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Abstract

This paper proposes a semi-nonparametric Poisson model with an endogenous binary
variable, which generalizes bivariate correlated unobserved heterogeneity using Hermite
polynomials, and compares this model with a parametric one. The National Health Interview
Survey (NHIS) data from 1990 shows the difference between the endogenous binary
variable's coefficients of the semi-nonparametric and parametric models.
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1. Introduction

Count data models explain the behavior of discrete and non-negative
dependent random variables and are used in applied econometrics such as
industrial organization, health economics, and population economics. A
Poisson model is one of the methods to estimate count data. Moreover,
many recent studies use a negative binomial 2 (NB2) model that assumes
additive separable log-gamma distributed heterogeneity.

In microeconometric applications, we often come across situations where
explanatory variables (in particular, an endogenous binary variable) are
simultaneously determined with the dependent variable. In this case, the
Poisson and NB2 models yield biased estimates of parameters of interest
because these models assume perfect exogeneity of explanatory variables.
Therefore, count data models with an endogenous binary variable are
required, and many studies have been conducted to analyze this problem.
For example, Terza (1998) proposes a nonlinear weighted least squares
(NWLS) estimator; Mullahy (1997) and Windmeijer and Santos-Silva (1997)
use Generalized Method of Moments (GMM) to estimate such a model;
and Kenkel and Terza (2001) analyze the endogeneity bias using Box-Cox
transformation.1 Moreover, Romeu and Vera-Hernández (2005) develop
another count data model with an endogenous binary variable on the basis of
the polynomial Poisson model proposed by Cameron and Johannson (1997).
The main feature of their model is that it comprises a semiparametric model
using a polynomial expansion by a dependent variable. However, the binary
endogenous variable part is parametric, and the dependent variable does not
explicitly assume heterogeneity.

This paper proposes another semiparametric model to estimate a count
data variable with an endogenous binary variable. This paper considers a
simple Poisson model, which has one endogenous binary variable, and the
heterogeneity of both count dependent and binary variables. In this model
setup, we propose a Poisson model that comprises a semi-nonparametric joint
distribution using Hermite polynomials based on the discussion of Gallant
and Nychka (1987), Gabler et al. (1993), and van der Klaauw and Koning
(2003). Our model is semiparametric and includes the natural extension
of a bivariate normal distribution. That is, both the count dependent and
endogenous binary variables explicitly assume semiparametric heterogeneity.
We investigate the difference between the endogenous binary variable’s
coefficients of the parametric and semi-nonparametric models using the 1990

1From a Bayesian point of view, Kozumi (2002), Jochmann (2003), Munkin and Trivedi
(2003), and Deb et al. (2006) analyze the endogeneity of count data.
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National Health Interview Survey (NHIS) data employed by Kenkel and
Terza (2001).

The rest of the paper is organized as follows. Section 2 proposes a
semi-nonparametric count data model with an endogenous binary variable
and discusses an efficient maximization algorithm that contains a numerical
integral. Section 3 depicts the application of the NHIS data, and Section 4
presents our concluding remarks.

2. Poisson estimation with an endogenous

binary variable

We consider a count data model with an endogenous binary variable proposed
by Terza (1998). Let yi, i = 1, . . . , N , denote a count dependent variable that
takes a nonnegative integer value; let xi and zi denote explanatory variables
(covariates), where xi is a k1×1 vector and zi is a k2×1 vector. The marginal
distribution of yi takes the following form:

f (yi | di, ε1i) =
exp (−λi) (λi)

yi

yi!
, λi = exp (βddi + x′

iβ1 + ε1i) , (1)

where β1 and βd denote vectors of unknown parameters, and ε1i is unobserved
heterogeneity. Moreover, di represents an endogenous binary variable and is
assumed to be generated by the process di = 1 if d∗

i = z′iβ2 +ε2i ≥ 0 and di =
0; otherwise, where d∗

i is a latent variable, ε2i is unobserved heterogeneity,
and β2 denotes a vector of parameters.

