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Abstract

Most of the studies relating to estimation of joint production functions have noted two
difficulties: first that allocation of inputs to different outputs is not known, and the second
that a method of estimation cannot have more than one dependent variable, which
necessitates construction of a composite output transformation function. This study has
conducted some simulation experiments on joint estimation of the CES, the Transcendental
and the Nerlove-Ringstad functions. Allocation parameters of inputs across the products have
been introduced. Estimation has been done jointly, but without constructing a composite
macro production function or an output transformation function. We use nonlinear least
squares based on the Differential Evolution method of global optimization that permits fitting
multiple production functions simultaneously.
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Introduction: Although only occasionally dealt with in economic analysis and empirical 

econometrics, enterprises producing multiple or joint output with some common inputs 

are the most frequent empirical reality (Pfouts, 1961). Beginning with farming wherein 

not only wheat but also straw and chaff (that may have some market value) partake of the 

same inputs, animal husbandry wherein sheep yield wool and meat, manufacturing and 

service establishments, more often than not, produce a range of commodities applying the 

inputs most shared by all the products in unknown proportions.  Then, estimation of a 

single production function of the leading product (or some weighted combination of 

different products) is subject to unknown type of biases intractably affecting efficiency, 

substitution and scale parameters and the subsequent economic implications thereof.  

 

 The economics of joint production often distinguishes between the two cases: the 

one in which a firm produces multiple products each produced under separate production 

process rarely using common variable inputs (but often using common fixed inputs or 

infrastructure), and the other “true joint production” where a number of outputs are 

produced from a single production process. In the second case all outputs of the process 

necessarily share all the common inputs without a clue to the share of any input allocated 

to different products. In the econometric practice the first case has often been dealt with 

by aggregation of individual production functions (for each product) into a gross or 

macro production function. The second case has often called for estimation of an implicit 

aggregate production function.    

 

A Brief Literature Review: Econometric analysis of joint production perhaps dates back 

to the work of Klein (1947). Since then a number of studies have been carried out that 

deal with this topic. In particular, studies in agricultural economics have addressed this 

problem more frequently (see Chizmar and Zak, 1983; Just et al., 1983; Mundlak, 1963; 

Mundlak and Razin, 1971; Weaver, 1983). Methodologically those studies may be 

classified under four heads: those formulating process analysis models; those formulating 

simultaneous equations systems; those formulating composite macro function; those 

formulating composite implicit macro function.  Some important works are briefly 

reviewed as follows. 

 

Since the early work of Manne (1958) process analysis has amply exhibited its 

ability to deal with the economics of joint products. However, it requires a large database 

and solving large programming models. Further, it precludes the calculation of price and 

substitution elasticities that may have important policy implications. Griffin (1977) used 

a method similar to process analysis supplementing it with pseudo data to ascertain 

appropriate types of production frontier functions for different joint products of 
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petroleum refinery. A pseudo data point shows the optimal input and output quantities 

corresponding to a vector of input and output prices. By repetitive solution of the process 

model for alternative price vectors, the shape of the production possibility frontier may be 

determined. However, as pointed out by Griffin himself, the efficiency of pseudo data 

approach to estimation of joint production functions ultimately rests on the quality of the 

engineering process model often difficult for an economist to build or evaluate. Even 

then, this approach does not rule out the possibilities of aggregation bias completely.  

 

Just et al. (1983) formulated and estimated their multicrop production functions as 

a system of nonlinear simultaneous equation model. The methods of estimation were 

nonlinear two-stage and three-stage least squares.  Chizmar and Zak (1983) discussed the 

appropriateness of simultaneous equation modeling of multiple products raised or 

manufactured simultaneously. However, they held that in case of joint products the 

implicit form single equation modeling would be appropriate.      

 

 Mundlak (1963) approached estimation of joint production function through 

aggregation. His method lies in specifying the individual micro production function for 

each (joint) product as well as the manner of aggregating them to an analogous macro 

production function. The macro production function is then estimated and its relationship 

with the micro production functions is investigated. However, the possibilities of 

establishing the relationship among the macro and micro production functions depend on 

availability of information on allocation of inputs used for different (joint) products.  

