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“Human rational behavior is shaped by a scissors whose two blades are
the structure of task environments and the computational capabilities of
the actor.” (Simon 1990, p. 7)

1. Introduction

We are interested in the interaction of the two blades of Simon’s scissors. Specifically,
we would like to understand better whether a (relatively) complex environment trig-
gers deeper thinking. Our working hypothesis — also proposed by Güth, Kocher, and
Sutter (2002) and implicitly by Camerer, Ho, and Chong (2004) — suggests it does.
Experimentally, the importance of the complexity of the environment for individuals’
behavior has been demonstrated, for example, by Wilcox (1993, 2006), Palfrey and
Prisbrey (1997), Camerer, Ho, and Chong (2004), Ballinger, Hudson, Karkoviata, and
Wilcox (2005), and Slonim (2005).

The Guessing Game is our vehicle of choice for an experimental test of our working
hypothesis. In this game (also called Beauty-contest Game) participants are asked
to choose a number from a closed interval. The winner is the person who picks
the number closest to a given proportion of the average of all chosen numbers.1

The simplicity and flexibility of this game, and the fact that it captures nicely the
strategic interaction of actors in financial markets, have made it a frequent topic of
experimental studies of depth of reasoning (Camerer 2003).

Güth, Kocher, and Sutter (2002), henceforth GKS, investigated experimentally an
interesting modification of the standard Guessing Game (see also Bosch-Domènech,
Montalvo, Nagel, and Satorra 2002). They use a continuous payment scheme and al-
low individuals — students from the Humboldt-University Berlin — to make decisions
in “homogeneous” (simple) and “heterogeneous” (complex) environments.

In contrast to GKS, we ran the experiment with mathematically talented stu-
dents who were skilled in solving abstract problems. Our results conform to GKS’s
and our intuition (but contradict their results) that more complicated environments,
here constructed by way of more heterogeneous players, trigger deeper thinking. In
particular, the guesses of subjects in the heterogeneous environment are closer to
the equilibrium than the guesses of subjects in the homogeneous environment. We
rationalize our findings using an extension of the Cognitive Hierarchy (CH) model by
Camerer, Ho, and Chong (2004), which we believe to be a contribution in its own
right. Our estimates of the model suggest indeed that more complexity leads to a
higher number of steps of thinking.

The source of the difference in results is unclear; we argue below that they are
unlikely to stem from differences in implementation. In our view, the prime suspects
are the different subject pools and the differences in mathematical abilities.

The structure of the paper is as follows. In the next section we describe our
Guessing Game treatments and the working hypothesis. In Section 3 we discuss
the implementation and design of our experiment. In Section 4 we describe the

1See, for example, Nagel (1995).

1



experimental results that we use in Section 5 to rationalize our findings. Section 6
concludes and relates our work to an important emerging literature that Camerer
(2003) has identified as one of his top ten research questions.

2. The game and our working hypothesis

Let n (where n > 2) be the number of players participating in the game. A pure
strategy (action) of player i ∈ {1, . . . , n} is a real number si ∈ Si = [0, 100], also called
player i’s choice or guess. Given a strategy profile s = (s1, . . . , sn) let s = 1

n

∑n
i=1 si

denote the average of numbers chosen by all players. The payoff function of player i
is given by

ui(s) = C − c|si − qis|,
where qi ∈ (0, 1) is the proportion of s determining player i’s target number, and C
and c are positive constants. If player i guesses exactly qis (the target number), he
receives the payoff C. If he does not, his payoff is reduced by c for each unit of the
distance between si and qis.

The above payoff function represents a continuous payment scheme, which differs
from the standard version of the Guessing Game, used, for instance, by Nagel (1995)
or in the experiments reported by Bosch-Domènech et al. (2002), where only the
player who is closest to qis wins a fixed payoff. The continuous payment scheme
seems most appropriate for implementing heterogenous environments.

Following the advice of Davis and Holt (1993) to facilitate comparison with pre-
vious experiments, we use both the payoff function, and in particular, the boundary
equilibrium parametrization from GKS.2 Specifically, we use the following parametriza-
tion:

n = 4, C = 50 SKK, c = 1 SKK.