Many studies assume that the vector (ε1i, ε2i) follows a bivariate normal
distribution with zero mean and covariance matrix (σ2, ρσ, 1). In this
assumption, the joint density is easily evaluated using a numerical integral.
However, this normally distributed assumption leads to a specification
problem. Under a linear-exponential mean specification assumption and a
set of instruments, Mullahy (1997) shows that the GMM estimators have
consistency. In the GMM, to improve the efficiency of the estimators, it is
necessary to use higher order moment conditions. The NWLS proposed in
Terza (1998), which requires some additional distributional assumptions, has
the same properties. Therefore, we require an alterative robust method for
this count data model with an endogenous binary regressor.

Semiparametric estimation of this model implies approximating an
unknown error term using Hermite polynomials (Gallant and Nychka, 1987;
Gabler et al., 1993). Following van der Klaauw and Koning (2003), the joint
distribution of ε1i and ε2i takes the following semi-nonparametric bivariate
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normal density:

g (ε1i, ε2i) =
1

P

(
K∑

j=0

K∑
k=0

αjkε
j
1iε

k
2i

)2

1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i

σ1

)2

− 2ρ
ε1i

σ1

ε2i

σ2
+

(
ε2i

σ2

)2
}]
≡ g∗

P
, (2)

where P =
∫∫∞

−∞ g∗dε1i dε2i ensures integration to 1 by scaling the density, σ1

and ρ are standard deviation and correlation parameters, respectively, and
αjk is the parameter to be estimated. To identify the parameters, we set
α00 = 1 and σ2 = 1. When αjk = 0 (∀j ≥ 1 and ∀k ≥ 1), this density results
in a bivariate normal distribution.

Hence, the log-likelihood function of a Poisson model with a
semi-nonparametric bivariate normal density takes the following form:

ln fi = (1− di) ln

[∫ −z′iβ2

−∞

∫ ∞

−∞
f (yi | di, ε1i) g (ε1i, ε2i) dε1i dε2i

]

+ di ln

[∫ ∞

−z′iβ2

∫ ∞

−∞
f (yi | di, ε1i) g (ε1i, ε2i) dε1i dε2i

]
. (3)

Substituting Eqs.(1) and (2) into Eq.(3) yields the full information maximum
likelihood (FIML) of the semi-nonparametric Poisson model with an
endogenous dummy variable.2 This model generalizes heterogeneity and
contains the FIML model with a bivariate normal distribution as a special
case.

The model in Eq.(3) includes double integrals and has no analytical
solution. Fortunately, we simplify the double integrals to the following single
integral:

ln fi = ln

[∫ ∞

−∞
f (yi |ε1i)

G2 (ε1i)

P
g1 (ε1i) dε1i

]
, (4)

where g1 is the probability density function of a normal distribution. The
term G2 contains Hermite series and depends only on ε1, which takes the
following form:

G2 (ε1i) =

{∫ −z′iβ2

−∞ g2 (ε2i|ε1i) dε2i if di = 0∫∞
−z′iβ2

g2 (ε2i|ε1i) dε2i if di = 1
. (5)

2This model has another restriction of E [ε1i] = E [ε2i] = 0 (location normalization).
However, this restriction is cumbersome when K ≥ 2. Following Melenberg and van Soest
(1996), we use an alternative restriction, setting the constant terms equal to those in the
parametric model.
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After some algebraic computation, Eq.(5) has an analytical solution.3

Since Eq.(4) has a single integral over [−∞,∞], the Gauss-Hermite
quadrature method is applied to evaluate the log-likelihood. However,
Rabe-Hesketh et al. (2002, 2005) demonstrate the results of Monte Carlo
simulation and conclude that the log-likelihood function approximated by
this method often has a sharp peak and is poorly approximated by a
low-degree polynomial. Moreover, they propose the adaptive Gaussian
quadrature based on importance sampling and the Bayesian Markov chain
method.4 Following Rabe-Hesketh et al. (2002, 2005), this paper applies the
adaptive Gaussian quadrature to estimate the proposed model.5

Let the parameter vector of this density and the mean and variance of
the posterior density be θ = [β ′

1, β
′
2, σ1, ρ, αjk, . . . ]

′, μi, and τi, respectively.
Recall that Eq.(4) can be rewritten as follows:

ln fi = ln

[
Q∑

q=1

ωqf (yi |θ, uq)
G2 (uq|θ)

P

g1 (uq|θ)
h (uq|μ, τ)

1√
π

]
≡ ln

[
Q∑

q=1

ωqfi (θ|uq)

]
,

where ωq is the qth weight, uq is the qth evaluation point of the Gauss-Hermite
quadrature over [−∞,∞], Q is the number of weights, and h (·) is the
importance function of a normal distribution with mean μi and variance
τi. Further, the adaptive Gaussian quadrature obtains the parameters as
follows:

1) Set the initial parameters θ(t), μ
(t)
i , τ

(t)
i , and t← 0.

