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Abstract

The traditional continuous and smooth models, like the GARCH model, may fail to capture
extreme returns volatility. Therefore, this study applies the bivariate poisson (CBP)-GARCH
model to study jump dynamics in price volatility of crude oil and heating oil during the past
20 years. The empirical results indicate that the variance and covariance of the GARCH and
CBP-GARCH models were found to be similar in low jump intensity periods and to diverge
during jump events. Significant overestimations occur during high jump time periods in the
GARCH model because of assumptions of continuity, and easily leading to excessive
hedging and overly measuring risk. Nevertheless, in the CBP-GARCH model, the specific
shocks are assumed to be independent of normal volatility and to reduce the persistence of
abnormal volatility. Therefore, the CBP-GARCH model is appropriate and necessary in high
volatility markets.
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1. INTRODUCTION 
Crude oil not only is the world’s most actively traded commodity, but also leads 

to the largest-volume futures contract trading for a physical commodity on the New 
York Mercantile Exchange (NYMEX). Given their excellent liquidity and price 
transparency, these futures contracts are used as a key international pricing benchmark. 
Notably, heating oil is a product refined from crude oil. With the lifting of U.S. price 
controls on heating oil in the mid 1970's, the NYMEX began developing a heating oil 
futures contract and, in 1978, introduced the world's first successful energy futures 
contract. Heating oil futures has become one of the premier distillate contracts in 
futures trading. In 1983, crude oil futures contracts were introduced. In its early years, 
the NYMEX Division heating oil contract mainly attracted wholesalers and large 
consumers of heating oil in the New York Harbor area. Today, a wide variety of 
businesses, including oil refiners, wholesale marketers, heating oil retailers, trucking 
companies, airlines, and marine transport operators, as well as other major consumers 
of fuel oil, have embraced this contract as a risk management vehicle and pricing 
mechanism. The dominant price component is the cost of crude oil; hence, heating oil 
prices should be closely linked to the cost of crude oil prices1. Observing spot prices 
over the past 20 years (Fig. 1) reveals similar trends in crude oil and heating oil spot 
prices, but there are occasional surges in heating oil spot prices, such as at the end of 
1989 and in early 2000. These surges result from rapid supply and demand shifts 
caused by weather, refinery shutdowns, or political instability. As is seen in Panel B of 
Fig. 1, jumps in returns are occasional. These phenomena can be described by the 
jump model that focuses on the abnormal volatility. However, almost no studies have 
investigated jumps in crude oil and heating oil in energy markets. Accordingly, this 
study employs the correlated bivariate poisson - generalized autoregressive 
conditional heteroscedasticity model (CBP-GARCH model) to demonstrate the need 
to consider such jumps. The GARCH model remains the widely used model for 
researching the volatility behavior of energy assets (Lin and Tamvakis, 2001; Ewing 
et al., 2002; Sadorsky, 2002; Hammoudeh et al., 2003). However, traditional 
continuous and smooth models such as the GARCH may fail to capture extreme 
returns volatility. Accurate estimation of the variance and covariance of the assets can 
improve performance in forecasting, hedging, risk management, etc.  

Volatility estimation and forecasting have been the main task in financial 
markets during the past two decades, and they are fundamental to most areas of 
finance -- for example, asset pricing, portfolio selection, volatility relationship, 
hedging, risk, etc. Most studies assume that time series data follow a smooth and 
                                                 
