f (R)Ri f (R ′
i
,R−i ) for all R ′

i
∈ Ri .

This implies f (R)∈ argmaxOi (R) Ri for all i ∈ N . So, LCi ( f (R);Ri )∩Oi (R) =Oi (R)
for all i ∈ N .

Thus, since LCi ( f (R);Ri )∩Oi (R)⊆ LCi ( f (R); R̄i ) for all i ∈ N , we have Oi (R)⊆
LCi ( f (R); R̄i ) for all i ∈ N . So, R ∈ NEΓ(R̄). Since f is Nash implemented by Γ,
f (R) ∈ f (NEΓ(R̄)) = f (R̄). This implies f (R̄) = f (R), because f is a single-valued
function.

We are now ready to characterize fully-truthfully implementable social choice
functions in Nash equilibria. Theorem 2 below says that restricted monotonicity
together with an auxiliary condition called boundedness is both necessary and
sufficient for full-truthful Nash implementation. It should be noted that Theo-
rem 2 holds even when n = 2.

Definition 2 (Boundedness). A social choice function f satisfies boundedness if
argmaxOi (R) Ri 6= ; for all R ∈R and all i ∈ N .

Remark 3. As we focus on implementation by the associated direct revelation
mechanisms, imposing boundedness on a social choice function is equivalent
to requiring the associated direct revelation mechanism to satisfy the best re-

sponse property7 (Jackson et al. (1994)). As mentioned by Jackson et al. (1994),
the best response property would be an appropriate restriction in order for the
Nash equilibrium concept to make sense. Theorem 2 shows that the restriction
is not only sufficient but also necessary for a social choice function to be fully-
truthfully implementable in Nash equilibria.

Theorem 2. A social choice function f is fully-truthfully implementable in Nash

equilibria if and only if it satisfies restricted monotonicity and boundedness.

Proof. Let Γ= (R, f ) denote the associated direct revelation mechanism.

The if part. Step 1: f (R)∈ argmaxOi (R) Ri for all R ∈R and all i ∈ N .

7A mechanism (M , g ) satisfies the best response property if, for all R ∈ R, all i ∈ N , and all
m−i ∈ M−i , there exists mi ∈ Mi such that g (mi ,m−i )Ri g (m′

i
,m−i ) for all m′

i
∈ Mi .
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Suppose to the contrary that f (R) 6∈ argmaxOi (R) Ri for some R ∈R and some i ∈

N . Let b ∈ A be such that b ∈ argmaxOi (R) Ri .8 Then, b 6= f (R). Since b ∈ Oi (R),
b = f (R̄i ,R−i ) for some R̄i ∈Ri .

Since f (R̄i ,R−i )= b ∈ argmaxOi (R) Ri , it holds that LCi ( f (R̄i ,R−i ); R̄i )∩Oi (R)⊆
LCi ( f (R̄i ,R−i );Ri )∩Oi (R). So, it follows from Oi (R) =Oi (R̄i ,R−i ) that LCi ( f (R̄i ,R−i ); R̄i )∩
Oi (R̄i ,R−i ) ⊆ LCi ( f (R̄i ,R−i );Ri )∩Oi (R̄i ,R−i ). This implies LCi ( f (R̄i ,R−i ); R̄i )∩
Oi (R̄i ,R−i ) ⊆ LCi ( f (R̄i ,R−i );Ri ), because LC i ( f (R̄i ,R−i );Ri )∩Oi (R̄i ,R−i )⊆ LCi ( f (R̄i ,R−i );Ri ).
Thus, since LC j ( f (R̄i ,R−i );R j )∩O j (R̄i ,R−i ) ⊆ LC j ( f (R̄i ,R−i );R j ) for all j 6= i , re-
stricted monotonicity implies f (R) = f (R̄i ,R−i ), which contradicts f (R) 6= b =

f (R̄i ,R−i ).

Step 2: f satisfies strategy-proofness.9

Since f (R) ∈ argmaxOi (R) Ri for all R ∈ R and all i ∈ N by Step 1, it follows from
the definition of the option set that f (R)Ri f (R ′

i
,R−i ) for all R ∈R, all i ∈ N , and

all R ′
i
∈Ri . Thus, f satisfies strategy-proofness.

Step 3: f is fully-truthfully Nash implementable.

