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Abstract

To compute the Blinder-Oaxaca decomposition and associated standard errors a practitioner
needs to be comfortable using vector and matrix software manipulations. This paper proposes
a computational trick for producing these computations by running an artificial regression.

Citation: Heinrichs, Jutta and Peter Kennedy, (2007) "A computational trick for calculating the Blinder-Oaxaca decomposition
and its standard error." Economics Bulletin, Vol. 3, No. 66 pp. 1-7
Submitted: December 3, 2007.  Accepted: December 5, 2007.
URL: http://economicsbulletin.vanderbilt.edu/2007/volume3/EB-07C00003A.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6421331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://economicsbulletin.vanderbilt.edu/2007/volume3/EB-07C00003A.pdf


 

1. Introduction 
A popular method of analyzing wage discrimination is the Blinder-Oaxaca 
decomposition, introduced in Blinder (1973) and Oaxaca (1973). In this methodology the 
sample average wage difference between, say, males and females, is broken into two 
parts. One part measures the impact of differences in the male/female parameters of the 
wage determination equation, and the other part measures the impact of male/female 
endowment differences. The former part is referred to as that part due to discrimination. 
Calculation of this measure is undertaken in three steps: 1) run a regression on the male 
data, 2) run a regression on the female data, and 3) using these regression results, 
compute the two parts described above. A fourth step is required to calculate standard 
errors for these estimates. Murray (2006, pp.293-5) has a good textbook exposition. Steps 
three and four can be awkward unless a practitioner is comfortable using software to 
manipulate vectors and matrices; the purpose of this paper is to suggest a means of 
simplifying these calculations. 
 

2. The Blinder–Oaxaca Decomposition 
Suppose the wage determination function for the males is given as  

mm εβ += mm Xw  
where w is an Nm×1 vector of observations on wages of Nm individuals, X is an N×K 
matrix of observations on K explanatory variables, β is a K×1 vector of parameters, and ε 
is an N×1 vector of errors. The m subscript denotes males; the wage determination 
function for females is written by replacing the m subscript with an f subscript. Because 
the regression line passes through the average of the observations,  

mβ̂Xw mm =  
where the bar denotes average and the hat denotes the ordinary least squares estimate. 
The error term disappears because the sum of the ordinary least squares errors is zero. 
From this the difference between the male and female average wages in the sample can 
be written as  

fm ββ ˆXˆXww fmfm −=−  

Subtracting and adding fβ̂Xm  we get 

( ) ( ffm βββ ˆXXˆˆXww fmmfm −+−=− )                                                                          (1) 
This decomposes the sample male/female average wage difference into two parts, one 
due to differences in the specification parameters and the other due to differences in 
endowments. The former is the discrimination measure. Often they are reported as a 
percentage of their sum.  

When producing equation (1) above we could have subtracted and added mβ̂Xf  

instead of fβ̂Xm , obtaining an alternative measure 

( ) ( mfm βββ ˆXXˆˆXww fmffm −+−=− )                                                                          (2) 
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Unfortunately these two discrimination calculations, ( )fm ββ ˆˆXm −  and ( )fm ββ ˆˆXf − , do 
not produce the same numbers, requiring researchers to report both measures.1 

The discrimination measure, ( )fm ββ ˆˆXm − , can be calculated as follows. Run the 

male and female regressions to get  and , respectively, and subtract them to obtain 

the K×1 vector 
mβ̂ fβ̂

( )fm ββ ˆˆ − . Calculate the average of all the male explanatory variable 

observations and place them in a 1×K row vector, namely mX . Finally, multiply this row 
vector by the vector ( )fβ̂mβ̂ − . The variance of the discrimination measure can be 

calculated as follows. The K×K variance-covariance matrix V of ( )fm ββ ˆˆ −  is the sum of 

the variance-covariance matrices of  and of  because they are estimated 

independently using different data. So  is found by adding the variance-covariance 
matrix estimates from the two regressions. The variance of 

mβ̂ fβ̂

V̂
( )fm β̂ˆ −βXm  is estimated as 

'XV̂X mm . Its standard error is the square root of this. For those adept at using software to 
perform matrix calculations these computations are straightforward, but for those without 
this skill these calculations are burdensome. The next section describes a computational 
trick that simplifies estimation of both the discrimination measure and its standard error. 