Clearly, a player could potentially make a loss. In order to avoid the possibility of
losses, we truncated payoffs at zero and informed the subjects accordingly. Thus, the
actual payoff function was ũi(s) = max {0, 50− |si − qis|}.

We study two treatments that we call HOM and HET. In the HOM treatment,
all four players are given qi = 1/2 (for i = 1, 2, 3, 4). We will call the players in that
treatment homogeneous. In the HET treatment, two of the players are given qi = 1/3
(for i = 1, 2), while two of the players are given qi = 2/3 (for i = 3, 4). We will call the
players in that treatment heterogeneous. It is easy to prove that iterated elimination
of strictly dominated strategies yields a unique equilibrium s∗i = 0 in both treatments
(see GKS for details).

GKS conjectured that heterogeneous players think harder about other players’
behavior and hence their guesses are closer to the equilibrium. We find this an
intuitive and persuasive conjecture that was, however, not confirmed in their earlier
experiment.

2More precisely, we set d = 0 in the notation of GKS.

2



3. Design and implementation

Our experimental sessions were run in two summer schools for young mathematically
talented students. In one summer school we ran the HOM treatment with seven
groups of four homogeneous players; in the other summer school we ran the HET
treatment with seven groups of four heterogeneous players. While, ideally, we would
have liked to run both treatments in each summer school, it was not possible. Nearly
all participants were students of secondary schools (aged 14–18). None of them had
taken a course on game theory before and it was their first experience with expe-
rimental economics. The participants of these summer schools were chosen in two
independent national correspondence competitions in mathematics.3 Both competi-
tions were of comparable difficulty, quality, and reputation. Indeed almost identical
numbers (84 and 86) of participants took part in the competitions. An overlap group
of 28 participants took part in both competitions and 7 ended up participating in
the first summer school and 10 in the second summer school. Since the two summer
schools took place simultaneously, no student participated in both of them.

There is no obvious reason why there should be a selection bias in favor of one of
the summer schools. For example, our subject pool included 12 (out of 37) students
who reached the national round of the Mathematical Olympiad, equally distributed
across the two summer schools. In addition, the choice behavior in a preceding
Guessing Game redux was very similar.4 The Guessing Game redux with which we
kicked off our treatments in the two summer schools is arguably the simplest form of
the Guessing Game: players in groups of two or three choose only between numbers 0
and 1, or among 0, 1, and 2.5 After this experiment we paid all participants according
to their choices without revealing any other information. Then we proceeded with
the actual Guessing Game treatments. In every summer school, the participants
were read the instructions (see Appendix B) at the beginning of the experiment.
The instructions specified that in each of five rounds the subjects would be matched
randomly so as to yield seven four-player groups. The groups were rematched in each
round. In the HET treatment, the subjects were told that in each round there would
be two subjects of each type in each group.

There was no time limit for making the choice. After each round we first collected
the record sheets and calculated averages (using calculators) in each group. Then we
provided each participant the average in his own group and announced publicly the
averages in all groups. After the experiment, for each round, two out of seven groups
were randomly selected and earnings from that round were paid out to every selected
participant. This payment mode had been announced as a part of the instructions.

3The competitions were organized by the students of the Faculty of Mathematics, Physics and
Informatics, Comenius University in Bratislava, Slovakia. E. Kováč and M. Vojtek were involved
in the organization of these summer schools in previous years. The problems solved in the compe-
titions were at a level similar to regional rounds of the Mathematical Olympiad (see, for example,
en.wikipedia.org/wiki/Mathematical olympiad).

4In this game, 15 out of 28 subjects in one summer school and 18 out of 28 subjects in the other
summer school chose the equilibrium strategy. This difference is not significant.

5The results of this experiment will be reported in a different paper.
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The maximum amount that participants could earn in each round was 50 SKK.6 For
every unit of difference from the target number they lost 1 SKK. However, taking into
account the age of the participants, we excluded the possibility of negative payoffs.
Participants were informed in the instructions that the minimal payoff in each round
was 0 SKK.