Pick any R ∈ R. Since f satisfies strategy-proofness by Step 2, it is truthfully
implemented in dominant strategy equilibria by Γ, i.e., R ∈ DSEΓ(R) for all R ∈

R. So, R ∈ NEΓ(R) for all R ∈R.
Suppose R̄ ∈ NEΓ(R). Then, for any i ∈ N , f (R̄)Ri f (R ′

i
, R̄−i ) for any R ′

i
∈ Ri .

This implies f (R̄)∈ argmaxOi (R̄) Ri for all i ∈ N , implying LCi ( f (R̄);Ri )∩Oi (R̄) =
Oi (R̄) for all i ∈ N . So, since LCi ( f (R̄); R̄i ) ∩Oi (R̄) ⊆ Oi (R̄) for all i ∈ N , we
have LCi ( f (R̄); R̄i ) ∩Oi (R̄) ⊆ LCi ( f (R̄);Ri ) ∩Oi (R̄) for all i ∈ N . This implies
LCi ( f (R̄); R̄i )∩Oi (R̄) ⊆ LCi ( f (R̄);Ri ) for all i ∈ N , since LCi ( f (R̄);Ri )∩Oi (R̄) ⊆
LCi ( f (R̄);Ri ) for all i ∈ N . Therefore, restricted monotonicity implies f (R) =
f (R̄). So, f (R) = f (R̄) for any R̄ ∈ NEΓ(R). This implies f (NEΓ(R)) = f (R). Thus,
f (NEΓ(R))= f (R) for all R ∈R.

The only if part. By Theorem 1, if f is fully-truthfully Nash implementable,
then it is fully-truthfully Nash implemented by Γ. So, Lemma 1 implies that f

satisfies restricted monotonicity.
Since f is fully-truthfylly Nash implemented by Γ, it holds that R ∈ NEΓ(R)

for all R ∈ R, i.e., f (R)Ri f (R ′
i
,R−i ) for all R ∈ R, all i ∈ N , and all R ′

i
∈ Ri . This

implies f (R)∈ argmaxOi (R) Ri for all R ∈R and all i ∈ N . Thus, f satisfies bound-
edness.

We end this section by briefly discussing the redundancy of boundedness
in characterizing fully-truthfully implementable social choice functions in Nash
equilibria. The following is due to Dasgupta et al. (1979).

8It should be noted that argmaxOi (R) Ri 6= ; by boundedness.
9A social choice function f satisfies strategy-proofness if, for all R ∈R and all i ∈ N , there is no

R′
i
∈Ri such that f (R′

i
,R−i )Pi f (R).
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Proposition 1 (Dasgupta et al. (1979)). Suppose that R is rich.10 Then, if a social

choice function satisfies monotonicity, then it satisfies strategy-proofness.

Proposition 1 together with Remark 1 implies that restricted monotonic-
ity implies strategy-proofness if R is rich. So, restricted monotonicity implies
boundedness if R is rich. Moreover, if A is finite, then boundednes is automat-
ically satisfied by the completeness and transitivity of preferences regardless of
whether or not R is rich. Thus, we have the following corollary.

Corollary 1. Suppose that either (i) A is finite or (ii) R is rich. Then, a social

choice function is fully-truthfully implementable in Nash equilibria if and only if

it satisfies restricted monotonicity.

4 The Relationship to Secure Implementation

In this section, we explore the relationship of full-truthful Nash implementation
to secure implementation11 (Saijo et al. (2005)), which is identical with double
implementation in dominant strategy equilibria and Nash equilibria.

We begin by showing a limitation of full-truthful Nash implementation, which
stems mainly from Proposition 2 (Dasgupta et al. (1979)).

Proposition 2 (Dasgupta et al. (1979)). A social choice function is truthfully im-

plemented in Nash equilibria by a direct revelation mechanism if and only if it is

truthfully implemented in dominant strategy equilibria by the same direct reve-

lation mechanism.

Theorem 3. If a social choice function f is fully-truthfully Nash implemented by

the associated direct revelation mechanism, then it is dominant strategy imple-

mented by the associated direct revelation mechanism.

