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Abstract

In financial time series analysis, serial correlations and the volatility clustering effect of asset
returns are commonly checked by Ljung−Box and McLeod−Li Q tests and filtered by
ARMA−GARCH models. However, this simulation study shows that both the size and power
performance of these two tests are not robust to heavily tailed data. Further, these Q tests may
reject processes without ARMA−GARCH structures simply because of nonlinearity and
conditionally heteroskedastic higher−order moments. These results imply that, to avoid
misleading interpretations on time series data, these two tests should be used with care in
practical applications.
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1 Introduction

Autocorrelation is a leading measure of serial dependence in time series analysis. To understand
the dependence structure of time series data, researchers routinely calculate sample autocorrela-
tions and check the joint significance of these statistics by the Q test of Box and Pierce (1970,
the QBP test) or Ljung and Box (1978, the QLB test). In financial time series analysis, it is par-
ticularly important to check serial correlations of squared series; such dependence is referred to
as the volatility clustering effect. The Q test of McLeod and Li (1983, the QML test) is used for
this purpose. The QML test is indeed a particular QLB test based on sample autocorrelations of
squared series, and it is asymptotically equivalent to the LM test of Engle (1982). To explain the
serial correlations and volatility clustering effect detected by these Q tests, empirical researchers
often filter time series data by certain autoregressive moving averages and generalized autoregres-
sive conditional heteroskedasticity (ARMA-GARCH) models. These Q tests are also applied on
the residuals of estimated models as diagnostic checks. Although this modelling strategy is quite
popular in empirical studies, it may encounter some problems in practice.

Note that the above Q tests require that the process being tested be an independently and
identically distributed (i.i.d.) sequence. This condition is much more stringent than the hypothe-
sis of white noise, so that the QBP and QLB tests (the QML test) may reject the null hypothesis not
only for serial correlations (the volatility clustering effect) but also for other types of serial depen-
dence. Further, the QBP and QLB tests (the QML test) need data to possess finite fourth (eighth)
moment. Therefore, the performance of these tests is likely to be influenced by the fatness of
distributional tails. In fact, most risky assets’ returns have heavily tailed distributions. Several
studies even reported that such distributions may not have finite fourth moment; see Jansen and
de Vries (1991), Loretan (1994) and Phillips, and de Lima (1997). Consequently, it is important
to investigate the robustness of these Q tests in these situations.

For this purpose, we conduct a Monte Carlo simulation to assess finite sample performance
of the QLB and QML tests. The QBP test will not be discussed in this study because the QLB

test is already a finite-sample-corrected QBP test. The simulation results show that distributional
heavy-tails may distort the asymptotic null distributions of the QLB and QML tests and reduce
the power of these tests. Further, these Q tests may reject their null hypotheses because of
nonlinearity or conditionally heteroskedastic skewness, even if the process being tested does not
have any ARMA-GARCH structures. In consequence, these Q tests should be used with care to
avoid yielding misleading interpretations on time series data, and it is important to consider the
use of tests for moment conditions, nonlinearity, and independence to complement these Q tests
before accepting ARMA-GARCH models.

The rest of this paper is organized as follows. In Section 2, we write the notation and the
QLB and QML test statistics. In Section 3, we introduce the simulation experiment design. The
simulation results will be shown and discussed in Section 4. Finally, our conclusion is in Section 5.
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2 The Ljung-Box and McLeod-Li Q tests

Let {yt} be a time series with the lag-k autocorrelation:

ρ1(k) =
cov(yt, yt−k)

var(yt)
, k = 1, 2, . . . .

The lag-k sample autocorrelation of {yt} is

ρ̂1(k) =
∑T

t=k+1(yt − ȳT )(yt−k − ȳT )∑T
t=1(yt − ȳT )2

,

where T denotes the sample size; ȳT is the sample mean of {yt}. To test if {yt} is a white noise
sequence, it is common to check the hypotheses consisted of the first m autocorrelations:

Ho : ρ1(1) = ρ1(2) = . . . = ρ1(m) = 0,

H1 : ρ1(k) �= 0, for some k = 1, 2, . . . , m.