Our design and implementation differ from GKS in five aspects. First, our sub-
ject pool did not consist of undergraduate students of economics, but mathematically
talented students of secondary schools skilled in solving abstract problems. Second,
the averages in all groups became public information after each round, whereas GKS
announced only the average of his own group to each participant after each round.7

Third, our experiment was not computerized. Fourth, we conducted a simple Guess-
ing Game redux before the actual experiment reported here. Fifth, our payoff function
slightly differs from GKS. In particular, we did not allow for losses,8 and we used the
parametrization with proportion C/c equal to 50 SKK/1 SKK = 50, as opposed to
2 DM/0.05 DM = 40. We discuss now in detail the possible effects of these differences
in design and implementation.

4. Results of the experiment

Table 1 and Figures 1 and 2 in Appendix C summarize the results of the experiment.
In the HET treatment we split the asymmetric treatment data into two clusters,
with q = 1/3 and q = 2/3. Figure 1 shows the distribution of first-round guesses
and Figure 2 shows the pattern of average guesses across rounds. Table 1 shows
the means, standard deviations, medians, and the minimum and the maximum of
guesses, separately for each round and each treatment. In addition, Table 1 contains
the average payoffs,9 and the absolute and relative decreases in the average guess.

Result 1. In both treatments, the guesses of players “converge” to the equilibrium.

The average guess decreases substantially from round to round (by more than
25%). In addition, the standard deviation (with one exception),10 as well as the
median (again, with one exception) decrease and the average payoffs increases con-
tinually with the number of rounds. We conclude that the guesses converge to the
Nash equilibrium; see also Figure 2 for illustration.

Result 2. Heterogeneity induces more equilibrium-like behavior.

6According to the official exchange rate 50 SKK was about 1.13 EUR at the time when we
conducted the experiment. For that amount, it was possible to buy 2–3 beers or 3 loaves of bread.
Given the age of the participants, the payoffs were not insignificant.

7Personal communication M. Sutter.
8Among all guesses, only 2 in the first round of the HOM treatment and 2 in the first round of

the HET treatment (both with q = 1/3) would have lead to negative payoffs.
9These are potential payoffs. As specified in Section 3 in each round we selected randomly two

groups and paid them their earnings. We paid off 1802 SKK in the HET treatment and 1769 SKK
in the HOM treatment.

10This exception is the last round in the HOM treatment and is caused by an outlier, who guessed
8, 2, 0.9, and 0.9 in rounds 1–4, but increased his guess to 24 in the last round.
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Heterogeneous agents guessed on average closer to the equilibrium in each round11

(Figure 2). The only exception was the second round, where the guesses of players
with q = 2/3 were slightly higher, on average, than those of homogeneous players.
As expected, session averages for players with q = 1/3 were lower than averages
for players with q = 2/3. Our results, thus, conform to our working hypothesis and
reverse the findings of GKS who found that session averages with homogenous groups
were significantly lower than average guesses in heterogeneous groups.

In addition, we may use the relative decrease as a proxy for the speed of conver-
gence. Note that for both treatments, the successive elimination of strictly dominated
strategies yields a relative decrease of 1/2 (see GKS for details). Table 1 shows that
the relative decrease of heterogeneous players with q = 1/3 is in each round higher
than the relative decrease of the homogeneous players. The relative decrease of hete-
rogeneous players with q = 2/3 is almost the same (although slightly higher; with the
exception of the change from second to third round, where it is substantially lower)
as the relative decrease of the homogeneous players.

In addition to analyzing our own results, we compare them to those of GKS.
Table 2 in Appendix C shows summary statistics (namely, average guesses, standard
deviations, and medians) of their data.12

Result 3. The behavior of our subjects in the HOM treatment is similar to the
behavior of GKS’s subjects, whereas our subjects’ guesses in the HET treatment are
closer to the equilibrium than the guesses of GKS’s subjects.