Mundlak also proposed formulation and estimation of a general implicit production 

function. This led to his further work (Mundlak, 1964) in which he formulated the 

problem of estimation of multiple/joint production functions as an exercise in estimation 

of an implicit function. If X are inputs and Y are output then the implicit function 

( ( ) ( )) 0g f X Yϕ− = is expressed in terms of the composite input function ( )f X  and the 

composite output function ( )Yϕ . Mundlak illustrated his approach by the transcendental 

specification (proposed by Halter, et al., 1957) of the composite functions 
1 2

0 1 2 1 1 2 2( ) exp( )a a
f X a x x b x b x= + , 1 2

1 2 1 1 2 2( ) exp( )c c
f Y y y d y d y= +  and the simple implicit 

function ( , ) ( ) ( ) 0g X Y f X Yϕ= − = . It may be noted, however, that generally output is 

considered to contain errors due to specification of ( )f X  such that any output vector 

( )
k k

y f X u= +  but inputs are considered non-stochastic. This consideration would lead 

to the specification ˆ( ( ) ( ))g f X Yϕ ε− = where ε  is the disturbance term. The least 

squares estimation of such functions has remained problematic. Mundlak and Razin 

(1971) also was basically an attempt to aggregation of micro functions to macro function. 

 

 Vinod (1968) addressed the problem of estimation of joint production function by 

Hotelling’s canonical correlation analysis (Hotelling, 1936; Kendall and Stuart, 1968). 

Later he improved his method to take care of the estimation problem if the data on output 

(of different products) or inputs were collinear (Vinod, 1976). His method summarily 

lies, first, in transforming the input vectors (X) and the output vectors (Y) into two 

composite (weighted linear aggregate) vectors, U Xw=  and V Yω=  respectively where 

the weights, w  and ω , are (mathematically derived) such as to maximize the squared 

(simple product moment) coefficient of correlation between U  and V , and then 
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transforming  U  and V  back into X and Y respectively. He showed that the back 

transformation of the composite vectors U  and V  into X and Y poses no problem when 

the number of inputs is equal to or larger than the number of output. However, when that 

is not the case, one has to resort to some sort of least squares estimation (resulting from 

his suggested use of the least squares generalized inverse in the transformation process).  

 

 There were strong reactions to Vinod’s method of estimation of joint production 

functions [Chetty (1969), Dhrymes and Mitchell (1969), Rao (1969)].  Rao pointed out 

that to be economically meaningful the production function must be convex and the 

transformation curve concave. However, the method proposed by Vinod did not yield 

composite output function (transformation function) that satisfied these requirements. 

Dhrymes and Mitchell (much like Chetty) pointed out that Vinod’s formuation was partly 

erroneous and partly a “very complicated way of performing ordinary least squares.” If 

the ordinary least squares method applied to estimate each production function separately 

and independently (ignoring the fact that they relate to joint products) were inconsistent 

then so would be the canonical correlation method. While acceding to the errors pointed 

out by the critics, in his reply Vinod (1969) disagreed on the inconsistency issue shown to 

exist in his method and argued that the critics (Dhrymes and Mtchell) had to establish the 

necessity and would not merely put up some particular cases thereof. It is interesting, 

however, to note that Vinod undermined the role of a single counterexample in 

demolishing the mathematical property of a method.  

 

 Apart from the problems pointed out above, Vinod’s method cannot be useful 

when production functions are intrinsically nonlinear such that it is not possible to 

transform them (by some simple procedure such as log-linearization, etc) into linear 

equations. Secondly, it may not be correct to form the composite output function in 

Vinod’s manner. Thirdly, it is not necessary that the specification of production functions 

is identical for all products.  It is possible that while one of the products follows the CES, 

another follows the nested CES (Sato, 1967) and yet another follows the Diewert (1971) 

or any other specification.   