For these hypotheses, the QLB test statistic is of the form:

QLB(m) = T (T + 2)
m∑

k=1

ρ̂2
1(k)

T − k
.

This statistic has the asymptotic null distribution χ2(m) provided that {yt} is an i.i.d sequence
and that yt has a finite fourth moment.

The QML test is a particular QLB test based on sample autocorrelations of the squared series
{y2

t }. Its test statistic is

QML(m) = T (T + 2)
m∑

k=1

ρ̂2
2(k)

T − k
,

where

ρ̂2(k) =
∑T

t=k+1(y
2
t − σ̂2

T )(y2
t−k − σ̂2

T )∑T
t=1(y

2
t − σ̂2

T )2
, σ̂2

T =
1
T

T∑
t=1

y2
t .

This statistic also has the asymptotic null distribution χ2(m) provided that {yt} is an i.i.d.
sequence and that yt possesses a finite eighth moment. This test is often used to check the
whiteness of {y2

t }:

ρ2(k) :=
cov(y2

t , y
2
t−k)

var(y2
t )

= 0, for all k = 1, 2, . . . , m,

against the volatility clustering effect. As we have noted previously, the QLB and QML tests
also serve as diagnostic checks for estimated ARMA-GARCH models. However, in this case the
degrees of freedom of the asymptotic null distribution of QLB(m) and QML(m) have to be reduced
by the number of parameters estimated.
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3 The data generation processes

In this simulation experiment, we consider five types of data generation processes (DGPs): i.i.d.
sequences, a simple nonlinear process, a conditionally heteroskedastic skewness process, an au-
toregressive (AR) process, and a GARCH process with different innovation distributions. The
first three DGPs are designed to represent processes without ARMA-GARCH structures. Sup-
posedly, the QLB and QML tests should be powerful against the last two DGPs but not the first
three DGPs. The details of these DGPs are described as follows.

IID sequences

In this case,

yt = εt, (1)

where {εt} is an i.i.d. sequence. To study the influence of the tail behavior of εt on the Q

tests, we consider three distributions for εt: the standard normal distribution N(0, 1), Student
t distribution with the degrees of freedom ν, denoted as t(ν), and the standardized log-normal
distribution:

εt =
exp(λut − λ2/2) − 1

(exp(λ2) − 1)1/2
, ut ∼ N(0, 1),

with the skewness parameter λ, denoted by L(λ). The latter two distributions can yield different
tail properties by adjusting their parameters. It is well known that t(ν) is a symmetric distribution
without finite ν-th moment. As compared to N(0, 1), t(ν) has heavier tails and higher peakedness
when ν is small. As ν → ∞, this distribution converges to N(0, 1). On the other hand, L(λ) is
a right-skewed distribution with zero mean and unit variance. The fatness of its right tail, and
hence skewness and kurtosis, increase with the value of |λ|. This distribution also encompasses
N(0, 1) as λ → 0; see Johnson et al. (1995).

A simple nonlinear process

This nonlinear process is of the form:

yt =

{
µ1 + σ1εt, yt−1 > 0,

µ2 + σ2εt, yt−1 ≤ 0,
(2)

where {εt} is an i.i.d. N(0, 1) sequence. The magnitudes of |µ1 − µ2| and |σ1 − σ2| control the
significance of the location and scale switching behavior of {yt}, respectively. Obviously, this
process has no ARMA-GARCH structures. Granger and Teräsvirta (1999) used a particular
case of this process, (µ1, µ2; σ1, σ2) = (1,−1; 1, 1), to illustrate that autocorrelations may yield
misleading linear properties.