1 According to EIA’s (Energy Information Agency) Petroleum Marketing Monthly (2001), the final 

price to consumers of home heating oil can be broken down in percentage terms as follows: 42% 
crude oil purchase cost, 12% refining costs, and 46% distribution and marketing costs. 
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continuous volatility process, and GARCH is now widely used in this field (see the 
survey in Poon and Granger, 2003; Bauwens et al., 2006). However, the existence of 
jumps implies that diffusion models are misspecified statistically. Jorion (1988) 
contended that time-varying volatility and occasional jumps are possibly the two most 
notable features of daily financial time series. Moreover, Park (2002) mentioned that 
the standardized residuals of the GARCH model still have excess kurtosis, albeit less 
than for the raw financial returns (also see Bollerslev, 1987; Baillie and Bollerslev, 
1989; Hsieh, 1989). Furthermore, Chan (2003) noted that although multivariate 
GARCH models adequately account for heteroskedasticity, they do not fully capture 
the leptokurtosis in unconditional distributions that is frequently observed in financial 
data. Consequently, financial econometrics further investigates volatility with jumps 
(e.g., Chang and Kim, 2001; Pan, 2002; Eraker, Johannes and Polson, 2003; Chan and 
Maheu, 2002; Johannes, 2004; Maheu and McCurdy, 2003). Most jump models have 
been successfully applied to analyze foreign exchange and stock market returns, and 
these models can improve performance in capturing price behavior in physical 
commodities. In metal markets, Chan and Young (2006) found that the jump model 
closely fits copper spot and futures data. Furthermore, this study introduced the jump 
GARCH model to the energy market and investigated the price behavior of crude oil 
and heating oil, the most liquid trading assets in NYMEX. The traditional GARCH 
model is clearly misapplied to energy assets with high volatility, particularly in 
situations involving large jumps. The problems with estimation that result from the 
traditional GARCH model in such scenarios are eliminated by the bivariate jump 
GARCH model, because this model successfully reduces the limitations associated 
with the continuous volatility process and the univariate jump assumption from 
previous studies.  

Jumps represent a response to unusual news events as part of the latent news 
process and have the potential to capture both smooth and sudden price volatility 
movements (Chan and Young, 2006). Press (1967), who introduced an independent 
jump process in which jump arrival was governed by a Poisson distribution, was the 
first to apply the Poisson jump model to financial markets. Although jumps cannot be 
observed, an ex-post filter can always be constructed to infer their probability. Tucker 
and Pond (1988), Akgiray and Booth (1988) and Hsieh (1989) all found that the 
Poisson jump model provides an effective statistical characterization of daily 
exchange rates. The basic jump models have been further extended in various 
directions, and combining them with the ARCH/GARCH model is an essential 
application (Jorion, 1988; Vlaar and Palm, 1993). Several studies emphasize that the 
time-varying jump fits closely with reality (Betas, 1991; Eraker et al., 2002; Das, 
2003; Chan and Maheu, 2003; Maheu and McCurdy, 2004). However, all of the above 
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models are limited by the use of the univariate setting for capturing the price volatility 
of specific assets. Most researchers now accept that financial volatilities move 
together over time across assets and markets. Recognizing this feature via a 
multivariate modeling framework yields more relevant empirical models than 
working with separate univariate models. Therefore, Chan (2003) devised a bivariate 
jump model that combined the Correlated Bivariate Poisson (CBP) function and the 
GARCH model to analyze jump dynamics. The CBP-GARCH model was applied to 
energy markets to examine price volatility for crude oil and heating oil. 

This study has three aims. First, this investigation aims to accurately model 
volatility for high-volatility energy market assets. This study provides a complete 
analysis of the price volatility of crude oil and heating oil over the past 20 years and 
examines whether the jump model has better performance. Second, this study 
attempts to use bivariate jump models to accurately estimate the volatilities of two 
closely related assets. This model is applied in this way not only because of volatility 
spillovers between markets and assets, but also because of the importance of the 
covariance between series. Therefore, following Chan (2003), this study discusses the 
volatility characteristics of crude oil and heating oil using the correlated bivariate 
jump model. We further relax the strong restrictions on jump size and intensity in the 
simple CBP-GARCH model. Both the asymmetric time-varying assumption in jump 
size and the autoregressive term in jump intensity are added in the model2. Third, this 
study attaches importance to the problem of overestimation and investigates whether 
it occurs in the traditional GARCH model when considering jump events. 
Overestimation of variance and covariance will bias further applications of the model, 
such as hedging, value of risk, portfolio constructing, etc. Hedging is particularly 
important during high-volatility periods. Overestimation will cause excessive hedging 
together with increased costs and reduced hedge effectiveness. Moreover, 
overestimation of volatility increases the value at risk and leads to the loss of potential 
profit. The remainder of this paper is organized as follows. Section 2 presents the 
methodology of the GARCH and CBP-GARCH models. Section 3 then explains the 
data and descriptive statistics. Next, Section 4 describes the empirical results. Finally, 
the last section presents conclusions. 
 

