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Abstract. This paper considers statistical tests that can be used to

identify if a treatment is effective for a specific outcome variable over

the entire distribution of a treated group when it is compared with a

control group’s distribution. Using only the average treatment effect

to evaluate specific treatment programs ignores what happens in dif-

ferent regions of the distribution of interest. To address this problem,

tests of equality of distributions and, first and second order stochastic

dominance are employed. To show how to implement the tests easily,

an outline on how to estimate p-values using the bootstrap method

is presented. The tests are then applied to analyze the effectiveness

of a treatment in a randomized experiment.

Classification codes: C14, C12, D31, D63.

Key words and phrases: Stochastic dominance tests, Randomized

Experiments, Effective treatment, Bootstrap.

1. Introduction and motivation

This paper considers statistical tests that can assist researchers in identifying

changes in distributions during experimental periods and the effectiveness of a treat-

ment in a randomized experiment. Tests of equality of distributions, first (FOSD)

and second (SOSD) order stochastic dominance are proposed.

An extensive literature on testing for stochastic dominance starts with the work by

McFadden (1989), where he proposes and analyzes a Kolmogorov-Smirnov-type test

1I gratefully acknowledge comments and suggestions from Juan Carlos Escanciano, Kim Huynh

and Ricardas Zitikis.
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statistic for stochastic dominance. Subsequently, Anderson (1996), Davidson and

Duclos (2000), Barrett and Donald (2003), Linton, Maasoumi and Whang (2005),

develop powerful statistical inferential results for stochastic dominance of any or-

der. In a related paper, Abadie (2002) assessed the distributional consequences of

a treatment on some outcome variable of interest when the treatment is nonran-

domized. He compares the counterfactual cumulative distribution functions of the

outcome with and without the treatment using tests of equality of distributions and,

first-order and second-order stochastic dominance.

Depending on the outcome variable of interest, the tests proposed in this pa-

per can be used to identify the differences between the outcome distributions of

the individuals from the treatment and control groups or possible changes of the

heterogeneity distribution of the outcome variable during the treatment period.

To show how to implement the tests easily in practice, an outline on how to

estimate critical values using the bootstrap method is presented.

In a related working paper the actual performance of the tests are assessed using

simulation studies. The findings suggest that the tests are working well in large

samples (n > 500). In finite samples, n=200, the power of the tests is reduced.

Finally, the tests are applied to analyze the effectiveness of a treatment in a ran-

domized experiment. The case of the Job Search Assistance (JSA) Demonstration

Experiment is considered. The idea of using standard tests of duration dominance

to compare distributions of duration of unemployment is to make ordinal judgments

on how duration of unemployment changes for all the treated individuals.

The paper is organized as follows. In Section 2 the problem is formalized rigorously

and various tests are described. In Section 3 the methodology is applied to an

experimental treatment data set and findings are presented. Section 4 contains

concluding notes. Tables, and figures are relegated to appendices at the end of the

paper.

2. Methodology

This section follows Linton, Maasoumi and Whang (2005) and Davidson and Duc-

los (2000). Here we observe multiple time periods. Define the associated cumulative

distribution functions for the two groups as F (G,t), where F (G,t) is the cumulative

distribution of a control (G=C) or treatment group (G=T) at time t. There are two

time periods: the first one, which we denote by t = 0, is the time at the introduction
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of a certain treatment policy, the second period, which we denote by t = 1, is the

period after the introduction of the treatment policy, or the time when the effect of

the policy is measured. (We use the lower-case t to denote the time periods since

the assignment of individuals to the two time periods is not random.)

Hence, we have pairs of distributions at different times. The variable of interest is

Y (G,t), where Y (G,t) is the duration of unemployment of group G at time t. Properties

of the conditional distribution function

F (G,t)(y) = P
[
Y (G,t) ≤ y| G = group”j”

]
.

are considered. Let J
(G,t)
1 (y) = F (G,t)(y), and define the higher orders of J1 by

J (G,t)
s (y) =

∫ y

0

J
(G,t)
s−1 (x)dx.

We can also express Js as:

J (G,t)
s (y) =

1

(s− 1)!

∫ y

0

(y − x)s−1dF (x).

Three possibilities for F (G,t) are considered, but, if necessary we can add more:

(1) The unemployment distributions of the tested groups are equal. In this case

we write the null hypothesis as

H
(1)
0 : F (T,t=1) ≡ F (C,t=1),

(2) One of the distributions first order stochastically dominates another one. We

shall consider the case when F (T,t=1)(y) ≤ F (C,t=1)(y) with strict inequality

at some point y of the support and also with the equality attained at some

point of the support. We formulate the corresponding null hypothesis as

H
(2)
0 : F (C,t=1) ≤ F (T,t=1).

(3) The two distributions intersect (equality is attained at some point in the

support), but we have that one distribution second order stochastically dom-

inates (SOSD) the other one. In this case we write the null hypothesis as

H
(3)
0 :

∫ y

0

(y − x)dF ((C,t=1))(x) ≤
∫ y

0

(y − x)dF ((T,t=1))(x).