A conditionally heteroskedastic skewness process
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Some studies recently aimed at investigating conditionally heteroskedastic skewness of asset
returns; see e.g., Hansen (1994) and Harvey and Siddique (1999). To represent this DGP, we
consider that yt is distributed as L(λt) with the skewness parameter λt, which follows the first-
order AR process:

λt = δo + δ1λt−1 + εt, (3)

where {εt} is an i.i.d. N(0, 1) sequence. The process {yt} has zero conditional mean and unit
conditional variance, so that it does not have serial correlations and the volatility clustering effect.
However, it is still a serially dependent process governed by the conditionally heteroskedastic
skewness parameters {λt}.
An AR process

This case considers the first-order AR process:

yt = αyt−1 + εt, (4)

where {εt} is an i.i.d. sequence with N(0, 1), t(ν), or L(λ). In this DGP, {yt} has serial correla-
tions but no volatility clustering effect.

A GARCH process

This GARCH process is of the form:

yt = εth
1/2
t , ht = βo + β1y

2
t−1 + β2ht−1, (5)

where {εt} is an i.i.d. sequence with N(0, 1), t(ν), or L(λ). This process has volatility clustering
effect but no serial correlations.

4 The simulation results

To implement this experiment, we consider T = 100, 500, m/T = 5%, 10%, 30%, ν = 1, 3, 5, λ =
0.5, 1, 2, α = ±0.3,±0.7, (βo, β1, β2) = (1, 0.3, 0.6), (1, 0.05, 0.9), (µ1, µ2; σ1, σ2) = (1,−1; 1, 1),
(1,1;1,4), (1,-1;1,4), (δo, δ1)= (1,0.3),(1,0.5),(1,0.7),(1,0.9), and many other parameter settings.
However, due to the reason of space limitations, we only report the results of T = 500 with
selected parameter settings. Other simulation results are available upon request. For comparing
χ2(m) and the empirical distributions of QLB(m) and QML(m), the nominal level θ considered
includes θ =50%, 25%, 10%, 5%, and 1%. In Table 1, we show the empirical rejection frequencies
of the QLB and QML tests for DGPs (1), (2), and (3). The results of DGPs (4) and (5) are shown
in Table 2. These rejection frequencies are calculated from 5000 replications.

[Tables 1 and 2 about here.]
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4.1 DGPs without ARMA-GARCH structures

We first discuss DGP (1), the case of i.i.d. sequences. For the distribution N(0, 1), Table 1 shows
that the empirical rejection frequencies of QLB(m) and QML(m) are quite close to their respective
nominal levels when m/T = 5%, 10%. This result supports that χ2(m) is a proper approximation
to the null distributions of these two statistics in this standard case. However, when m/T = 30%,
the empirical sizes of QLB(m) and QML(m) are 9.6% and 8.3% (4.0% and 3.2%) for θ = 5% (1%),
respectively; that is, these Q tests are somewhat over-sized for large m/T . This evidence is likely
caused by the fact that the variance of QLB(m) is larger than which of χ2(m) when m/T is large;
see Davies et al. (1977).

de Lima (1997) reported that the QML test is sensitive to the heavy tails of Pareto distributions.
Table 1 further shows that both the QLB and QML tests are not robust to the tail behavior of
t(ν) and L(λ). For example, given the distribution L(2) and m/T = 5%, the empirical rejection
frequencies of the QLB (QML) test are 20.6%, 14.5%, 10.5%, 8.6%, 6.6% (10.8%, 9.1%, 7.6%,
6.9%, 5.6%) for θ =50%, 25%, 10%, 5%, and 1%, respectively. This illustrates that χ2(m) is
inappropriate to approximate the null distributions of QLB(m) and QML(m) in this case. Similar
examples can also be found for other distributions listed in Table 1. From this table, we also
observe that the QML test is much more sensitive to heavy tails of data. This is because the QML

test requires a stricter moment condition than the QLB test.