2. METHODOLOGY 
GARCH model 

The GARCH model has been widely used in volatility estimation since being 
introduced by Bollerslev (1986). The standard VEC bivariate model proposed by 

                                                 
2 Thanks for the anonymous reviewers’ suggestion. These extensions provide significant improvement 

in volatility forecasting over the simple CBP-GARCH model.  
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Bollerslev, Engle and Wooldridge (1988) is briefly described by 
tt εμR +=              (1) 

where tR  is a 12× vector of returns, μ is a drift coefficient, and the error term of 
the returns tε  follows the normal distribution with mean 0 and variance tH . The 
conditional variance equation is  

1t1t1tt BHεεACH −−− +′+=           (2) 
where C is a 13× column vector and A and B are 33×  matrices. Furthermore, 
assuming normally distributed errors in the estimation process implies the following 
simple log-likelihood function, 
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where θ  represents the vector of parameters to be estimated and T is the number of 
observations. Since the log-likelihood function in this case is non-linear, we use 
numerical maximization techniques to estimate the model.  
 
CBP-GARCH model 

The CBP-GARCH model is a combination of the GARCH (Bollerslev, 1986) 
and the Poisson Correlated function (M’Kendrick, 1926; Campbell, 1934). The model 
is defined as follows: 

ttt JR̂R +ε+= ,            (4) 

where tR  is a 12× vector of returns consisting of a mean equation R̂ , a random 

disturbance tε , and a jump component tJ . The random disturbance follows a 

bivariate normal distribution with zero mean and variance covariance matrix tH~ . 

In a bivariate framework, the jump component tJ  has a bivariate normal 
distribution with zero mean and variance covariance matrix tΔ . The normal 
disturbance and the jump components are assumed to be independent, defined as: 
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Here, iY  is a random variable called jump size. The sum of the iY  means that the 
return may experience “n” number of jumps depending on the news content that 
enters the market within any single time period t. Each of these jump sizes is 
governed by a normal distribution with mean θ  and variance 2δ . In other words, 
the jump size for the two spots (crude oil and heating oil) can be characterized as:  
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),(N~Y 2
1t1i,t1 δθ  and ),(N~Y 2

2t2j,t2 δθ .       (6) 

The mean of the distribution is allowed to vary asymmetrically over time as a function 
of the size and sign of recent returns in each market: 
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where 1)x(I =  if 0x >  and 0 otherwise. 
In equation (5), two discrete counting variables t1n  and t2n  control the arrival 

of jumps and they are constructed by three independent Poisson variables, namely, 

∗
t1n , ∗

t2n , and ∗
t3n . Each one of these variables has a probability density function 

given by  
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The expected value and the variance of ∗
itn  are both equal to iλ , which is also 

referred to as the jump intensity. The correlated jump intensity counters (M’Kendrick, 
1926; Campbell, 1934) are defined as  

∗∗ += t3t1t1 nnn  and ∗∗ += t3t2t2 nnn .        (9) 

By construction, each of these counting variables ( t1n  and t2n ) is capable of 

generating independent jumps ( ∗
t1n  and ∗

t2n ) and correlated jumps ( ∗
t3n ). The latter 

contribute jumps to both series. 