We see that both means and standard deviations of the guesses in the HOM
treatments follow similar patterns, with our subjects’ average guesses being lower in
the first, fourth, and fifth round, but higher in the second and third round.13 In
the HET treatment, however, the average guesses of our subjects are well below the
average guesses of the GKS subjects.14 This reverses the key qualitative result of GKS.
There is also an interesting quantitative result, namely that the average guesses in
our experiment are similar to those in GKS’s experiment in the HOM treatment, but
are lower in the HET treatment. The first-round guesses deserve special attention,
since we use them in the next section to estimate the CH-model. These guesses reflect
subjects’ initial understanding of the game and strategic thinking. In addition, they
represent independent observations. Comparing our data to GKS, we obtain that our

11We used the Mann-Whitney test (1-sided test with the null hypothesis that the distributions of
guesses in HOM and HET treatments are the same against the alternative that they differ with lower
guesses in the HET treatment) for each round. Starting from the second round, the distributions
were significantly different and heterogeneous players’ guesses were closer to the equilibrium (with
p < 0.1 in round 2, p < 0.05 in round 3, and p < 0.01 in rounds 4 and 5). The detailed statistics are
available at www.uni-bonn.de/~kovac/papers/xp.

12We thank the authors (M. Sutter) for providing the data.
13According to the Mann-Whitney test (both 1-sided and 2-sided), the distributions were not

significantly different.
14According to the Mann-Whitney test (1-sided), the distributions differ significantly (p = 0.11 in

round 1, p < 0.1 in round 2, p < 0.005 in round 3, and p < 0.001 in rounds 4–5 for subjects with
q = 1/3; p < 0.01 in round 1 and p < 0.001 in rounds 2–5 for subjects with q = 2/3).
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subjects’ average guesses are closer to the equilibrium in both treatments and the
difference is higher in the HET treatment.

In order to explain the reversal in Result 2 and Result 3, we review the differences
in the experimental design and discuss their relevance for our results.

1. Subject pool. As we have argued, our subjects represented a sample from the best
mathematical talents in the Slovak Republic. Since the subject pool is the same for
both treatments, there is no reason why the effects in these treatments should be dif-
ferent, unless (due to the complexity of the HET treatment) the cognitive constraints
of our subjects were not binding, whereas they were binding for the subjects in the
GKS experiment. Indeed, we conjecture that this factor is likely to account for the
reversal in the results.

2. Public information. Providing public information may have caused a positive effect
on players’ guesses (in the sense that they are closer to the Nash equilibrium) by
speeding up the process of learning. Since public information was provided after the
subjects made their first-round guesses, it cannot account for the difference in the
first round averages. In later rounds, by obtaining more information players could
make better inferences about the average guesses and recognize that lower guesses
lead to higher payoffs. Since public information was provided in both treatments, it
cannot be responsible for the reversal in results.

3. Experimental procedure. Our experiment was not computerized and the calculation
of averages took about 3–5 minutes. The subjects could use this delay for deeper
thinking about the game, which might have generated a positive effect on guesses.
There was no such delay before the first round, and this factor can therefore be
responsible only for differences in later rounds. In line with the previous argument,
the change in the experimental procedure was the same in both treatments. Therefore,
experimental procedure cannot be responsible for the reversal in results.

4. Guessing Game redux. By playing the Guessing Game redux, participants could
see that the “optimal” strategy in a related game is 0. This may have induced a
positive effect on players’ guesses, by carrying over the idea of iterated elimination
of dominated strategies to the Guessing Game. There is no obvious reason why the
experience with the Guessing Game redux should affect the treatments differently.

5. Changes in the payoff function. Analogously to the above arguments, the changes
in the payoff function concerned both HOM and HET treatments and therefore cannot
be responsible for the reversal in results. In addition, the changes were only marginal
and strike us as insignificant.

Summing up, there is no obvious reason why the last factor should affect the re-
sults. The second, third, and fourth factors are expected to induce positive effects in
both treatments (compared to GKS), and there is no factor with a negative effect.
The similar patterns in the HOM treatment indicate that all these factors have only
marginal effects (note also that the second and third factor may have affected only
guesses in later rounds). In addition, since the changes in both treatments are the
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same, there is no reason why they should have affected the HOM and HET treat-
ments differently. Therefore, we conclude that the difference in subjects’ cognitive
constraints, which we conjecture became binding in GKS’s HET treatment but not
in ours, accounts for more of the equilibrium-like behavior of our subjects in the HET
treatment.