 

The Present Study: Most of the studies relating to estimation of joint production 

functions have noted two difficulties: first that allocation of inputs to different outputs are 

not known, and the second that a method of estimation (such as the Least Squares) cannot 

have more than one dependent variable (output vector). Construction of a composite 

(macro) output function is at least partly motivated by the inability of the estimation 

methods to deal with multiple dependent variables and different forms of production 

function for different outputs. Of course, substitutability among different joint products 

also has been a motivating factor. We propose to deal with some of these problems here.  

 

 Our study is not based on any empirical data obtained from the real world. We 

have formulated some models and generated data accordingly. These data, with or 

without the random disturbances added to them, have been subjected to the joint Least 

Squares estimation of production functions directly. Since all the models formulated by 

us involve intrinsically nonlinear production functions, we have obtained the estimated 

parameters by nonlinear least squares method.  To obtain the solutions we have used an 
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algorithm based on the Differential Evolution (DE) method of global optimization 

(Mishra, 2007).  The DE method is a population based stochastic search method that 

gives us immense flexibility to specify an optimand function as we desire.  

 

The Results: In this study we have experimented with two models. The findings of our 

experiments are reported as follows:  

 

Model I: In Model-I we specify two CES type production functions sharing the common 

inputs in unknown proportions.  
1 1

1 1
( / )

1 1 1 1 1 1 1( ) (1 ) ( )PF A K L u
ρ ββ βδ λ δ µ

−
− − = + − +   

2 2
2 2

( / )

2 2 2 2 2 2 2( ) (1 ) ( )PF A K L u
ρ ββ βδ λ δ µ

−
− − = + − +   

1 2 1 21; 1; 0; 0 1; 1; 0; 1, 2
j j j j

A jλ λ µ µ δ β ρ+ = + = > < < ≥ − > =  

Here 
j

A is the scale parameter, 
j

δ  is the distribution parameter, 
j

β  is the substitution 

(among inputs) parameter and
j

ρ  is the returns to scale parameter. Additionally 1λ  and 

2λ  are the allocation parameters of capital (K) and 1µ  and 2µ  are the allocation 

parameters of labour (L) between the two production functions 1PF  (product # 1) and 

2PF  (product # 2). The allocation parameters are unobservable and over the two 

production functions they sum up to unity.   

 

 We have generated one hundred points of 1 2( , , , )K L PF PF  using the parameters 

as stated in Table-I.1-A. We will call them the true parameters. First, we have not added 

any disturbances (u1 and u2) to the outputs. Estimation of the parameters has been done 

jointly. The true and the estimated parameters are reported in Table-I.1-A and the 

measures of the goodness of fit in Table-I.1-B.  

 

 Then we have added disturbances to the outputs. We have two sets of 

disturbances – the one of u1 ~ N(0, 130),  u2 ~ N(0, 800) and the other of  u1 ~ N(0, 1200),  

u2 ~ N(0, 1000). We have truncated the value of output to zero in case adding of 

disturbances cause them to take on a negative value. Only one instance of the 100 cases 

was found negative in each set. The results of estimation are presented in Tables I.2-A 

I.2-B, I.3-A and  I.3-B. Fig.-I.2 presents the results graphically.  

   

 Some observations are worth noting. The values of R
2
 are extremely high (near 

unity) in each case. The estimated values of substitution and returns to scale parameters 

( β  and ρ ) are very close to the true values. The value of efficiency parameter ( A ) also 

is not much different from the true one. However, the values of distribution and 

allocation parameters (δ , λ  and µ ) are not close to the (respective) true values. They 

satisfy the constraints ( 1 2 1 21; 1λ λ µ µ+ = + = ) in each case. It appears, therefore, that 

many possible allocations of labour and capital (across the two production functions) 

yield the same output of each product. Invoking the economic argument one may say that 

unless price relatives of inputs and outputs are provided, it may not be possibly to 

determine the allocation of inputs across the production functions.   
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 Let us now compare the results of our joint estimation with those obtained when 

we estimated the two production functions severally. In this formulation there are no 

allocation parameters. The output-1 as well as the output-2 is attributed to the entire 

quantities of inputs, capital and labour. The production functions are now the usual CES 

given as  
1 1

1 1
( / )