It is important to note that the theoretical results in this paper do not cover null

hypothesis of strict inequality, contrary to Linton et al (2005). Further, the proposed

tests are conservative as we are looking to the least favorable model under the null.

This would result in lower power. To deal with the potential lower power problem, a
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recentered bootstrap is used. Linton et al. (2005) show that the recentered bootstrap

technique competes well with their subsampling technique in terms of power.

2.1. Testing H
(1)
0 vs H

(1)
1 . The test is based on the classical Komogorov-Smirnov

test. Namely, with the help of the parameter

κ = sup
y

∣∣F (C,t=1)(y)− F (T,t=1)(y)
∣∣ ,

the null and the alternative hypotheses are:

H
(1)
0 : κ = 0 vs H

(1)
1 : κ > 0. (2.1)

A consistent estimator of κ can be defined by

κ̂ = sup
y

∣∣F (C,t=1)
n (y)− F (T,t=1)

m (y)
∣∣ ,

where F
(C,t=1)
n (y) = 1

n

∑n
i=1 1

{
Y (C,t=1) ≤ y

}
and F

(T,t=1)
m (y) = 1

m

∑m
j=1 1

{
Y (T,t=1) ≤ y

}

are the corresponding empirical distribution functions. Based on its asymptotic dis-

tribution we obtain that

K̂ =

√
nm

n + m
κ̂

is an appropriate statistic for testing the null hypothesis H
(1)
0 against the alternative

H
(1)
1 . Here n and m are sample sizes for the two distributions. The corresponding

rejection (i.e., critical) region is R : K̂ > kα and the acceptance region is A : K̂ ≤
kα, where kα is the α-critical value of the (classical) Kolmogorov-Smirnov test.

Testing H
(2)
0 vs H

(2)
1 . This test is based on Linton, Maasoumi and Whang (2005).

With the help of the parameter

δ = sup
y

(
F (C,t=1)(y)− F (T,t=1)(y)

)
,

we rewrite the hypotheses H
(2)
0 and H

(2)
1 as follows:

H
(2)
0 : δ = 0 vs H

(2)
1 : δ > 0. (2.2)

A consistent empirical estimator of δ is given by

δ̂ = sup
y

(
F (C,t=1)

n (y)− F (T,t=1)
m (y)

)
.

Therefore,

D̂ =

√
nm

n + m
δ̂



5

is an appropriate statistic for testing the null hypothesis H
(2)
0 against the alter-

native H
(2)
1 . The corresponding rejection (i.e., critical) region is R : D̂ > dα

and the acceptance region is A : D̂ ≤ dα, where dα is the α-critical value of

the maximum of a Gaussian stochastic process Γ that depends on both distribu-

tions F (T,t=1) and F (C,t=1). Since the distributions are not, in general, identical,

the critical value dα is not distribution free and has to therefore be estimated.

For this we can use a re-centered bootstrap method as in Barrett and Donald

(2003): from Y
(T,t=1)
1 , . . . , Y

(T,t=1)
m we sample with replacement and obtain m values

Y
(T,t=1)∗
1 , . . . , Y

(T,t=1)∗
m . Let F

(T,t=1)
m

∗(y) be the corresponding empirical distribution

function. Next, from Y
(C,t=1)
1 , . . . , Y

(C,t=1)
n we sample with replacement and obtain

n values Y
(C,t=1)∗
1 , . . . , Y

(C,t=1)∗
n . Let F

(C,t=1)
n

∗(y) be the corresponding empirical

distribution function. With the notation above, we define the process

∆∗(y) =

√
nm

n + m

(
F (C,t=1)

n
∗(y)− F (C,t=1)

n (y)
)−

−
√

nm

n + m

(
F (T,t=1)

m
∗(y)− F (T,t=1)

m (y)
)
,

and then, in turn,

D̂∗ = sup
y

∆∗(y).

The above sampling procedure is repeated B times obtaining B values of D̂∗. Define

the estimator d∗α as the smallest value of y such that at least 100(1 − α)% of the

obtained B values of D̂∗ are at or below y. With the just defined d∗α, the rejection and

the acceptance regions for testing the null hypothesis H
(2)
0 against the alternative

H
(2)
1 are respectively, R : D̂ > d∗α and A : D̂ ≤ d∗α. The re-centered bootstrap can

be shown to be consistent, following the results of Gine and Zinn (1990).

Testing H
(3)
0 vs H

(3)
1 . This test relates to McFadden (1989) and Davidson and Duclos

(2000). Hence, if F (C,t=1) SOSD F (T,t=1), then the parameter

τ = sup
y

(J
(C,t=1)
2 (y)− J

(T,t=1)
2 (y))

is strictly positive. Therefore, we shall test

H
(3)
0 : τ = 0 vs H

(3)
1 : τ > 0. (2.3)

A consistent estimator of τ is defined by

τ̂ = sup(J2
(C,t=1)
n (y)− J2

(T,t=1)
m (y)),
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We have that

T̂ =

√
nm

n + m
τ̂.