5. Application of the CH model

In this section we rationalize our findings using the Cognitive Hierarchy (CH) model
by Camerer, Ho, and Chong (2004), henceforth CHC. In this model, each player is
able to perform only a limited number of steps of reasoning and assumes that his
strategy is the most sophisticated. Following CHC, we consider Poisson distribution
with parameter τ as the distribution of players’ steps of reasoning (see Appendix A for
details). A higher value of τ reflects a population of more players with better thinking
capabilities or players thinking deeper about their strategies. As a consequence, with
increasing τ the prediction of the CH model for the Guessing Game converges to the
Nash equilibrium.

CHC argue that “. . . nothing in the Poisson-CH model, per se, requires τ to be
fixed across games or subject pools, or across details how games are presented or
choices are elicited” (p. 876). However, if two similar games with players from the
same population yield different estimates of τ , it seems reasonable to conclude that
the one with higher value reveals more complex reasoning and deeper thinking. It
follows that, if our working hypothesis is valid, the estimated parameter for the HET
treatment should be higher than the one for the HOM treatment. Since observations
in later rounds are no longer independent, we use the first-round guesses in order to
estimate the value of τ for each treatment separately.15 Consistent with our hypoth-
esis, the estimated value of τ in the HET treatment is higher than the one in the
HOM treatment. Because the subjects in both summer schools were comparable, a
higher value of τ means that those in the HET treatment think more carefully about
their strategy.

We estimate the value of τ from our data separately for each treatment (see
Appendix A for details). The estimation in the HOM treatment is straightforward:
following CHC, we find the value of τ that minimizes the (absolute) difference between
the predicted mean and the sample mean. For our sample mean 20.28 (standard
deviation 22.56), we obtain τ = 1.64 (yielding mean 20.29 and standard deviation
20.26). The estimation of τ in the HET treatment is more difficult. Due to the
assumption that the distribution of players of both types is the same, we need to fit
two means (one for the players with q = 1/3, the other for the players with q = 2/3)
with a single value of τ . In order to estimate the value of τ we use two methods: MM
and LS. Method MM minimizes the absolute value of the sum of differences between
the actual means and predicted means, whereas method LS (least squares) minimizes
the sum of squares of differences between the actual means and predicted means.16

15In the HET we assume that the steps follow the same distribution, i.e., we apply only one value
of τ for both types of players.

16Formally, method MM minimizes |(m1/3 + m2/3) − (d1/3 + d2/3)| and method LS minimizes
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Table 3 in Appendix C shows the results of estimation as well as predicted means
and standard deviations (columns denoted “s.d.”). The table also shows these statis-
tics from the data and predictions for the value τ = 1.64 estimated in the HOM
treatment. In addition, the last two columns contain the boostrapped standard devi-
ations of the estimate of τ and its 90% confidence interval. Using methods MM and
LS, we obtain similar estimates of τ , namely 1.86 and 1.89. Both are higher than
the value 1.64 estimated in the HOM treatment, which suggests that the players in
the HET treatment indeed do think more carefully about the game. Further sup-
porting this finding, we obtain a medium effect size.17 These results conform to our
hypothesis and rationalize our results.

Result 4. Comparison of the estimated values of τ suggests that players in heteroge-
nous groups use more steps of reasoning than players in homogeneous groups.

In order to compare our results to GKS, we use their data (see Table 2) and esti-
mate the value of τ for both treatments. Specifically, we estimate τ = 1.42 in GKS’s
HOM treatment, which is 0.22 lower than the estimate in our experiment and yields
a medium effect size.18 For the HET treatment, we estimate τ = 0.80 using method
MM and τ = 0.82 using method LS.19 Both of these values are substantially (by more
than 1) lower than the estimates for our subjects and yield a large effect size.20 The
comparison of HET treatments seems to confirm our intuition that the heterogenous
environment pushed subjects to their cognitive limits in the GKS experiment, while
it induced deeper thinking in our experiment.