1 1 1 1 1( ) (1 ) ( )PF A K L u
ρ ββ βδ δ

−
− − = + − +   

2 2
2 2

( / )

2 2 2 2 2( ) (1 ) ( )PF A K L u
ρ ββ βδ δ

−
− − = + − +   

0; 0 1; 1; 0; 1, 2
j j j j

A jδ β ρ> < < ≥ − > =  

 

 In Table-I.4 we have presented the results of CES fitting to the generated data. No 

disturbances have been added to outputs. The results reveal that the estimated values of 

substitution and returns to scale parameters ( β  and ρ ) for both the functions are the true 

values, but the values of distribution parameters (δ ) are quite at variance with the true 

values. They are not much different from what were obtained in joint estimation (ref 

Table-I.1-A). However, the efficiency parameters in both the functions are much below 

the true as well as the estimated values obtained by joint estimation (ref. Table-I.1-A). 

That is to say that the consequences of independent estimation of joint production 

function are critical for the efficiency parameters.  

 

 The consequences of independent estimation in presence of disturbances are 

presented in Table-I.5 [for u1~ N(0, 1200); u2~ N(0, 1000)].  The value of substitution 

parameter in 2PF  is much under-estimated (vis-à-vis the true value as well as the one 

obtained by joint estimation as reported in Table-I.3-A). The efficiency parameters 

remain subdued as in the case when disturbances were not added to the output data. The 

values of R
2
 are lower than those obtained by joint estimation (ref. Table-I.3-A). Thus, 

overall, the results of joint estimation are better than those estimated severally 

(independently) in presence as well as absence of disturbances.  

 

 It may be noted that there exists some sort of collinearity, so to say, between the 

inputs (K and L) as well as between the outputs. Due to this collinearity (between inputs), 

the estimated distribution parameters are away from their true values irrespective of the 

method of estimation (joint or independent). Similarly, collinearity between the outputs 

has affected the estimation of allocation parameters. It appears, therefore, that our 

inability to obtain the estimated values of allocation and distribution parameters very 

close to their true values is due to the nature of data used and not due to the method of 

estimation.  The joint estimation has given better R
2  

and efficiency parameters. 

 

Model II: In Model-II we specify a CES type production function for product-1 and a 

transcendental function of Halter, Carter and Hocking (HCH) for product-2 sharing the 

common inputs in unknown proportions.  
( / )

1 1 1 1 1( ) (1 ) ( )PF A K L u
ρ ββ βδ λ δ µ

−
− − = + − +   

1 2

2 2 2 2 1 2 2 2 2[( ) ( ) ]exp( )PF A K L K L u
α αλ µ γ λ γ µ= + +  
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As it was specified before, the allocation parameters over the products sum up to unity. 

 

 We have generated one hundred points of 1 2( , , , )K L PF PF  using the parameters 

as stated in Table-II.1. First, we have not added any disturbances (u1 and u2) to the 

outputs. Estimation of the parameters has been done jointly. The true and the estimated 

parameters as well as 2
S  are reported in Table-II.1. For both functions we have 2 1.0R = . 

 

 Then disturbances, u1 ~ N(0, 1200); u2 ~ N(0, 2000) , were added to the outputs. If 

adding of disturbance led to a negative value of output, it was truncated to zero. The 

estimated parameters are presented in Table-II.2. Even with large disturbances the values 

of R
2
 for both functions are very high. The values of S

2
 for PF1 and PF2 are 1.33E08 and 

3.09E08 respectively. 

 

 We observe that when disturbances were not added to outputs, we obtained R
2
 = 

1.0 such that the estimated values completely covered the true values of outputs (left 

panel of Fig.-II.1). The outputs (generated and estimated) with disturbances are presented 

in Fig.-II.1 (Right panel). Further, as it was found in case of Model-I, the estimated 

values of distribution parameter of the CES function and allocation parameters of the 

CES as well as transcendental function were not very close to their true values. However, 

the substitution and returns to scale parameters of CES were accurately estimated. The 

two estimated parameters of the exponential factor of the transcendental function (
1

γ  and 

2
γ ) also were not far away from their true values. 