Using the change of variables method and integrating out ∗
t3n  yields the joint 

probability density for t1n  and t2n , given as: 
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The expected number of jumps is equal to 
3iit )n(E λ+λ= .            (11) 

The definition of the time varying jump intensities is given by Chan (2003), that 
is,  
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where 1itr −  is the rate of return for asset i at time ( 1t − ) and 2
1itr −  is an 

approximation of the last period’s volatility. The jump intensities are assumed to be 
related to market conditions, which are related in volatility. In the same way, the 
covariance is governed by variations in the last period’s volatilities from both series. 
The parametric structure not only introduces additional jump dynamics into the model 
but also allows a time-varying correlation between the counting variables t1n  and 

t2n . The correlation is calculated as follows: 
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Combining the GARCH model with the CBP function, the probability density 
function for tR  given i and j jumps in spot 1 and spot 2 is defined by  
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where t,iju is the usual error term with the jump component t,ijJ  representing the 

effect of i and j jumps: 
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The variance covariance matrix t,ijH  can be separated into two parts:  the variance 

covariance matrix for the normal random disturbance tH~  and for the jump 

components t,ijΔ .  

First, the variance and covariance matrix for the normal random distribution can 
be defined as in equation (2), in which the term 1t

~
−ε  refers to the sum of a 

disturbance and a jump component. Second, the variance covariance matrix for the 
jump components is  
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where 12ρ  is the correlation coefficient between t1Y and t2Y . The variance 

covariance matrix for the CBP-GARCH model is then a sum of tH~  and t,ijΔ . 
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Finally, the conditional density of returns is defined by  
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The log likelihood function is simply the sum of the log conditional densities: 

∑
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Numerical maximization techniques are used to estimate the model. 
 
DATA and DESCRIPTIVE STATISTICS 

This study analyzed the price volatility of the WTI crude oil spot price and the 
New York Harbor No. 2 heating oil spot price using the CBP-GARCH model.  The 
sample period ran from June 2, 1986 to July 31, 2007 and contained 5,319 
observations. All data was obtained from the U.S. Department of Energy (DOE). 
Table 1 lists the descriptive statistics for spot returns3. Crude oil and heating oil 
displayed similar returns, while the standard deviation of heating oil slightly exceeded 
that of crude oil. However, the time series plots in Fig. 1 reveal that the higher 
variance of heating oil resulted from the occasional large price changes. Historically, 
heating oil prices are generally higher during the winter months when demand is 
stronger, but specific events in recent years have led to what seems to be a weakening 
of this seasonal effect on average (Fig. 2). More notably, jumps of heating oil during 
the sample period occur at the end of 1989 and in the early parts of 2000, 2003 and 
2005. The biggest heating oil crisis occurred in February 20004 in response to a 
reduction in supply; cold weather was responsible for driving up demand at the end of 
1989; and a combination of low inventories, high winter demand and the specter of 
war looming caused the high prices in early 2003. In late August and September 2005, 
the heating oil price was at a near record high, up to 217.67, because of hurricanes 
Katrina and Rita. As for crude oil, the largest jump events are related to the Gulf War. 
The first war was in 1990 and 1991, and the second one began in 2003. Lastly, the 
upward trends of both crude oil and heating oil drop due to the crude inventory having 
jumped far more than expected and the unusually mild winter weather. Furthermore, 
both the crude oil and heating oil returns exhibit negative skewness and are 
leptokurtic. The skewness of crude oil and heating oil is -1.0402 and -1.7944, 
respectively, and the excess kurtosis is 19.7780 and 40.4658, respectively, with all the 
values being significant at the 1% level. Table 1 also lists the covariance/correlation 

                                                 
3 Both the series are stationary in the Dickey-Fuller test and the Phillips-Perron test. 
4 According to the DOE, consumers paid an average of $1.21 per gallon throughout the winter in 1999; 

however, during late January to early February 2000, the prices quickly went from $1.21 to $1.99 per 
gallon, an increase of 64%. The DOE established the Northeast Heating Oil Reserve in July 2000 to 
guard against potential shortfalls and price spikes. 
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matrix. The static correlation coefficient and covariance are 0.6552 and 4.2989, 
respectively, and indicate a strong and positive relationship between crude oil and 
heating oil during the past 20 years.  
 
