
Demarcating stable and turbulent regimes in Taiwan's stock
market 

Yu-Lieh Huang Chia-Wen Ho
National Tsing-Hua University University of North Carolina at Charlotte

Abstract

Various trading rules involving derivatives have been widely applied by practitioners under a
wide range of market conditions; to date, however, few econometric models can provide a
way to accurately decide when to apply those strategies. In this paper, we employ the
Innovation Regime-Switching (IRS) model (Kuan, et al, 2005, JBES) to separate stock price
sample periods into stable and turbulent regimes on the basis of their dynamic behaviors. Our
results show that, based on regime identification, we can obtain satisfactory profits by
implementing appropriate and timely derivative strategies.
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1 Introduction

“Buy Low and Sell High” is a well-known, conventional strategy in the stock market, by
which investors technically buy a stock when it appears to be “bullish” and sell it when it
seems to be “bearish”. But, the crucial part of this strategy lies in the timing of buying
and selling dates which are known as the change-points between a bull and a bear regime.
Thus, the identification and the prediction of the change points in bull/bear regimes are
critical for market analysts. In the extant literature, the presence of regime-switching in
stock market returns is usually determined by Markov-Switching (MS) models. Pagan and
Sossounov (2003), for example, employ MS models to identify persistent bull/bear regimes
in stock markets. To cite another example, Maheu and McCurdy (2000) propose a variant
of the MS model and characterize the bull (bear) market as high (low) returns coupled with
low (high) volatility in their revised MS model. Also worth noting, Chauvet and Potter (2000)
construct a nonlinear coincident stock indicator driven by an MS model and Chen (2008)
employes an MS unit root regression model to investigate the issue of the non-stationarity
and non-linearity of OECD stock prices.

Largely due to rapid developments in the financial market, numerous investment strate-
gies involving derivatives have been put forth. These strategies may generate significant
profits not only in bull/bear markets, but also in markets with more complicated conditions.
For example, if an investor is expecting a large movement in a stock price (but he/she does
not know in which direction the move will be), a straddle-purchase strategy, or a 1:2 hedging
strategy, might be adopted to obtain profits.1 By contrast, the reverse positions of these
strategies may yield profits if the investor is betting that the stock price is only going to
fluctuate slightly around some specified price. The main objective of these strategies, there-
fore, is to identify and predict the change points between stable and turbulent regimes. With
the identification of these two regimes, we can use these strategies more precisely. From an
econometric point of view, a stock price may fluctuate slightly and behave like a stationary
process when the market is in a stable regime; against this, it may have large swings and
behave like a random walk process when the market is turbulent. Hence, a time series model
that allows for distinct (unit-root and stationary) dynamics in different periods is required
to identify the change points between these two types of regime.

In this paper, we analyze stable and turbulent markets by using the Innovation Regime-
Switching (henceforth IRS) model recently developed in Kuan et al. (2005), and we demon-
strate how such a modelling framework can be constructed to evaluate trading strategies
in these markets. The IRS model is an unobserved-component model consisting of a ran-
dom walk with a drift component and a trend-stationary component; whether a particular
component is activated depends on an unobservable state variable whose law of motion is
governed by certain probability laws. Thus, the dynamic patterns in an IRS process are not
necessarily fixed at all times, and may alternate from time to time. Since the IRS model can
accommodate both stationary and nonstationary behaviors at different time periods, it can

1 A straddle-purchase strategy, denoted as +C+P, involves buying a call and a put at the same strike price.
A 1:2 hedging strategy, denoted as −S+2C, consists of a short position in a stock plus two long positions in
a call. The reverse positions of these strategies are denoted as −C−P and +S−2C, respectively.
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serve as a practical tool and provide useful information for the investors before they adopt
the strategies.

We apply the IRS model to Taiwan Semiconductor Manufacturing Company (hereafter
TSMC) and Fubon Financial Holding Company (henceforth Fubon) daily stock prices.2 We
find that, during the entire sample period, unit-root nonstationarity is likely to be the pre-
vailing dynamic pattern about 70% (60%) of the time in TSMC (Fubon) stock prices, whereas
weak stationarity is likely to prevail for the remaining movements. That is, movements in
TSMC (Fubon) stock prices can be classified into two distinct regimes. These findings are
quite different from the conclusions drawn from either a random walk model (e.g., Samuelson,
1965) or mean-reverting model (e.g., Summers, 1986) in which only one model structure is
permitted throughout the entire sample period. More than that, our simulation results show
that, for the most part, the proposed trading strategies outperform the buy-and-hold strategy
in both stable and turbulent episodes even when transaction costs are taken into account.3

These results are in line with those in Fernández et al. (2000) where they apply nonlinear
predictors to the General Index of the Madrid Stock Market.

This paper is organized as follows. In Section 2, we illustrate the basic concepts of the IRS
model and briefly discuss the trading strategies. Section 3 presents the empirical analysis of
TSMC and Fubon stock indices based on the IRS model, and Section 4 concludes this paper.