2) Calculate the following posterior density based on μ
(t)
i,T−1 and τ

(t)
i,T−1 until

convergence:

μ
(t)
i,T =

∑Q
q=1

(
μ

(t)
i,T−1 +

√
2τ

(t)
i,T−1uq

)
ωqfi

(
θ(t)|uq

)
fi (θ(t))

,

τ
(t)
i,T =

√√√√∑Q
q=1

(
μ

(t)
i,T−1 +

√
2τ

(t)
i,T−1uq

)2

ωqfi (θ(t)|uq)

fi (θ(t))
−
(
μ

(t)
i,T

)2

,

3See Appendix for further detail.
4Using the adaptive Gaussian quadrature, Miranda and Rabe-Hesketh (2006) propose

the stata program (ssm.ado) of the parametric binary, ordinary, and Poisson models with
an endogenous binary variable.

5Prior to investigating the proposed model, we estimate a parametric Poisson model
with an endogenous binary variable using both the Gauss-Hermite and adaptive Gaussian
quadratures. The value of the log-likelihood under the latter is higher than that under the
former. Moreover, the difference between the endogenous binary variable’s coefficients is
not negligible (See Table 2 and Footnote 7).
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where fi

(
θ(t)
)

=
∑Q

q=1 ωqfi

(
θ(t)|uq

)
and T is the number of iterations

in this step.

3) Maximize the log-likelihood function with respect to θ(t) given μ
(t)
i and

τ
(t)
i .

4) Set t← t + 1. Repeat steps 2 to 3 until convergence.

3. An application to drinking behavior

We present the results of the simplified application of the proposed model
using a subsample of 2,467 observations from the 1990 National Health
Interview Survey (NHIS) data, originally employed by Kenkel and Terza
(2001).6 All observations comprise males and current drinkers with high
blood pressure. The dependent variable is the number of alcoholic beverages
consumed in the last two weeks (D). The mean of this variable is 14.70 (21%
of the observations are zero observations), and the minimum and maximum
values of this variable are 0 and 168, respectively. Moreover, 687 of the
individuals have been advised by a physician to reduce drinking (ADVICE).
The explanatory variables are as follows: monthly income (EDITINC), years
of schooling (EDUC), a dummy for 30 < age ≤ 40 (AGE30), 40 < age ≤ 50
(AGE40), 50 < age ≤ 60 (AGE50), 60 < age ≤ 70 (AGE60), age > 70
(AGEGT70), black (BLACK), non-white and non-black (OTHER), married
(MARRIED), widowed (WIDOW), divorced or separated (DIVSEP),
employed (EMPLOYED), unemployed (UNEMPLOY), northeastern
residents (NORTHE), midwestern residents (MIDWEST), south resident
(SOUTH), medicare status (MEDICARE), public insurance status
(MEDICAID), military insurance status (CHAMPUS), health insurance
status (HLTHINS), regional source of care (REGMED), consulting the same
doctor (DRI), limits on major daily activity (MAIORLIM), limits on some
daily activity (SOMELIM), having diabetes (HVDIAB), having a heart
condition (HHRTCOND), and having had stroke (HADSTROKE). The
entire description of the variables and summary statistics can be found in
Kenkel and Terza (2001).

Table 1 shows the estimated result of the selection equation and Table 2
shows that of the drinking equation of the parametric, K = 1, and K = 2
models. Since the semi-nonparametric models nest the parametric model
as a special case, we apply the log-likelihood ratio (LR) test to select the
best model. The test statistics of normality against the semi-nonparametric