 

 We severally (independently) estimated both production functions in the Model-II 

(with disturbances u1~ N(0, 1200); u2~ N(0, 2000)). The results are presented in Table-II.3. 

Except that the efficiency parameters of both the functions and the parameters in the 

exponential factor of the transcendental function are depressed, there are no differences 

in other estimated parameters (ref. Table-II.2).  

 

Model III: In Model-III we specify a Nerlove-Ringstad (NR) type production function 

(Nerlove, 1963; Ringstad, 1967) for product-1 and a Halter-Carter-Hocking (HCH) 

transcendental function for product-2 sharing the common inputs.  
3 1 2ln( )

1 1 1 1 2( ) ( )
c y c c

PF y A K L uλ µ= = +  

1 2

2 2 2 2 1 2 2 2 2[( ) ( ) ]exp( )PF A K L K L u
α αλ µ γ λ γ µ= + +  

 

We have generated one hundred points of 1 2( , , , )K L PF PF  using the parameters 

as stated in Table-III.1. First, we have not added any disturbances (u1 and u2) to the 

outputs. Estimation of the parameters has been done jointly. The true and the estimated 

parameters as well as 2
S  are reported in Table-III.1. Then we have added disturbances     

u1~ N(0, 30); u2  ~ N(0, 1000) and estimated the parameters jointly. The results are presented 

in Table-III.2. 

 

We observe that when disturbances were not added to outputs the estimated 

parameters of the Nerlove-Ringstad (NR) as well the HCH function are very close to the 
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true ones (R
2
 = 1.0 for both functions). However, the estimated allocation parameters are 

not close to the true values. The value of 1λ  (use of capital by NR) is underestimated 

while 2λ  (use of capital by HCH) is overestimated. To compensate it, the allocation 

parameter of labour in NR ( 1µ ) is overestimated while that in HCH ( 2µ ) is 

underestimated.  

 

When disturbances are added to the outputs we find that the functions are fitting 

well to the data (as the values of R
2
 are almost equal to unity). However, the estimated 

values of parameters are generally far off from the true values. We have not gone in for 

computing the standard errors of estimates of the parameters. It is not possible, therefore, 

to state whether the estimated parameters are significantly different (in a statistical sense) 

from the true ones or not.  However, the standard errors of estimates could be obtained by 

bootstrapping, which derives the sampling properties of empirical estimators using the 

sample data themselves (Efron and Tibshirani, 1993). To apply bootstrapping, repeated 

sub-samples are drawn from the given data set, parameters are estimated from the sub-

samples and the standard errors of (the full sample parameters) are obtained from those 

estimated parameters (obtained from sub-samples).    

 

Conclusion: The findings of our experiments here appear to be logical. Allocation 

parameters alter the scales of measurement of inputs.  So, it should not affect the 

substitution parameter or the returns to scale parameter of a CES (Cobb-Douglas or 

Transcendental) production function. However, the change of scale should affect the 

efficiency parameter. In case of CES it may also affect the distribution parameter. This is 

what we observed in our experiments, although we cannot generalize this conclusion over 

all functional specifications as to the extent and manner in which the estimated 

parameters would differ from the true ones, especially in presence of disturbances. Yet, 

instead of estimating joint production functions severally, it would be rewarding to 

estimate them jointly.   