 
3. A Computational Trick 

The computational trick of this paper is to estimate the male and female regressions 
simultaneously, while introducing an artificial observation along with an observation-
specific dummy to produce automatically the discrimination measure. This is shown in 
the following matrix specification: 
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The first two rows represent the male and female regressions using the Nm male and Nf 
female observations, respectively; it mimics the setup for SURE (seemingly unrelated 
regression estimation). The bottom row is an extra, artificial observation, structured to 
capture the discrimination measure, and the third column in the regressor matrix is an 
observation-specific dummy with coefficient θ. When running regression (3), the 
estimate of θ will be whatever is necessary to create a perfect fit on this last, artificial 
observation, a well-known result first noted by Salkever (1976). In this case we 
have ( )fmmX ββθ ˆˆˆ −= , the desired discrimination measure. Expressing this as a fraction 

                                                 
1 Subsequent literature has addressed this and other issues. For example, Oaxaca and 
Ransom (1994) discuss means of breaking the discrimination portion of the difference 
between blacks and whites into an advantage to whites and a disadvantage to blacks.  
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of fm ww −  gives the percentage of the sample male/female average wage difference due 
to discrimination.  

The alternative measure of discrimination, namely ( )fmfX ββ ˆˆ − , could be computed 
automatically at the same time by adding an additional artificial observation and running 
the following regression: 
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From running this regression the estimate of φ, the slope of the second observation-
specific dummy, is the desired alternative discrimination measure.2 
 

4. Calculating Confidence Intervals 
It is tempting to conclude that calculation of confidence intervals for the two 
discrimination measures can be undertaken by using the estimated standard errors 
associated with the estimates of θ and φ. Unfortunately this is legitimate only when the 
error variances of the male and female error terms are equal. When they are not equal the 
standard errors of all the estimates are biased because estimating these two regressions 
together induces the computer to estimate standard errors using an overall error variance 
rather than two individual variances. The coefficient estimates are not affected because of 
the special structure of the specification; the two artificial observations drop out of the 
minimization process because they are fit perfectly, and the male/female regressor 
observations enter without being associated with one another (because of the zero 
submatrices in the regressor matrix above). 

Whenever we are not comfortable assuming that the male/female error variances are 
equal, an adjustment needs to be made to regressions (3) and (4) if we wish to produce 
confidence intervals. The simplest way to do this is to perform a traditional 
transformation for heteroskedasticity. Run the male and female regressions separately 
and obtain mσ̂  and fσ̂ , the estimated standard errors of their respective error terms 
(called the standard error of the regression in most software). Then divide all the male 
observations on w and on X by mσ̂  and all the female observations on w and on X by 

fσ̂ . Replace the original observations in the first two rows of equations (3) and (4) by 
these transformed observations and run ordinary least squares. Do not adjust the artificial 
observations. The resulting estimates of θ and φ will have attached to them appropriate 
standard errors that can be used to create confidence intervals or undertake t tests. 

 

                                                 
2 There is a simple way of checking this calculation for errors, by exploiting the result of 
equation (1). In the final row of equation (4) replace fX-  with 0 and replace fX  with 
( )mf XX − . Run the regression and check that the estimates of θ and φ sum to . fm ww −
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5. An Example 
To illustrate this computational procedure, a random sample of 550 individuals was 
drawn from the 1978 Current Population Survey, with observations on log of wage in 
dollars per hour (WAGE), years of education (ED), age (AGE), a dummy equal to one for 
females (FEMALE), otherwise zero, a dummy equal to one for nonwhites 
(NONWHITE), otherwise zero, and a dummy equal to one for union membership 
(UNION), otherwise zero. Two regressions were run, one on the male observations and 
one on the female observations, producing results shown in Table I. 
 

Table I: Regression Results, Dependent Variable WAGE 
                                      Male Regression N=343                 Female Regression N=207 

Variable Coefficient Std. Error Coefficient Std. Error 
ED 0.063622 0.007243 0.060458 0.012562 

AGE 0.014086 0.001628 0.008621 0.002357 
NONWHITE -0.175836 0.059823 0.019184 0.070277 

UNION 0.183493 0.043854 0.275639 0.067062 
INTERCEPT 0.461148 0.120865 0.325996 0.189029 

Mean of Dep. Var.                    1.812921                                            1.462412 
S.E. of regression                      0.379628                                            0.397303 

 
A “sort” command was used to order the observations such that the 343 male 

observations appeared before the 207 female observations. A male dummy (MALE) 
equal to one, otherwise zero, was created by subtracting FEMALE from one. New 
variables MED, MAGE, MNONWHITE, and MUNION were created by multiplying ED, 
AGE, NONWHITE, and UNION by MALE, respectively. New variables FED, FAGE, 
FNONWHITE, and FUNION were created by multiplying ED, AGE, NONWHITE, and 
UNION by FEMALE, respectively. This created the four upper left-hand elements of 
equation (4). 