Result 5. Comparison of the estimated values of τ suggests that in the HOM treat-
ment our subjects used 0.22 more steps of reasoning than GKS’s subjects, whereas in
the HET treatment they used at least one step more.

6. Discussion and conclusion

Recently an important piece of literature on the decision making of collective actors
has emerged (Camerer 2003, p. 475). One key finding is that collective actors in
Guessing Games converge, in a statistically significant manner, faster to the Nash
equilibrium than individual actors (Kocher and Sutter 2005). As we do, these authors
do not find a statistically significant difference in first-round choices although the
mean and median of chosen numbers is consistently lower for collective actors (groups
of these individuals) than it is for individuals. Sutter (2005) finds furthermore that
teams with four members outperform teams with two members and single persons
significantly, whereas the latter two types of decision makers do not differ. This

(m1/3 − d1/3)2 + (m2/3 − d2/3)2, where dq and mq denote the sample mean and the predicted mean
for q = 1/3, 1/2, 2/3.

17Using the bootstrapped standard deviations, we find Cohen’s d to be 0.57 and 0.63 for MM and
LS methods, respectively.

18With value of Cohen’s d equal to 0.64.
19Bootstrapped standard deviations are 0.26 in the HOM treatment and 0.23 and 0.22 in the HET

treatment using methods MM and LS, respectively.
20With values of Cohen’s d of 2.53 and 2.49 for methods MM and LS, respectively.
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suggests that groups of a certain size are, like heterogeneous groups, more efficient in
their convergence behavior. Interestingly, subjects in our groups were not allowed to
communicate, therefore the increased efficiency that we found seems due to harder
thinking, triggered by the more complex environment. In other words, the complexity
of an environment to some extent seems able to substitute for group deliberation, at
least in Guessing Games.

Relatedly, Slonim (2005) has explored experimentally, and by way of a standard
Guessing Game, how subjects’ behavior depends on competitors’ levels of experi-
ence. By also reviewing related evidence from other games, he finds that subjects
indeed (learned to) take into account their competitors’ experience, or “sophistica-
tion” (p. 68). Morone, Sandri, and Uske (2006) have also demonstrated, by way of
the Guessing Game proposed by GKS, that subjects converge faster when prompted
accordingly. In our case, that prompting — in Morone et al. (2006) done by the
experimenter — is done by the complexity of the environment. Essentially, the depth
of reasoning, or τ is endogenized.

CHC point out that such an endogenization would be desirable and make a case for
it by reporting that subjects at CalTech think about the same degree deeper relative
to students at a nearby community college, as our mathematically talented students
do relative to the students employed by GKS. Our result is also in line with results
reported in Palacios-Huerta and Volij (2006), who find that professional chess players
engage in more equilibrium-like behavior than typically employed student subjects.

In sum, we have experimentally explored a version of the Guessing Game. Our
subjects were mathematically talented students that were skilled in solving abstract
problems. Our data confirm the hypothesis that heterogeneous players guess closer
to the equilibrium. This conclusion is rationalized by way of the Cognitive Hierarchy
Model proposed by CHC. We also find that heterogeneous players’ guesses converge
faster to the equilibrium. Our results contribute both to the ongoing debate about
the depths of reasoning and the debate about the limitations of traditional subject
pools.
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Appendix A: CH model

The CH model builds on a probability distribution f(k) of players where k denotes the
number of steps of thinking the player takes. A step 0 player randomizes his guesses
(uniformly among all strategies) and does not assume anything about his opponents.
A step k player thinks that he is the smartest (i.e., there are no other players capable of
higher steps of thinking than k−1). He assumes that other players’ steps of reasoning
are distributed according to some probability distribution on {0, 1, . . . , k − 1}, and
plays the best response to this distribution. The player is aware of the proportions
of players with less steps of reasoning and his subjective probabilities (frequencies in
the population) follow the truncated distribution.21

CHC assume that the distribution f(k) of steps of thinking follows the Poisson
distribution with parameter τ , i.e., f(k) = e−ττ k/k!. This distribution is described
by a single parameter τ representing both its mean and variance. The authors claim
that the Poisson distribution is able to fit data almost as well as more parametrized
models, but it is easier to compute and work with. Thus, it represents a parsimonious
model of the distribution of depth of reasoning in a subject pool. The particular value
of the parameter τ can be estimated from data.