EMPIRICAL RESULTS 
Estimation results of GARCH and CBP-GARCH model 

The empirical results of the GARCH and CBP-GARCH models are listed in 
Table 2, and volatility and covariance are illustrated in Fig. 3. As for the GARCH 
model, all the parameters in the conditional variance equation are significant under 
the 1% level. This indicates that the volatility of both crude and heating oil 
( 11h and 22h ) are directly affected by past innovation and volatility. Higher levels of 
historical conditional volatility are associated with increased current conditional 
volatility. Conditional covariance ( 12h ) also exhibits the characteristics of volatility 
clustering. Next, in the CBP-GARCH model, all the parameters in the GARCH 
volatility terms are significant under the 1% level, as in the GARCH model. 
Furthermore, the jump components of jump size and intensity are discussed below. 
The jump size means are significantly negative at the 1% level ( 10θ  and 20θ ), and 
the asymmetric effects only exist in the heating oil market. The jump sizes of heating 
oil are significantly positive in relation to last period’s positive returns ( +θ2 ). This 
indicates that the mean of the jump size is increasing while the last period’s heating 
oil prices go up. However, the negative information of the down spot prices does not 
affect the jump size mean.  

The variance of the jump size (δ ) is 4.5647 and 4.1609 for crude oil and 
heating oil, respectively, and both are significant under the 1% level, indicating that 
jump variance is higher for crude oil. The jump correlation is up to 0.9164 between 
crude oil and heating oil, revealing that the bivariate jump setting is essential in this 
study. Both jump intensities ( t1λ and t2λ ) are significantly related to the historical 
volatility (η) and the autoregressive terms ( γ ). The former relationship is stronger for 
crude oil ( 1η ), and the latter one is stronger for heating oil ( 2γ ). Moreover, the 
characteristics of the jump intensity covariance ( t3λ ) are the same with the specific 
jump intensity of crude oil and heating oil. The parameters, 3η , 4η and 3γ , are all 
significant under the 1% level. Figure 4 shows the jump intensities. Figure 5 also plots 
the average monthly jump intensity; a clear seasonal effect can be observed for 
heating oil. On average, the jump intensity of heating oil is highest in February, 
followed by January, March and then December5. The jump intensity is lowest in July, 
June and May. Additionally, the jump intensity of crude oil is more stable and higher 
                                                 
5 By observing the past 20 years, the jump intensity is not at high level except in March 2000. 

Therefore, this paper re-computes the average values without the abnormal March 2000, and the 
average jump intensity in March is lower than December.  
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than that of heating oil, except in February. Otherwise, the correlation between the 
number of jumps is as shown in Fig. 6. The average correlation over the last 20 years 
is 0.6808, and the correlation coefficient is lower when the range between crude oil 
and heating oil is widening, particularly when heating oil prices diverge from crude 
oil prices.  
 
Overestimation in the GARCH model during the jump periods 

Table 3 lists the descriptive statistics of the variance. The average variances for 
crude oil and heating oil are 6.5171 and 7.0393 under the GARCH model, compared 
to 5.0153 and 5.7260 under the CBP-GARCH model. Moreover, the covariance is 
4.4250 using the GARCH model and 3.6437 using the CBP-GARCH model. These 
analytical results demonstrate that the CBP-GARCH model is characterized by 
smooth estimation results and a relatively narrow variation range. Furthermore, in 
regard to Figure 4, which illustrates jump intensity, four periods with extremely high 
jump intensities were selected to analyze in depth, including two jump events in 
heating oil which were previously described (Panel A to B in Fig. 7) and two jump 
events in crude oil resulting from the two Gulf Wars (Panel C and D in Fig. 7). The 
variances, found to be similar using the GARCH and CBP-GARCH models in 
peacetime6, diverged during these specific periods. The variances are higher for the 
GARCH model than the CBP-GARCH model7. Take Panel B as an example: 
shrinking supply rapidly drove up heating oil prices during Feb. 2000, and the two 
models clearly displayed different estimations during that period. Furthermore, when 
the jumps in the price of crude oil during the two Gulf wars are examined, estimations 
of variance in the GARCH model are higher as well.  