 

 In this paper we have limited ourselves to experiments with the joint estimation of 

production functions by introducing into them the allocation parameters only. But these 

experiments do not limit the powers of our method of estimation that can jointly estimate 

several production functions with different specifications. In our scheme we do not need 

constructing composite functions. This is the most attractive merit of the proposed 

method of estimation. However, although we have not experimented with production 

functions with some common but other product specific inputs or common parameters 

across the production functions, such experiments are feasible and can be accomplished 

by the method proposed by us.   
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Tables and Figures 
 

Table-I.1-A: True and Estimated Parameters of Model-I (Without Disturbances) 
Parameters A  δ  λ  β  1 δ−  µ  ρ  

True 750.00 0.40 0.60 0.80 0.60 0.30 1.00 
1PF  

Estd 748.458562 0.260106954 0.351082944 0.800000012 0.739893046 0.390649162 1.000000000 

True 820.00 0.30 0.40 0.02 0.70 0.70 1.10 
2PF  

Estd 777.068583 0.302621116 0.648917056 0.020000000 0.697378884 0.609350838 1.100000024 

 
Table-I.1-B: Goodness of Fit of Model-I (Without Disturbances) 

Goodness of Fit 2R  2
S  RMS  

1PF  0.9999999999999960 0.0000223310014460 0.0004725568901860 

2PF  0.9999999999999990 0.0000221024877190 0.0004701328293060 

Joint 1PF  and 2PF    0.9999999999999990 0.0000444334891650 0.0004713464180674 

 

 

 Fig.-I.1: Model-I (Without Disturbances) - True and Estimated Output 
True (Generated) Values Estimated Values True Vs. Estimated Values 

   
 

 
Table-I.2-A: Generated and Estimated Parameters of Model-I (With Disturbances) 

Parameters A  δ  λ  β  1 δ−  µ  ρ  

True 750.00 0.40 0.60 0.80 0.60 0.30 1.00 
1PF  

Estd 715.706313 0.27009126 0.37314968 0.77736639 0.72990874 0.39804099 1.00401693 

True 820.00 0.30 0.40 0.02 0.70 0.70 1.10 
2PF  

Estd 794.960957 0.30241080 0.62685032 0.02053650 0.69758920 0.60195901 1.09944138 

 



 10

 
Table-I.2-B: Goodness of Fit of Model-I (With Disturbances) 

Goodness of Fit 2R  2
S  RMS  

1PF  0.999998479 9082.70446 9.53032237 

2PF  0.999999813 6594.36565 8.12056996 

Joint 1PF  and 2PF    0.999999620 15677.0701 8.85355016 

 
Fig.-I.2: Model-I (With Disturbances) - Generated and Estimated Output 

Generated with u1~ N(0, 130); u2~ N(0, 80)   Generated with u1~ N(0, 1200); u2~ N(0, 1000)   

  
 

 
Table-I.3-A: Generated and Estimated Parameters of Model-I (With Disturbances) 

Parameters A  δ  λ  β  1 δ−  µ  ρ  

True 750.00 0.40 0.60 0.80 0.60 0.30 1.00 
1PF  

Estd 630.59953000 0.34837619 0.49053852 0.61077262 0.65162381 0.35196561 1.03701632 

True 820.00 0.30 0.40 0.02 0.70 0.70 1.10 
2PF  

Estd 821.92067500 0.29948977 0.50946148 0.02674686 0.70051023 0.64803439 1.09301290 

  

 
Table-I.3-B: Goodness of Fit of Model-I (With Disturbances) 

Goodness of Fit 2R  2
S  RMS  

1PF  0.99998633 80924.810319 28.447286 

2PF  0.99999768 82432.573366 28.711073 

Joint 1PF  and 2PF    0.99999606 163357.383685 28.579484 

 

 
Table-I.4: True and Estimated Parameters of Model-I (Without Disturbances) 

Parameters A  δ  β  1 δ−  ρ  2R  2
S  

True 750.00 0.40 0.80 0.60 1.00   
1PF  

Estd 284.1222 0.276882 0.800000 0.723118 1.000000 1.000 7.52E-12 

True 820.00 0.30 0.02 0.70 1.10   
2PF  

Estd 460.1553 0.302356 0.020000 0.697644 1.100000 1.000 7.6E-12 
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Table-I.5: True and Estimated Parameters of Model-I (With Disturbances) 