Proof. Let Γ= (R, f ) denote the associated direct revelation mechanism. Since
f is truthfully implemented in Nash equilibria by Γ, Proposition 2 implies that it
is truthfully implemented in dominant strategy equilibria by Γ. So, R ∈ DSEΓ(R)
for all R ∈R, implying R ∈ DSEΓ(R)⊆ NEΓ(R) for all R ∈R. This implies f (DSEΓ(R)) ⊆
f (NEΓ(R)) for all R ∈ R. Thus, f (DSEΓ(R)) = f (NEΓ(R)) = f (R) for all R ∈ R,
because f (NEΓ(R)) = f (R) for all R ∈ R, and because f is a single-valued func-
tion.

The following example demonstrates that the converse to Theorem 3 does
not hold in general, which is in contrast to Proposition 2.

10A domain R is rich (Dasgupta et al. (1979)) if, for any R,R′ ∈ R, any a, a′ ∈ A, and any i ∈ N ,
if aRi a′ implies aR′

i
a′ and aPi a′ implies aP ′

i
a′, then there exists R′′ ∈ R such that LCi (a;Ri ) ⊆

LCi (a;R′′
i

) and LCi (a′;R′
i

) ⊆ LCi (a′;R′′
i

). Examples of rich domains are found in Dasgupta et al.
(1979).

11A mechanism Γ = (M , g ) securely implements a social choice function f if g (DSEΓ(R)) =

g (NEΓ(R)) = f (R) for any R ∈ R. A social choice function f is securely implementable if there
exists a mechanism which securely implements it.
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Example 2. Consider an environment (N , A,R) for which #N = 2, A = {a,b,c},
and R = {R1, R̄1}× {R2, R̄2}, where aP1cP1b, bP̄1cP̄ a, aI2bP2c , and aP̄2bĪ2c . A
social choice function f is defined below.

R2 R̄2

f =
b a R1

b c R̄1

Then, it is easy to check that f can be dominant strategy implemented by the
associated direct revelation mechanism, but cannot be fully-truthfully Nash im-
plemented by the associated direct revelation mechanism. ä

Theorem 3 together with the revelation principle leads to the following corol-
lary, which indicates the relationship of full-truthful Nash implementation to
secure implementation.

Corollary 2. A social choice function is securely implemented by the associated

direct revelation mechanism if and only if it is fully-truthfully Nash implemented

by the associated direct revelation mechanism.

Corollary 3 below follows directly from Theorems 1 and 2, Corollary 2, and
results of Saijo et al. (2005) for secure implementation.

Corollary 3. The following statements are equivalent:

(i) f is fully-truthfully implementable in Nash equilibria,

(ii) f is securely implementable,

(iii) f is robustly implemented in Bayesian Nash equilibria by the associated di-

rect revelation mechanism,

(iv) f satisfies restricted monotonicity and boundedness,

(v) f satisfies the rectangular property12 (Saijo et al. (2005)) and strategy-proofness.

Corollary 3 tells us that full-truthful Nash implementation is equivalent to
secure implementation, which sheds light on the structure of secure implemen-
tation. Corollary 3 also provides an alternative characterization of securely im-
plementable social choice functions. In contrast to the characterization by Saijo
et al. (2005), our characterization has an advantage of using a version of mono-
tonicity, which is familiar to literature on implementation theory.

12A social choice function f satisfies the rectangular property if, for all R,R ′ ∈ R, if
f (R′)Ii f (Ri ,R′

−i
) for all i ∈ N , then f (R′) = f (R).
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5 Conclusion

In this paper, we have shown that restricted monotonicity together with bound-
edness is both necessary and sufficient for full-truthful Nash implementation.
Moreover, by proving the equivalence of full-truthful Nash implementation and
secure implementation, we have provided an alternative characterization of se-
curely implementable social choice functions. Our characterization sheds new
light on the structure of securely implementable social choice functions in terms
of monotonicity, a well-known property in implementation theory.

It is true that the requirement of truth telling by each agent being a Nash
equilibrium is appealing. But, as demonstrated in Example 1, the requirement
restricts the class of Nash implementable social choice functions by direct reve-
lation mechanisms. Direct revelation mechanisms have been recently received
a great deal of attention from both theoretical and practical viewpoints. So, an
interesting topic for further research is to identify necessary and sufficient con-
ditions for Nash implementation by direct revelation mechanisms.
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