Table 1 also shows that the QLB and QML tests are not only sensitive to the tail behavior of
data but also not robust to nonlinearity and conditionally heteroskedastic higher-order moments
of the process being tested. Recall that DGP (2) with (µ1, µ2; σ1, σ2) = (1,−1; 1, 1) is a nonlinear
process with switching locations and a fixed scale parameter. In this case, the QLB test rejects
the null with the frequency 100% for all values of θ and m/T considered. On the other hand, the
QML test has proper size performance when m/T = 5%, 10%. This result reminds us that this
nonlinear process might be fitted by a misleading ARMA model, if the significance of QLB(m) is
misleadingly interpreted as a signal of the need for certain ARMA models to filter the “detected
serial correlations” of data. In fact, the QML test may also over-reject the null hypothesis when
this nonlinear process has regime switching scale parameters. For example, given (µ1, µ2; σ1, σ2) =
(1,−1; 1, 4), θ = 5%, and m/T = 5%, the empirical rejection frequency of the QML test is 29.4%;
even though, this process has no GARCH structures.

For the conditionally heteroskedastic skewness process with (δo, δ1) = (1, 0.5), given m/T =
5%, the QLB (QML) test has the empirical rejection frequencies 36.1% and 3.4% (17.9% and
6.6%) for θ =50% and 1%, respectively. Hence, χ2(m) is not a proper approximation to the
null distributions of QLB(m) and QML(m) in this case. For certain parameter settings, the QLB

and QML tests may reject their null hypotheses with high probabilities, even if there is no serial
correlations and the volatility clustering effect. For instance, given (δo, δ1) = (1, 0.9) and m/T =
5%, these two tests have the empirical rejection frequencies 52.9% and 32.0%, respectively.
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4.2 DGPs with an AR or GARCH structure

For the AR (GARCH) process, as expected, Table 2 shows that the QLB (QML) test can powerfully
reject the null hypotheses when the innovations are distributed as N(0, 1). For example, given
m/T = 5% and θ = 5%, the QLB test has the power 99.4% against the AR process with α = 0.3;
the QML test rejects the GARCH process with (βo, β1, β2) = (1, 0.3, 0.6) and (1, 0.05, 0.9) with the
frequencies 99.3% and 87.0%, respectively. However, the power performance of these two tests is
still influenced by the tail behavior of innovation distribution. Given m/T = 10% and θ = 5%,
the power of the QLB test against the AR process with α = 0.3 drops from 96.8% to 70.8% when
the innovation distribution N(0, 1) is replaced by L(2); on the other hand, the QML test has the
power 98.3% against the GARCH process with (βo, β1, β2) = (1, 0.3, 0.6) when the innovations
are distributed as N(0, 1), but the power is reduced to 36.2% for L(1) distributed innovations.

From this study, we also see that the QLB (QML) test may reject the null hypothesis with
certain probabilities because of the volatility clustering effect (serial correlations). Table 2 shows
that, given m/T = 5% and θ = 5%, the QLB test has the rejection frequency 85.9% for the
GARCH process with (βo, β1, β2) = (1, 0.3, 0.6) and N(0, 1), even though this GARCH process
is a white noise sequence. On the other hand, given the same m/T and θ, the QML test has the
rejection frequency 16.5% against the AR process with α = 0.3 and N(0, 1) innovations. This
process contains no GARCH structures, but the above rejection frequency is much larger than
the 5% nominal level. This evidence demonstrates the difficulty of using these two Q tests to
distinguish between serial correlations and the volatility clustering effect.

5 Conclusions

This simulation study shows that both the size and power performance of the QLB and QML tests
are not robust to heavily tailed data. Furthermore, these two tests may reject their null hypotheses
because of certain types of nonlinearity and conditionally heteroskedastic higher-order moments,
even if the process being tested does not have ARMA-GARCH structures. For the processes
with AR or GARCH structures, these two tests may not be able to distinguish between serial
correlations and the volatility clustering effect. In consequence, we may not completely rely on
these Q tests to construct and check ARMA-GARCH models. The results of this study also
support the importance of developing new portmanteau tests for serial correlations which can be
robust to the volatility clustering effect; see e.g., Lobato et al. (2001) and the references therein.
However, we still need other portmanteau tests for serial correlations and the volatility clustering
effect that are robust to nonlinearity, conditional heteroskedastic higher-order moments, and
distributional heavy tails.
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Table 1: Rejection frequencies of QLB(m) and QML(m) for DGPs (1), (2), and (3).