In order to estimate the parameter τ from the data, we consider a grid of values
of τ and for each τ from the grid we compute numerically the strategies (guesses)
of players resulting from various steps of thinking. In particular, we use a grid with
difference 0.01 on the interval [0, 4] (for comparison, the highest value of τ estimated
by CHC is 3.7). Using the actual payoff function ũ (see Section 2), we compute the
strategies of players up to the 10-th step and for certain values of τ (of our interest)
up to the 100-th step.22 In this way we obtain for each τ a (predicted) distribution
of guesses which allows us to predict the mean and the standard deviation of guesses
depending on τ . Following CHC (estimation procedure for their Table II), we then
choose the value of τ that fits our data best. In the HOM treatment, we minimize
the absolute difference between the predicted mean and the actual mean. In the HET
treatment, we propose two methods: minimize sum of absolute differences (of the two
groups) or minimize sum of squares of differences (see Section 5 for details).

Let us denote bq(k) the strategy of a k-step player i with qi = q (where k =
1, 2, . . . ).23 The predicted strategies show several interesting patterns. The strategies
of 1-step players are obviously independent on the distribution. In the HOM treat-
ment we obtain b1/2(1) = 21; in the HET treatment b1/3(1) = 14 and b2/3(1) = 30.
For any fixed k, the strategies are non-increasing in τ . This reflects the fact that for
the same step of thinking, higher values of τ are associated with guesses closer to
the equilibrium. In addition, for any fixed τ , the strategies are non-increasing in k
and become stationary when k is sufficiently high. This means that players capable

21Then, for any i = 0, 1, . . . , k−1, the distribution of players capable of i steps is f(i)/
∑k−1

j=0 f(j).
22The source code (in Mathematica) and the detailed results of the computations are available at

www.uni-bonn.de/~kovac/papers/xp.
23Although we allowed the players to guess non-integers (up to two decimals), we restrict the

theoretical analysis of the CH model to integer strategies. Only 7 players (2 in HET, 5 in HOM)
out of 56 submitted non-integers in the first round. Hence the restriction seems justified.
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of more steps guess closer to the equilibrium. For the values of τ in our grid we
conjecture that they do not converge to zero as k → ∞. This is intuitively clear,
because it is obviously not optimal to play zero (Nash equilibrium), when there is a
high probability of some of the opponents being a 1-step player. For example, for
τ = 1.64 we obtain b1/2(2) = 9, b1/2(3) = b1/2(4) = 7, b1/2(5) = b1/2(6) = · · · = 6.
Using these strategies we can compute statistics of the distribution of guesses.

Appendix B: Instructions

The instructions were written in Slovak. Based on the instructions by GKS, we first
created an English version which was later translated into Slovak. The instructions
below are for heterogeneous players with q = 1/3. The instructions for heterogeneous
players with q = 2/3 differ only in the last sentence of paragraph 4 and in the formal
expression for the payoff. In the instructions for homogeneous players (i.e., q = 1/2)
the whole of paragraph 3 was replaced by: “The target number for you (and everyone
else in your group) is one-half of the average of all 4 chosen numbers in your group.”
Additionally, the formal expression for the earnings contained 1/2 instead of 1/3.

Sample instructions

Welcome to our experiment and thank you for participating.
You will be randomly divided into groups of 4 persons. Each person in your group

chooses a number (denote it x) from the closed interval [0, 100]. It is not necessary
to choose an integer, however, numbers with more than two decimals are excluded.

Your potential earnings in this experiment depend on how close your chosen num-
ber is to a target number. The closer your chosen number is to the target number,
the higher are your earnings.