Two new observations were added to the existing 550 observations. Observations 551 
and 552 for WAGE were both zero. Observations 551 and 552 for MALE were both 
minus one and for FEMALE were both plus one. Observations 551 for FED, FAGE, 
FNONWHITE, and FUNION were the averages of the male observations for ED, AGE, 
NONWHITE and UNION, respectively. For MMED, MAGE, MNONWHITE, and 
MUNION they were the negative of these, respectively. Observations 552 for FED, 
FAGE, FNONWHITE, and FUNION were the averages of the female observations for 
ED, AGE, NONWHITE and UNION, respectively. For MMED, MAGE, MNONWHITE, 
and MUNION they were the negative of these, respectively. This created the bottom four 
left-hand elements of equation (4). 

Two observation-specific dummies were created, DISCRIM1 with a one in row 551 
and zeros elsewhere, and DISCRIM2 with a one in row 552 and zeros elsewhere. This 
created the two right-hand columns of equation (4). 

Finally, the first 343 observations (the male observations) were divided through by 
the estimated standard error of the male error term, reported in Table I as 0.379628 and 
the next 207 observations were divided through by 0.397303, the estimated standard error 
of the female error term. Note that in addition to the explanatory variables the associated 
WAGE observations were also transformed in this way, as well as the MALE and 
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FEMALE dummies. Observations 551 and 552 were not transformed. A T is added to the 
beginning of each variable name to emphasize that it has been transformed. 

Equation (4) was estimated by regressing these augmented (with two extra 
observations) and transformed (by dividing by appropriate standard errors) data, 552 
observations. TWAGE was regressed on TMALE, TMED, TMAGE, TMNONWHITE, 
TMUNION, TFEMALE, TFED, TFAGE, TFNONWHITE, TFUNION, DISCRIM1, and 
DISCRIM2. No intercept is included because the TMALE and TFEMALE variables play 
this role. The results are reported in Table II.  
 
Table II: Computational Trick Results, Dependent Variable TWAGE, N=552 

Variable Coefficient Std. Error t-Statistic Prob. 

TMED 0.063622 0.007243 8.783875 0.0000 
TMAGE 0.014086 0.001628 8.651919 0.0000 

TMNONWHITE -0.175836 0.059823 -2.939266 0.0034 
TMUNION 0.183493 0.043854 4.184219 0.0000 

TMALE 0.461148 0.120865 3.815405 0.0002 
TFED 0.060458 0.012562 4.812749 0.0000 

TFAGE 0.008621 0.002357 3.658297 0.0003 
TFNONWHITE 0.019184 0.070277 0.272982 0.7850 

TFUNION 0.275639 0.067062 4.110220 0.0000 
TFEMALE 0.325996 0.189029 1.724585 0.0852 
DISCRIM1 0.316044 1.000647 0.315840 0.7522 
DISCRIM2 0.304865 1.000616 0.304677 0.7607 

 
The first section of Table II provides the results of running the male regression, and the 
second section provides the results from running the female regression. These results are 
identical to those shown in Table I. The DISCRIM1 coefficient 0.316044 estimates that 
part of the sample average (log) wage difference due to male/female parameter 
differences, as measured using the male endowments. The DISCRIM2 coefficient 
0.304865 estimates that part of the sample average (log) wage difference due to 
male/female parameter differences, as measured using the female endowments. From 
Table I the sample average (log) wage difference is 1.812921 - 1.462412 = 0.350509. 
Using the former measure 90.2% of this difference is due to discrimination; using the 
latter measure 87.0% of this difference is due to discrimination. A full reporting requires 
that an indication of the accuracy of these estimates be provided. As seen in Table II the 
standard errors of the DISCRIM1 and DISCRIM2 measures are both such that at 
traditional significance levels the nulls that each is zero cannot be rejected. 
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