Ljung-Box Q(m) McLeod-Li Q(m)

DGP m/T θ = 50% 25% 10% 5% 1% 50% 25% 10% 5% 1%

(1) i.i.d. sequences

5% 50.7 24.8 10.4 5.6 1.3 44.9 22.2 9.7 5.4 1.5

N(0, 1) 10% 48.2 25.1 11.4 6.6 1.6 44.9 23.4 10.2 5.8 1.7

30% 48.0 28.5 14.7 9.6 4.0 41.8 24.3 12.3 8.3 3.2

5% 44.2 22.4 9.1 5.0 1.4 20.1 13.6 9.3 7.3 4.8

t(3) 10% 43.0 21.4 9.7 5.7 1.7 20.9 14.2 9.4 7.4 4.3

30% 39.1 22.9 12.1 7.4 2.9 16.9 10.2 5.9 4.2 2.3

5% 16.2 12.5 9.5 7.8 5.8 7.7 6.5 5.5 5.0 4.2

t(1) 10% 16.4 12.4 9.5 8.3 5.9 8.9 7.5 6.3 5.9 4.9

30% 10.7 6.9 4.1 2.9 1.2 4.5 2.6 1.4 0.8 0.4

5% 38.6 19.3 8.8 5.5 2.1 18.3 13.8 10.9 9.3 6.4

L(1) 10% 36.4 19.1 9.3 5.9 2.2 19.1 13.9 10.4 8.4 6.0

30% 34.0 19.6 10.8 7.2 2.9 13.9 8.5 4.9 3.5 1.7

5% 20.6 14.5 10.5 8.6 6.0 10.8 9.1 7.6 6.9 5.6

L(2) 10% 21.9 14.7 10.5 8.0 4.9 12.3 10.4 8.5 7.6 6.0

30% 17.2 10.9 6.6 4.4 1.9 7.7 4.6 2.5 1.8 0.7

(2) nonlinear process with the parameters (µ1, µ2; σ1, σ2)

5% 100 100 100 100 100 47.7 23.9 9.7 5.3 1.5

(1,-1;1,1) 10% 100 100 100 100 100 47.6 24.7 10.8 5.8 1.4

30% 100 100 100 100 100 45.2 26.3 14.2 8.8 3.6

5% 99.5 98.2 95.5 92.7 85.7 70.8 53.3 37.9 29.4 17.5

(1,-1;1,4) 10% 98.6 95.8 91.0 86.6 76.4 61.6 43.9 29.3 22.4 12.7

30% 94.9 88.9 80.9 75.0 61.9 49.9 35.3 24.3 18.7 10.5

(3) conditionally heteroskedastic skewness process with the parameter (δo, δ1)

(1,0.5) 5% 36.1 20.8 11.1 7.5 3.4 17.9 13.9 10.5 9.0 6.6

10% 33.1 18.6 10.3 6.8 3.2 17.0 13.4 10.4 8.9 6.2

30% 28.7 16.7 9.7 6.3 2.8 11.2 7.1 4.5 3.2 1.6

(1,0.9) 5% 62.2 59.9 57.7 56.0 52.9 39.1 36.9 35.2 34.0 32.0

10% 50.4 47.4 44.3 42.7 39.2 31.4 29.8 28.2 27.0 24.9

30% 14.6 12.3 10.9 10.2 8.5 8.9 7.7 6.8 6.3 5.4

Note: The entries are rejection frequencies in percentages; θ denotes the nominal size; T = 500.
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Table 2: Rejection frequencies of QLB(m) and QML(m) for DGPs (4) and (5).