Your group consists of two participants of type A and two participants of type
B. Target numbers of type A and type B participants are different. If you are type
A, your target number is one-third of the average of all 4 numbers chosen in the
group. If you are type B, your target number is two-thirds of the average of all 4
numbers chosen in the group. You are type A, so the target number in your case
is one-third of the average of all 4 chosen numbers in your group.

The potential earnings in each round depend on the difference between your chosen
number and the target number. If your chosen number in that round is identical with
the target number, your earnings will be 50 crowns. If the two numbers differ, their
distance will be deducted from the 50 crowns. Formally, your potential earnings per
round are calculated as follows:

earnings = 50−
∣∣x− 1

3
average

∣∣ .

If your earnings are negative, we will treat them as zero.
The experiment will last 5 rounds. Groups will be rematched in each round.
After each round, you will receive information on the average in your group and

your target number. In addition, the averages in all groups will be announced by
writing on the blackboard. Because of time constraints the earnings will not be
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computed. We recommend that you calculate your earnings after each round (using
the above formula).

After the experiment, for each round, we will draw randomly two groups that will
be paid their earnings from that round. All earnings will be paid in cash and privately
at the end of the experiment.

Round 1 2 3 4 5
Chosen
number
Average
Earnings
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Appendix C: Figures and tables

Figure 1: Distribution of first-round guesses (number of individuals who have chosen
a number in particular interval)

Figure 2: Treatment averages
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Group Statistics Round
(variable) 1 2 3 4 5

q = 1/3 mean 17.39 7.35 4.76 1.85 0.72
(n = 14) standard deviation 13.67 6.22 3.65 1.98 1.61

median 14.50 5.50 4 1.06 0.10
min 0 1 0 0 0
max 54.50 21 12 7 6
average payoff (SKK) 38.41 42.04 45.57 48.21 49.10
change in mean: absolute 10.04 2.59 2.90 1.13

relative 0.58 0.35 0.61 0.61
q = 1/2 mean 20.24 12.55 9.24 4.36 3.00
(n = 28) standard deviation 22.56 9.70 8.04 4.15 4.77

median 13.50 10 7.51 4 2
min 0 0 0 0 0
max 100 38 35 19.73 24
average payoff (SKK) 37.63 42.54 44.10 47.17 47.54
change in mean: absolute 7.69 3.31 4.88 1.36

relative 0.38 0.26 0.53 0.31
q = 2/3 mean 20.05 13.04 5.51 2.70 1.89
(n = 14) standard deviation 22.46 14.08 7.32 4.54 4.14

median 12.50 8.77 2.54 1.14 0
min 0 0 0 0 0
max 66 47 26 15 15
average payoff (SKK) 34.82 44.14 45.38 47.98 48.11
change in mean: absolute 7.01 7.53 2.81 0.81

relative 0.35 0.58 0.51 0.30

Table 1: Results of the experiment
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Group Statistics Round
(variable) 1 2 3 4 5

q = 1/3 mean 27.27 17.23 14.30 9.74 6.76
(n = 20) std. deviation 23.61 12.16 11.00 7.80 6.28

median 15.50 13.57 11.26 8.10 5
q = 1/2 mean 22.79 12.00 7.54 4.73 3.03
(n = 40) std. deviation 20.54 9.67 8.71 7.04 5.53

median 19.75 10 5 1.28 0.63
q = 2/3 mean 38.42 30.79 20.07 16.30 12.00
(n = 20) std. deviation 28.05 20.80 11.87 13.49 10.80

median 36.50 25.28 20 16 10.25

Table 2: Results of the experiment by GKS

Predicted statistics Boostrap results for τ
q = 1/3 q = 2/3 standard 90% conf.

Method τ mean (s.d.) mean (s.d.) deviation interval

Data 17.39 (13.67) 20.05 (22.46)

HOM 1.64 17.11 (20.92) 24.53 (19.81) 0.41 (1.11, 2.43)

MM 1.86 15.11 (19.23) 22.32 (18.63) 0.37 (1.33, 2.55)

LS 1.89 14.86 (19.01) 22.03 (18.47) 0.39 (1.40, 1.60)

Table 3: Results of estimation methods for the HET treatment
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