6The data is downloadable from the Journal of Applied Econometrics Data Archive
(http://econ.queensu.ca/jae/).
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Table I: Estimates of the selection equation

parametric semi-nonparametric
K = 1 K = 2

EDITINC −0.001 (0.005) 0.000 (0.005) 0.001 (0.007)
AGE30 0.206 (0.107) 0.141 (0.124) 0.237 (0.121)
AGE40 0.104 (0.109) 0.050 (0.118) 0.087 (0.119)
AGE50 0.061 (0.112) 0.003 (0.119) 0.044 (0.122)
AGE60 0.051 (0.123) −0.068 (0.133) 0.015 (0.135)
AGEGT70 0.115 (0.151) −0.088 (0.164) 0.019 (0.168)
EDUC −0.028 (0.010) −0.065 (0.026) −0.032 (0.012)
BLACK 0.299 (0.080) 0.253 (0.126) 0.350 (0.106)
OTHER 0.262 (0.215) 0.174 (0.235) 0.327 (0.230)
MARRIED 0.147 (0.089) 0.028 (0.096) 0.122 (0.097)
WIDOW 0.244 (0.142) 0.155 (0.163) 0.286 (0.161)
DIVSEP 0.294 (0.105) 0.166 (0.128) 0.249 (0.119)
EMPLOYED −0.005 (0.082) −0.146 (0.103) −0.049 (0.089)
UNEMPLOY 0.220 (0.176) 0.017 (0.187) 0.124 (0.194)
NORTHE 0.062 (0.083) −0.033 (0.089) 0.102 (0.093)
MIDWEST −0.052 (0.079) −0.155 (0.100) −0.041 (0.086)
SOUTH −0.046 (0.079) −0.155 (0.100) −0.038 (0.086)
MEDICARE −0.023 (0.081) −0.053 (0.091) 0.001 (0.094)
MEDICAID 0.039 (0.113) 0.000 (0.125) 0.013 (0.129)
CHAMPUS 0.017 (0.082) 0.024 (0.090) −0.034 (0.092)
HLTHINS −0.142 (0.060) −0.166 (0.094) −0.179 (0.076)
REGMED 0.126 (0.090) 0.115 (0.103) 0.258 (0.107)
DRI 0.032 (0.081) 0.038 (0.088) −0.051 (0.088)
MAJORLIM 0.148 (0.083) 0.126 (0.107) 0.072 (0.102)
SOMELIM 0.033 (0.081) 0.023 (0.087) 0.031 (0.093)
HVDIAB 0.302 (0.087) 0.337 (0.162) 0.344 (0.121)
HHRTCOND 0.183 (0.063) 0.204 (0.102) 0.181 (0.079)
HADSTROK 0.085 (0.128) 0.091 (0.145) 0.206 (0.158)
CONSTANT −0.583 (0.182) −0.583 −0.583

Note: Standard errors are in parentheses.

models with K = 1 and K = 2 equal 9.408 and 226.890, respectively.
This implies that we must reject the hypothesis that heterogeneity follows a
bivariate normal distribution. Moreover, the test statistic of K = 1 against
the semi-nonparametric model with K = 2 equals 217.482. Hence, the
semi-nonparametric model with K = 2 is the best of the three models.

In Tables 1 and 2, we find certain features of the estimated parameters.
First, both the estimated parameters and standard errors of the three
models, except for the endogenous binary variable’s coefficients, closely
resemble each other. Second, the parameter values of the endogenous
variable (ADVICE) are statistically significant at the 1% level; however,
the values differ among the three models: −2.291 in the parametric model,
−1.979 in the semi-nonparametric model with K = 1, and −1.566 in the
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Table II: Estimates of the drinking equation