Parameters A  δ  β  1 δ−  ρ  2R  2
S  

True 750.00 0.40 0.80 0.60 1.00   
1PF  

Estd 245.3086 0.307911 0.615726 0.692089 1.032982 0.982207 105359560.62 

True 820.00 0.30 0.02 0.70 1.10   
2PF  

Estd 442.4014 0.303216 0.005898 0.696784 1.108731 0.997106 102748415.90 

 
Table-II.1: Generated and Estimated Parameters of Model-II (Without Disturbances) 

Parameters 
1A  δ  

1λ  β  1 δ−  
1µ  ρ  2

S  

True 750.00 0.40 0.60 0.80 0.60 0.30 1.00  
1PF  

Estd 468.45836 0.333033 0.763968 0.800000 0.666967 0.548218 1.000000 3.99E-07 

Parameters 
2A  1α  2λ  2α  1γ  2µ  2γ  2

S  

True 8.00 0.30 0.40 0.50 0.10 0.70 0.05  
2PF  

Estd 11.66545 0.300000 0.236032 0.500000 0.169469 0.451782 0.077471 1.67E-06 

 
Table-II.2: Generated and Estimated Parameters of Model-II (With Disturbances) 

Parameters 
1A  δ  

1λ  β  1 δ−  
1µ  ρ  2R  

True 750.00 0.40 0.60 0.80 0.60 0.30 1.00  
1PF  

Estd 554.0777 0.283529 0.536040 0.942917 0.716471 0.502446 0.999876 0.974275 

Parameters 
2A  1α  2λ  2α  1γ  2µ  2γ  2R  

True 8.00 0.30 0.40 0.50 0.10 0.70 0.05  
2PF  

Estd 11.1687 0.260989 0.463960 0.518698 0.085312 0.497554 0.068174 0.99808 

 
Fig.-II.1: Model-II (With or Without Disturbances) - Generated and Estimated Output 

Without Disturbances With u1~ N(0, 1200); u2~ N(0, 2000) 

  
 

Table-II.3: Generated and Severally Estimated Parameters of Model-II 

(With Disturbances) 
Parameters 

1A  δ  β  1 δ−  ρ  2R  

True 750.00 0.40 0.80 0.60 1.00  
1PF  

Estd 283.4606 0.283529 0.942917 0.716471 0.999876 0.974275 

Parameters 
2A  1α  2α  1γ  2γ  2R  

True 8.00 0.30 0.50 0.10 0.05  
2PF  

Estd 6.3637 0.260989 0.518698 0.039581 0.033920 0.99808 
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Table-III.1: Generated and Estimated Parameters of Model-III (Without Disturbances) 

Parameters 
1A  1c  1λ  2c  3c  1µ  -------- 2

S  

True 40.00 0.40 0.60 0.50 0.30 0.30 ----  
1PF  

Estd 39.9059 0.400062 0.477589 0.500077 0.300054 0.439330 ------- 5.56E-06 

Parameters 
2A  1α  2λ  2α  1γ  2µ  2γ  2

S  

True 5.00 0.30 0.40 0.50 0.10 0.70 0.05  
2PF  

Estd 5.1568 0.300000 0.522411 0.500000 0.076568 0.560670 0.062425 6.35E-06 

 
Table-III.2: Generated and Estimated Parameters of Model-III (With Disturbances) 

Parameters 
1A  1c  1λ  2c  3c  1µ  -------- 2R  

True 40.00 0.40 0.60 0.50 0.30 0.30 ----  
1PF  

Estd 29.2089 0.278818 0.627897 0.347726   0.194240 0.539557 ------- 0.999889 

Parameters 
2A  1α  2λ  2α  1γ  2µ  2γ  2R  

True 5.00 0.30 0.40 0.50 0.10 0.70 0.05  
2PF  

Estd 10.7284 0.180765 0.372103 0.414727 0.111148 0.460443 0.077881 0.999356 

 
Fig.-III.1: Model-III (With or Without Disturbances) - Generated and Estimated Output 

Without Disturbances With u1~ N(0, 30); u2~ N(0, 1000) 

 
 

 
 