The corresponding rejection (i.e., critical) region is R : T̂ > tα and the acceptance

region is A : T̂ ≤ tα, where tα is the α-critical value of a distribution that depends

on transformations of F (T,t=1) and F (C,t=1). Hence, tα is not distribution free and

has to be estimated. For this, we use a bootstrap approximation using the same

steps as in Test 2, but construct the appropriate process T ∗ as

T ∗ = sup
y

(

√
nm

n + m

(
J2

(C,t=1)
n (y)∗ − J2

(C,t=1)
n (y)

)−

−
√

nm

n + m

(
J2

(T,t=1)
m (y)∗ − J2

(T,t=1)
m (y)

)
).

3. Application

3.1. Data. The data used for the developed test is from the Job Search Assistance

(JSA) Demonstration Experiment (cf. Decker et al 2000). The experiment tested

if the JSA demonstration services would speed up re-employment and reduce the

unemployment insurance (UI) benefits claimed by the demonstration participants

when workers are encouraged to search more effectively and aggressively for a new

job.

The demonstration was conducted in the District of Columbia (D.C.) and Florida.

The D.C. demonstration operated in a single office and served a targeted sample

of claimants from the full D.C. claimant population. Claimant selection occurred

between June 1995 and June 1996, and a total of 8,071 claimants were randomly

assigned to a control group and three alternative treatment groups. The three

service strategies developed for promoting rapid re-employment and for reducing UI

spells among targeted UI claimants are: Structured Job Search Assistance (SJSA),

Individualized Job Search Assistance (IJSA), Individualized Job Search Assistance

With Training (IJSA+).

We consider applying the test on the data associated with SJSA treatment (claimants

assigned to this treatment were required to participate in an orientation, testing, a

job search workshop, and a one-on-one assessment interview) in D.C. because:

(1) The estimates obtained on the JSA treatments reduced UI receipt signifi-

cantly over the initial benefit year. The largest impact occurred in D.C. for
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the SJSA treatment, which reduced average UI receipt by more than a week

(see Table 1), or by 182$ per claimant.

(2) SJSA increased the rate at which D.C. claimants exited UI throughout the

entire potential UI spell. The impact of SJSA is represented by the difference

between the exit rates for the SJSA and control groups. At the five-week

mark, the cumulative exit rate for the SJSA group was 17.7%, which was

more than 50% higher than the 11.6% rate for the control group. The abso-

lute magnitude of this difference then remained relatively steady over time,

even though the SJSA services were received early in the UI spell.

3.2. Empirical Results. The average difference in unemployment duration

between the treatment and control groups is of 1.12 weeks (see Table 1) with

a standard error of 0.287, which suggests a significant treatment effect. How-

ever, the EDFs of treatment and control groups suggest that more can be

said about the treatment effect. Figure 5.1. shows that for lower durations of

unemployment the treatment group is dominated by the control group (there

is a treatment effect), but for higher durations of unemployment (above 26

weeks) the treatment dominates the control group (there is no treatment

effect). Therefore, the treatment is not uniform over the treated individuals,

and it is possible to observe a change in the heterogeneity at period T = 1 for

the individuals from the treatment group. The employed stochastic domi-

nance tests confirm that there is a significant treatment effect as the equality

of the two distributions is rejected. Our tests suggest that the distribution

of the treatment group is dominated by the distribution of the control group

for more values in the domain than the case where the distribution of the

treatment group dominates the distribution of the control group, the P -value

is 0.0001, which means that we reject the H
(3)
0 .

4. Conclusions

The average treatment effect is not a sufficient statistic to evaluate specific

treatment programs because it ignores what happens in different regions of

the distribution of interest. To address this problem, tests of equality of

distributions, first and second order stochastic dominance are employed. To

show how to implement the tests easily, an outline on how to estimate crit-

ical values using the bootstrap method is presented. The tests are used to
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analyze a social experiment data set (the SJSA experiment). The tests con-

firm that there is a significant difference between the treatment and control

groups as the average measure suggests, but also imply that the treatment

is not effective for all distribution of the outcome variable. The result of the

SOSD test can also be associated to a single-person choice-theoretic-problem,

where an individual has to choose between any two (or more) given lotteries.

This analysis can be extended by employing a comprehensive analysis of the

distributional changes of the outcome variable over time, which will provide

an understanding of the selection effect of the treated individuals.
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5. Appendix: tables and figures

Table 5.1. Summary statistics and estimated impacts

on the treatment group of SJSA at T = 1.

Group Observations Mean Std.Dev Min Max ATE Std.Err

control 2012 20.14 8.705 1 44 1.123 0.287

treatment 2012 19.02 9.519 1 50 -1.123 0.287
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Figure 5.1. Treatment and control EDFs at t=1.