The findings in this study are also supported by the evidence listed in Table 4 
and Table 5. Both tables report the forecasting errors of the measured volatility that 
comparing with the standard deviation of price differences8 using mean absolute 
percentage error (MAPE)9. The forecasting errors are grouped by two different rules. 
Table 4 lists the daily forecasting errors both in the peacetime and high jump time 
periods, that defined as the lowest 25% and highest 25% fractiles of jump 
probabilities respectively, and table 5 lists the monthly average forecasting errors 
owing to strong seasonal effects. First, all the MAPEs are lower in the CBP-GARCH 
model than in the GARCH model, and all the difference values are significantly 
                                                 
6 Peacetime in this paper indicates low jump probability period, during which the series data are 

smooth and continuous without sudden events such as the Gulf Wars. 
7 All the characteristics of covariance are similar with variance. To save space in this paper, we do not 

report the covariance figures. 
8 Regnier (2007) indicates that the standard deviation of log price differences is the best general 

measure of volatility and an indicator of changes in volatility over time. Therefore, volatility in this 
paper is measured as standard deviation over a 3-year period of log differences. 

9 MAPE is the average of the absolute errors expressed in percentage terms.  
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positive in the sign test. In Table 4, the differences are 0.0364 and 0.0476 in 
peacetime and 0.7224 and 0.5586 in the high jump time period for crude oil and 
heating oil, respectively. In other words, the measurement errors of the CBP-GARCH 
models are lower than those of the GARCH model by at least 55% in the high jump 
period. The greater the difference, the better the performance of the CBP-GARCH 
model.  

We have similar results in Table 5. Combined with the monthly jump intensity 
in Figure 5, the percentage error is much lower for the CBP-GARCH model than the 
GARCH model during the months of higher jump intensity, whereas the difference 
values in Table 5 are higher. Take heating oil as an example: the highest and lowest 
difference values are 0.5919 and 0.0239 in February and July respectively, which is in 
contrast to the highest and lowest jump intensity. That is, the measurement errors of 
the CBP-GARCH models are lower than those of the GARCH model, with 59% and 
2%, respectively, in February and July. The same obvious results appear in crude oil; 
the difference drops along with the drop in jump intensities. In the highest jump 
intensity month, January, the CBP-GARCH model outperforms the GARCH model, 
and the measurement error is 45% lower in the CBP-GARCH model. The 
measurement error is only 6% lower during the lowest jump intensity month, July. All 
the results imply that the CBP-GARCH model performs much better in high jump 
intensity months, while this performance decreases as the jump intensity decreases.  

This study argues that, because of the assumption of continuity, variance may 
be overestimated in the traditional GARCH model during high volatility periods. That 
is, overall shocks cannot be distinguished as normal or abnormal shocks, thus moving 
the volatility to a high level in the next period. Nevertheless, the CBP-GARCH model 
assumes that the specific shock takes the form of a jump, independent of normal 
volatility, and reduces the persistence of abnormal volatility. Accordingly, the 
variances in the GARCH model exceed those in the CBP-GARCH model when facing 
specific events or the assets with high volatility. Further applications can therefore be 
easily biased based on the overestimation of variance and covariance. 