Ljung-Box Q(m) McLeod-Li Q(m)

DGP m/T θ = 50% 25% 10% 5% 1% 50% 25% 10% 5% 1%

(4) AR(1) process with the parameter α = 0.3 and the distribution of εt

5% 100 100 99.7 99.4 97.5 65.1 42.3 24.1 16.5 7.3

N(0, 1) 10% 99.9 99.6 98.4 96.8 92.0 59.5 37.4 20.8 14.1 5.9

30% 99.3 97.2 93.1 89.3 78.7 53.3 34.5 21.0 15.0 7.4

5% 99.9 99.7 99.4 98.9 96.4 32.2 22.6 15.9 12.5 8.7

t(3) 10% 99.9 99.3 98.1 96.4 89.6 26.8 19.2 13.4 11.0 7.1

30% 97.1 94.0 88.9 84.8 73.7 21.1 14.2 09.2 6.8 3.6

5% 99.5 99.3 98.9 98.5 95.7 8.2 7.2 6.2 5.7 4.8

t(1) 10% 88.4 67.2 56.2 50.1 39.9 9.7 8.3 7.2 6.6 5.6

30% 44.3 38.7 33.9 30.4 24.2 6.1 4.0 2.5 1.8 0.8

5% 100 100 99.9 99.7 97.4 27.4 21.4 16.7 14.7 10.9

L(1) 10% 99.9 99.4 98.2 96.0 87.4 24.7 18.3 14.1 11.5 8.2

30% 95.8 91.9 85.0 79.9 66.9 16.6 11.3 7.0 5.2 2.6

5% 99.9 99.9 99.8 99.8 97.4 13.4 11.2 9.5 8.6 7.1

L(2) 10% 97.2 87.2 77.7 70.8 58.5 14.5 12.5 10.6 9.6 7.8

30% 64.2 57.0 49.1 44.0 34.7 8.7 5.9 3.5 2.7 1.3

(5) GARCH(1,1) process with the parameters (βo, β1, β2) and the distribution of εt

(1,0.3,0.6) 5% 96.9 93.2 89.2 85.9 78.6 99.8 99.6 99.5 99.3 99.0

N(0, 1) 10% 93.6 87.5 81.1 76.8 68.4 99.1 98.7 98.5 98.3 97.8

30% 69.4 58.9 50.7 45.6 35.9 95.3 94.6 93.7 93.0 91.9

(1,0.05,0.9) 5% 83.4 67.2 51.0 41.3 26.5 95.6 92.7 89.3 87.0 81.8

N(0, 1) 10% 81.4 65.6 50.1 41.4 28.4 93.0 89.1 84.5 81.7 76.6

30% 68.5 52.6 38.8 31.3 19.5 83.4 77.4 71.7 67.7 61.2

(1,0.3,0.6) 5% 99.7 99.3 98.6 97.4 95.3 98.9 98.6 98.4 98.1 97.8

t(3) 10% 98.9 97.8 96.4 95.1 92.3 97.7 97.2 96.7 96.3 95.5

30% 81.3 75.8 69.2 65.1 57.2 90.9 89.7 88.2 87.5 85.9

(1,0.05,0.9) 5% 95.9 90.6 83.1 77.2 66.6 97.8 96.9 95.7 95.2 93.3

t(3) 10% 96.4 91.6 85.6 81.6 71.8 96.5 95.1 94.0 93.3 91.6

30% 85.3 77.8 69.9 64.3 54.0 89.4 87.5 85.4 83.7 80.8

(1,0.3,0.6) 5% 79.5 64.4 49.2 41.7 30.1 62.3 55.1 49.4 45.8 40.4

L(1) 10% 67.6 51.5 38.1 31.3 21.3 50.9 44.3 38.9 36.2 30.6

30% 44.6 30.5 20.7 15.9 8.9 31.1 25.1 19.9 16.9 12.1

(1,0.05,0.9) 5% 74.7 56.9 40.5 32.4 21.0 46.3 39.2 34.3 31.4 26.4

L(1) 10% 68.0 50.0 34.8 27.7 17.8 42.1 35.1 29.5 25.9 21.0

30% 47.0 33.1 21.5 16.1 8.9 22.7 16.6 11.3 8.8 5.8

Note: The entries are rejection frequencies in percentages; θ denotes the nominal size; T = 500.
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