2 The IRS Model and the Trading Strategies

The IRS model is an unobserved-component model consisting of a random-walk component
and a stationarity component such that there is a switching mechanism that determines the
prevailing component at a particular time. More specifically, suppose that stock price Pt is
the sum of two unobserved components – namely, Pt = P1,t + P0,t such that

ΔP1,t = α0 + stυt,

Ψ(B)P0,t = Φ(B)(1 − st)υt,
(1)

where υt is an i.i.d. random sequence with mean α1 and variance σ2
υ; st = {0, 1} is a two-

state, first-order Markov chain with the transition probabilities p00 = IP(st = 0 | st−1 = 0)
and p11 = IP(st = 1 | st−1 = 1); the term ΔP1,t = P1,t − P1,t−1 is the change in the first
component P1,t; and Ψ(B) = 1 − ψ1B − · · · − ψmB

m and Φ(B) = 1 − φ1B − · · · − φnB
n are

the polynomials in the lag operator of order m and n, respectively. It is readily seen that
the first component P1,t essentially follows a random-walk model with drift term α0, while
the second component P0,t serves as a stationary ARMA(m,n) model. Thus, this model can

2 TSMC is the world’s largest semiconductor foundry. The company’s manufacturing capacity is currently
about 4.3 million wafers, while its revenues represent some 50% of the global foundry market. Fubon Financial
is the first holding company listed on the Taiwan Stock Exchange. We also apply the IRS model to other
stock prices (e.g., United Microelectronics Corporation, Mega Financial Holding Company) and obtain similar
results. These results are not reported but available upon request.

3 We wish to underscore the practicability of the new derivative strategy operating in conjunction with
the IRS model. For comparison, in this study, we choose the buy-and-hold strategy as the typical traditional
strategy.
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be referred to as an IRS(1;m,n) model, signifying that it is a combined random-walk and
ARMA(m,n) model.

A key feature of this IRS model (1) is that it allows the innovation state to switch with
time; only one component is activated at a time, depending on the realization of the state
variable st. When st = 1, the first component P1,t is excited by υt, while P0,t evolves without
this innovation. As long as st = 1, the innovation υt has a permanent effect on future stock
prices Pt+j (j > 0) and generates unit-root type dynamics. In this case, the movements
in stock prices are said to be in turbulent regimes. When st = 0, however, the second
component P0,t is excited by υt, but P1,t grows along a linear trend α0t without the new
innovation; hence, υt exerts only a transitory effect on future stock prices and results in a
trend-stationary pattern. In this case, the movements in stock prices are said to be in stable
regimes. If there is no absorbing state, st assumes different values over time. What this
means is that the dynamic patterns of Pt are permitted to alternate from time to time and
exhibit both nonstationary and trend-stationary behaviors in different periods.

There are different ways to estimate the IRS(1;m,n) model. By setting υt = α1 + εt,
we follow Huang (2006) and write the process (1) in an ARMA process with MA random
coefficients:

Ψ(B)(1 −B)Pt = α0Ψ(1) +
γ+1∑
i=1

ξi,st−i
(α1 + εt−i) + (α1 + εt), (2)

where γ = max{m,n},

ξ1,st−1
=

{
−ψ1, if st−1 = 1,
−1 − ϕ1; otherwise,

ξi,st−i
=

{
−ψi, if st−i = 1,
ϕi−1 − ϕi; otherwise,

for i = 2, . . . , γ, and the last coefficient is

ξγ+1,st−γ−1
=

{
0, if st−γ−1 = 1,
ϕr; otherwise,

ψi = 0 for i > m and ϕi = 0 for i > n. The approximate quasi-maximum likelihood
estimates (QMLE),

θ = (ψ1, . . . , ψm, ϕ1, . . . , ϕnα0, α1, σ
2
ε , p00, p11)

′,

can then be found using a numerical-search method. Our program is written in GAUSS which
employs the Broyden-Fletcher-Goldfarb-Shanno (BFGS) search algorithm. By applying the
estimation algorithm in Huang (2006), we obtain the filtering probabilities IP(st | Ωt;θ), the
prediction probabilities IP(st+1 | Ωt;θ) and the quasi-log-likelihood function as by-products,
where Ωt = {P1, . . . , Pt} is the collection of all the observed variables up to time t.

To demonstrate the applicability of the IRS model (1), we use the filtering probabilities
to identify stable and turbulent periods and take 0.5 as the cut-off value for st = 0 or 1. That
is, periods with the filtering probabilities of st = 0 greater (less) than 0.5 are more likely
to be in stable (turbulent) regimes. To investigate whether stable and turbulent regimes
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Table 1: Call/put warrants of TSMC and Fubon stocks.