 
CONCLUSIONS 

This study examines the price volatility of crude oil and heating oil during the 
past 20 years using the CBP-GARCH model. Both features of jump and bivariate are 
considered in the CBP-GARCH model for fitting the data accurately, especially 
during jump periods. The empirical results indicate that the CBP-GARCH model 
outperforms the GARCH model; however, the performance decreases as the jump 
intensity decreases. The measurement errors of the CBP-GARCH models are lower 
than those of the GARCH model, with 55% and 72% for heating oil and crude oil, 
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respectively, in a high jump period. These measurement errors are 4% and 3% lower 
in peacetime. In monthly results, the measurement errors of the CBP-GARCH models 
are lower than those of the GARCH model in the highest jump intensity month, with 
59% and 45% for heating oil and crude oil, respectively. These measurement errors 
are 2% and 6% lower in the lowest jump intensity month. That is, the CBP-GARCH 
model can capture the volatility reasonably accurately, especially during high jump 
time periods, during either occurrences of specific jump events or high jump intensity 
months (usually in winter months). Furthermore, the variance and covariance of the 
GARCH and CBP-GARCH models were found to be similar in peacetime, but 
divergent when jump events such as the Gulf Wars occurred. Due to the assumption of 
continuity in the traditional GARCH model, both the variance and covariance of the 
GARCH model are overestimations. That is, the overall shocks cannot be 
distinguished as normal or abnormal shocks, and they move the volatility to a high 
level in the next period. Further applications can be easily biased based on this 
overestimation. Nevertheless, the CBP-GARCH model provides more information for 
regulating the defects in the GARCH model. In the CBP-GARCH model, the specific 
shocks are assumed to be independent of normal volatility and to reduce the 
persistence of abnormal volatility. Therefore, the CBP-GARCH model is appropriate 
and necessary in high volatility markets. The overestimation of variance and 
covariance will bias further applications of the GARCH model and can lead to, for 
example, excessive hedging. For this reason, this paper is useful to traders, 
speculators and other participants in markets seeking to reduce transaction costs and 
maximize profits. 
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Table 
Table 1. Descriptive statistics of return 

 Mean Std. deviation Min. Max. Skewness Excess kurtosis 
Crude oil 0.0326 2.4662 -40.6396 19.1506 -1.0402*** 19.7780*** 
Heating oil 0.0311 2.6610 -47.0117 22.9538 -1.7944*** 40.4658*** 
Covariance/Correlation Matrix 

 Crude oil Heating oil   
Crude oil 6.0810 0.6552   
Heating oil 4.2989 7.0797   

Notes: *** represents significance under 1% level. The covariance/correlation matrix has the 
covariance on and below the diagonal and the correlation above it.  
 
Table 2. Empirical results of GARCH and CBP-GARCH model  

 GARCH model CBP-GARCH model 
Mean equation    

1μ  -0.0019  0.0149  

2μ  0.0386  0.0503 *** 
Variance equation    

11c  0.1983 *** 0.1042 *** 

12c  0.1696 *** 0.1075 *** 

22c  0.1806 *** 0.1473 *** 

11a  0.1432 *** 0.0380 *** 

12a  0.1169 *** 0.0448 *** 

22a  0.1135 *** 0.0569 *** 

11b  0.8359 *** 0.9165 *** 

12b  0.8481 *** 0.9038 *** 

22b  0.8601 *** 0.8889 *** 
Jump size    

10θ   -0.9077 *** 
−θ1   -0.0790  
+θ1   0.1108  

20θ   -0.5631 *** 
−θ2   -0.0459  
+θ2   0.3465 *** 

1δ   4.5647 *** 

2δ   4.1609 *** 
ρ   0.9164 *** 

Jump intensity    
1λ   0.0008  

2λ   0.0008  

3λ   0.0003 ** 

1η   0.0487 *** 

2η   0.0211 *** 

3η   0.0134 *** 

4η   0.0054 *** 

1γ   0.5655 *** 

2γ   0.8725 *** 

3γ   0.9710 *** 
Log-likelihood value -21228.0279 -20738.8757 

Notes: *, **, *** represent significance under 10%, 5% and 1% levels, respectively. Please 
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coordinate equations (1) and (2) with the part of mean and variance equations in the table, equations 
(6), (7), and (16) with jump size, and equation (12) with jump intensity.  
 