parametric semi-nonparametric
K = 1 K = 2

ADVICE −2.291 (0.248) −1.979 (0.341) −1.566 (0.213)
EDITINC 0.010 (0.011) 0.013 (0.013) 0.005 (0.012)
AGE30 0.153 (0.193) 0.010 (0.189) 0.142 (0.157)
AGE40 −0.075 (0.194) −0.173 (0.188) −0.005 (0.156)
AGE50 −0.243 (0.194) −0.330 (0.188) −0.101 (0.157)
AGE60 −0.201 (0.204) −0.420 (0.197) −0.066 (0.164)
AGEGT70 −0.285 (0.238) −0.661 (0.227) −0.280 (0.188)
EDUC −0.027 (0.017) −0.084 (0.019) −0.041 (0.014)
BLACK 0.048 (0.146) −0.102 (0.139) −0.097 (0.118)
OTHER −0.233 (0.400) −0.441 (0.365) −0.379 (0.296)
MARRIED 0.012 (0.154) −0.207 (0.151) −0.071 (0.125)
WIDOW 0.329 (0.245) 0.141 (0.238) 0.172 (0.200)
DIVSEP 0.403 (0.187) 0.135 (0.181) 0.335 (0.150)
EMPLOYED 0.084 (0.131) −0.126 (0.128) −0.035 (0.105)
UNEMPLOY 0.729 (0.304) 0.353 (0.288) 0.424 (0.241)
NORTHE −0.063 (0.148) −0.231 (0.142) −0.077 (0.120)
MIDWEST −0.272 (0.140) −0.429 (0.137) −0.212 (0.114)
SOUTH −0.238 (0.139) −0.403 (0.135) −0.170 (0.113)
CONSTANT 2.584 (0.318) 2.584 2.584
σ1 2.199 (0.094) 1.843 (0.237) 1.730 (0.398)
ρ 0.835 (0.039) 0.755 (0.101) 0.784 (0.097)
α01 0.326 (2.125) −1.206 (1.205)
α02 −0.643 (0.437)
α10 0.051 (0.956) 0.717 (0.735)
α11 0.156 (0.090) 0.805 (0.166)
α12 0.183 (0.238)
α20 −0.220 (0.115)
α21 −0.061 (0.130)
α22 −0.018 (0.011)

log-likelihood −10,202.043 −10,197.339 −10,088.598

Note: Standard errors are in parentheses.

semi-nonparametric model with K = 2.7 This means that advice appears to
reduce the consumption of alcoholic beverages by [exp (−2.291)− 1]×100 =
−89.9% in the parametric model, [exp (−1.979)− 1] × 100 = −86.2% in
the semi-nonparametric model with K = 1, and [exp (−1.566)− 1] × 100 =
−79.1% in the semi-nonparametric model with K = 2. Compared to the
result of the parametric model, the reduction of alcoholic beverages in the
two semi-nonparametric models is small. Based on the LR test and estimated

7Using the Gauss-Hermite quadrature, the log-likelihood values of the parametric, K =
1, and K = 2 models are −10, 732.920, −10, 460.757, and −10, 271.797, respectively. The
coefficient values of the endogenous binary variable (ADVICE) are −1.235, −1.038, and
−0.819, respectively. Moreover, the advice effects of the three models are−70.9%, −64.6%,
and −55.9%, respectively.
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Figure 1: Estimated density of heterogeneity

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

0

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ε
1

ε
2

g 
(

ε 1
, 

ε 2
)

(a) parametric

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

0

5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ε
1

ε
2

g 
(

ε 1
, 

ε 2
)

(b) K = 1
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(c) K = 2

results, the influence of the doctor’s advice has a negative effect on drinking
behavior; however, it can be overestimated by the parametric model.

Figure 1 graphs the estimated densities of the three models using the 10%
significant coefficients. We find that the semi-nonparametric model with K =
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1 has a fatter tail than the normal density (parametric) model; moreover, the
semi-nonparametric model with K = 2 is a twin-peak distribution.

4. Conclusion

This paper proposes a new semi-nonparametric count data estimation with an
endogenous binary variable that generalizes bivariate correlated unobserved
heterogeneity using Hermite polynomials. In an example using the 1990
NHIS data, the semi-nonparametric model with K = 2 overcomes the other
models in terms of the LR test. The absolute values of the endogenous binary
regressor coefficients of the semi-nonparametric models are smaller than that
of the parametric model, and that of the semi-nonparametric model with
K = 2 is the smallest of the three. This introduces the interpretation of the
binary endogenous variable, that is, the effect of the advice variable. The
parametric model overestimates the effect of doctor’s advice in our example.
Moreover, the estimated densities of the semi-nonparametric models have
fatter tail than that of the parametric model.

One major advantage of the semi-nonparametric model is the flexibility of
bivariate distributed heterogeneity. The difference between the endogenous
binary variable’s coefficients of the parametric and semi-nonparametric
models is not negligible in our example. Therefore, it is useful to generalize
bivariate heterogeneity using Hermite polynomials.
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Appendix

Following van der Klaauw and Koning (2003), we specify the bivariate
semi-nonparametric normal density as follows:

g (ε1i, ε2i) =
1

P

(
K∑

j=0

K∑
k=0

αjkε
j
1iε

k
2i

)2

× 1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i

σ1

)2

− 2ρ
ε1i

σ1

ε2i

σ2
+

(
ε2i

σ2

)2
}]

, (A1)

where

P =

∫∫ ∞

−∞

(
K∑

j=0

K∑
k=0

αjkε
j
1iε

k
2i

)2

× 1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2 (1− ρ2)

{(
ε1i

σ1

)2

− 2ρ
ε1i

σ1

ε2i

σ2

+

(
ε2i

σ2

)2
}]

dε1i dε2i.

We now consider the case of K = 2. The round bracket of Eq.(A1) can
be rearranged as

(
2∑

j=0

2∑
k=0

αjkε
j
1iε

k
2i

)2

= γ0 + γ1ε2i + γ2ε
2
2i + γ3ε

3
2i + γ4ε

4
2i,

where

γ0 =
(
α00 + α10ε1i + α20ε

2
1i

)2
,

γ1 = 2
(
α00 + α10ε1i + α20ε

2
1i

) (
α01 + α11ε1i + α21ε

2
1i

)
,

γ2 = 2
(
α00 + α10ε1i + α20ε

2
1i

) (
α02 + α12ε1i + α22ε

2
1i

)
+
(
α01 + α11ε1i + α21ε

2
1i

)2
,

γ3 = 2
(
α01 + α11ε1i + α21ε

2
1i

) (
α02 + α12ε1i + α22ε

2
1i

)
,

γ4 =
(
α02 + α12ε1i + α22ε

2
1i

)2
.

We require the following algebraic computation to obtain Eq.(4) or P :

∫ ∞

−∞

∫ b̂

â

f (yi|di, ε1i) g (ε1i, ε2i) dε2i dε1i

=

∫ ∞

−∞
f (yi|di, ε1i)

1√
2πσ1

exp

(
−1

2

(
ε1i

σ1

)2
)

11



× 1

P

∫ b̂

â

4∑
j=0

γjε
j
2

1√
2πσ2

√
1− ρ2

× exp

⎡
⎢⎣− 1(

σ2

√
2 (1− ρ2)

)2

(
ε2i − ρ

σ2

σ1
ε1i

)2

⎤
⎥⎦ dε2i dε1i

≡
∫ ∞

−∞
f (yi|di, ε1i) g1 (ε1i)

∫ b̂

â

g2 (ε2i|ε1i)

P
dε2i dε1i

≡
∫ ∞

−∞
f (yi|di, ε1i) g1 (ε1i)

G2 (ε1i)

P
dε1i, (A2)

where g1 (·) is the probability density function of a normal distribution. When
â = −∞ and b̂ = ∞, Eq.(A2) results in P . Substituting ξ = ρσ2ε1i/σ1,
u = ε2i − ξ and δ = σ2

√
2 (1− ρ2) into Eq.(A2) yields

G2

P
=

1√
πδ

1

P

∫ b̂−ξ

â−ξ

4∑
j=0

γj (u + ξ)j exp

[
−
(u

δ

)2
]

du

≡ 1√
πδ

1

P

∫ b

a

4∑
j=0

ηju
j exp

[
−
(u

δ

)2
]

du,

where a = â− ξ, b = b̂− ξ, and

η0 = γ4ξ
4 + γ3ξ

3 + γ2ξ
2 + γ1ξ + γ0, η1 = 4γ4ξ

3 + 3γ3ξ
2 + 2γ2ξ + γ1,

η2 = 6γ4ξ
2 + 3γ3ξ + γ2, η3 = 4γ4ξ + γ3,

η4 = γ4.

Therefore, using the following recursion formula (van der Klaauw and
Koning, 2003):

Ik (a, b) =

∫ b

a

uk exp

(
−u2

δ2

)
du

=
δ2

2

[
ak−1 exp

(
−a2

δ2

)
− bk−1 exp

(
− b2

δ2

)]
+

(k − 1) δ2

2
Ik−2 (a, b)

and substituting b = −z′iβ2 − ξ, we obtain the following relation:

G2 (ε1i|di = 0)

P
=

1√
πδ

1

P
[η0I0 (−∞, b) + η1I1 (−∞, b) + η2I2 (−∞, b)

+η3I3 (−∞, b) + η4I4 (−∞, b)] .

Using the same procedure, we can calculate the term P .
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