Table 3. Descriptive statistics of measured volatilities 

 Mean Std. deviation Min. Max. 
Crude oil     

GARCH 6.5171 9.4734 1.4683 254.8724 
CBP-GARCH 5.0139 3.9005 2.4486 73.5950 

     
Heating oil     

GARCH 7.0393 16.6943 1.5167 466.6135 
CBP-GARCH 5.7260 9.7425 2.2646 251.5470 

     
Covariance     

GARCH 4.4250 6.7689 -0.5266 213.8136 
CBP-GARCH 3.6437 3.4125 1.3508 86.0255 

     
Correlation     

GARCH 0.7296 0.1442 -0.0616 0.9028 
CBP-GARCH 0.7224 0.1041 0.1198 0.9363 

Notes: *, **, *** represent significance under 10%, 5% and 1% levels, respectively. 
 
Table 4. Forecasting errors in peace and high jump periods 

 Crude oil Heating oil 
 (1) (2) (1)-(2) (1) (2) (1)-(2) 
 GARCH CBP- 

GARCH
Difference GARCH CBP- 

GARCH 
Difference

The peace time 0.4973 0.4609 0.0364* 0.4597 0.4121 0.0476* 
       
The high jump time 1.2135 0.4911 0.7224* 1.4870 0.9284 0.5586* 

Notes: * represents significance under 5% levels in the sign test. The lowest 25% and highest 25% 
fractiles of jump probabilities are defined as the peacetime and high jump time periods, respectively.  
 
Table 5. Forecasting errors sorted by month 

 Crude oil  Heating oil 
 (1) (2) (1)-(2)  (1) (2) (1)-(2) 
 GARCH CBP- GARCH Difference  GARCH CBP- GARCH Difference
Jan. 0.8821 0.4312 0.4509* Jan. 1.3286 0.8412 0.4874* 
Feb. 0.5649 0.4255 0.1393 Feb. 1.6681 1.0762 0.5919* 
Mar. 0.7002 0.4368 0.2634* Mar. 0.7560 0.5679 0.1881* 
Apr. 0.7947 0.4902 0.3045* Apr. 0.6063 0.4914 0.1149* 
May 0.6087 0.4347 0.1740* May 0.4505 0.3896 0.0609* 
Jun. 0.5672 0.4019 0.1654* Jun. 0.4053 0.3702 0.0351* 
Jul. 0.4287 0.3654 0.0633* Jul. 0.3993 0.3754 0.0239* 

Aug. 0.7078 0.4696 0.2382* Aug. 0.6456 0.5026 0.1430* 
Sep. 0.5743 0.4399 0.1343* Sep. 0.5755 0.4506 0.1250* 
Oct. 0.5714 0.3803 0.1911* Oct. 0.5063 0.4085 0.0978* 
Nov. 0.5286 0.3672 0.1614* Nov. 0.3736 0.3356 0.0380 
Dec. 0.5516 0.3240 0.2276* Dec. 0.4327 0.3525 0.0803* 

Notes: * represents significance under 5% levels in the sign test. 
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Part A. Time series plots of spot prices (cents per gallon) 
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Part B. Returns 
Figure 1. Time series plots and returns of crude oil and heating oil 
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Figure 2. The average monthly spot price from June 1986 to July 2007. 
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Part B. The conditional variance of heating oil 
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Part C. The covariance between crude oil and heating oil 
Figure 3. The conditional variance and covariance under GARCH and CBP-GARCH model 
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Figure 4. The jump intensity of crude oil and heating oil 
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Figure 5. The average monthly jump intensity  
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Figure 6. The correlation between the number of jumps of crude oil and heating oil 
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Part A. Heating oil variance (July 1989-June 1990) 
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Part B. Heating oil variance (July 1999-June 2000) 
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Panel C. Crude oil variance (Gulf War I) 
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Panel D. Crude oil variance (Gulf War II) 
Figure 7. Variance in each model during the specific periods 
 
 
 
 