Underlying Asset: TSMC Underlying Asset: Fubon

Warrant Strike Price Listed/Maturity Warrant Strike Price Listed/Maturity

Fubon 19 (call) 53.40 2002.10.23/2003.10.22 Yuanta70 (call) 21.6 2003.2.26/2003.11.5

Yuanta52 (call) 72.75 2002.9.24/2003.9.23 Barits12 (call) 35.84 2003.8.18/2004.2.17

Yuanta76 (call) 59.00 2003.7.9/2004.1.8 YuantaB3 (call) 28.9 2003.9.10/2004.3.9

Yuanta77 (put) 59.00 2003.7.9/2004.1.8 YuantaB4 (put) 28.9 2003.9.10/2004.3.9

provide valuable economic signals in the stock market, we also examine the profitability of
two simple trading strategies based on the prediction probabilities. That is, we use a value
of IP(st+1 = 0 | Ωt;θ) being greater than 0.5 (i.e., the next period is more likely to be in
a stable regime) as a sell signal of a straddle-purchase strategy or a 1:2 hedging strategy
in the current period, while we use a value of IP(st+1 = 0 | Ωt;θ) being less than 0.5 as a
signal to initiate the reverse position of these strategies. We compute the average daily rate
of returns (hereafter DRR) of each stock for all trading strategies using warrant data and
estimated reasonable stock option prices.

3 Empirical Study

We now apply the IRS model (1) to TSMC and Fubon daily share prices. The data, along
with call and put warrants (of which the underlying assets are the two stocks), are taken
from the Taiwan Stock Exchange Corporation from April 1, 2003 to January 16, 2004 for
a total of 204 observations.4 Due to the inactive options market in Taiwan, there are only
three (one) covered call (put) warrants contingent on TSMC stock and eight (one) covered
call (put) warrants contingent on Fubon stock during the sample period. Table 1 lists the
names, strike prices and listed and maturity dates of the warrants used in this paper; we omit
data that are not used.

We first estimate an array of IRS(1;m,n) models for TSMC and Fubon stock prices with
m and n no greater than 4. We estimate the parameters using the algorithm described in
Huang (2006). This algorithm is initialized using a broad range of random initial values. The
covariance matrix of θ̂ is −H(θ̂)−1, where H(θ̂) is the Hessian matrix of the log-likelihood
function evaluated at the QMLE θ̂. Among all the models we consider, both the Akaike
information criterion (AIC) and the Schwartz Bayesian information criterion (SIC) select the
IRS(1; 2, 2) model for TSMC and Fubon stock prices. The estimated results are summarized
in Table 2.

We then conduct some diagnostic tests on the estimated models, including the Ljung-
Box (1978) Q test and the LM test of Engle (1982) on the ARCH effect. The resulting

4 We start our empirical study on April 1st because of the data constraint of put warrants. The last
analysis date is January 16, 2004 which is the last trading day before the Chinese New Year (11-day vacation)
in Taiwan.
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Table 2: QMLEs of the IRS(1; 2, 2) model.
TSMC Fubon

Parameters Estimate Standard error t statistic Estimate Standard error t statistic

α0 -0.890 0.278 -3.201∗ 0.023 0.170 0.135

α1 0.955 0.259 3.687∗ 0.031 0.080 0.387

ψ1 0.103 0.280 0.367 0.394 0.132 2.984∗

ψ2 -0.279 0.103 -2.708∗ -0.160 0.241 -0.663

ϕ1 -0.312 0.130 -2.400∗ -0.281 0.110 -2.554∗

ϕ2 -0.212 0.257 -0.824 -0.212 0.193 -1.115

συ 0.952 0.043 22.136∗ 0.556 0.120 4.633∗

p00 0.623 0.122 0.789 0.130

p11 0.815 0.110 0.862 0.091

Log-likelihood = 299.43 Log-likelihood = 141.34

AIC (SIC) = 612.67 (642.09) AIC (SIC) = 300.99 (300.81)

Note: t-statistics with an asterisk are significant at the 5% level.

statistics for the residuals ε̂t are Q(20) = 12.885 and ARCH(2) = 0.129 for TSMC and
Q(20) = 22.185 and ARCH(2) = 0.134 for Fubon. These statistics are all insignificant at
the 5% level under the χ2(20) and χ2(2) distributions, respectively. Hence, there appears no
serial correlation or conditional heteroskedasticity in these residuals. Following Engel and
Hamilton (1990), we also test whether the state variables st are independent over time; this
amounts to testing whether p00 + p11 = 1. The resulting Wald statistics is 9.375 (19.148) for
TSMC (Fubon) stock prices, and the null hypothesis of p00 + p11 = 1 is rejected at the 1%
level under the χ2(1) distribution. The rejection of the null hypothesis justifies our Markovian
specification of the state variable.

Since many studies have established that the stock price may contain a unit root (e.g.,
Samuelson, 1965), it is imperative to test whether the analyzed stock price follows an IRS
process against the null that it follows a difference stationary process. In the present context,
this amounts to testing whether p11 = 1. Under the null hypothesis, the transitory component
P0,t does not enter the model so that the nuisance parameter (e.g., p00) is not identified. In
this case, standard likelihood-based tests, such as Wald, LM, and likelihood ratio tests, are
not applicable, as discussed in Davies (1977, 1987) and Hansen (1996).5 To circumvent
this problem, we adopt the simulation-based test proposed by Kuan et al. (2005). We first
estimate an array of ARIMA (κ, 1, ) models with κ and  no greater than 4 and choose an
appropriate specification based on AIC. The ARIMA model selected is:

ΔPt = 0.103 + 0.697ΔPt−1 − 0.249ΔPt−2 − 0.556εt−1 + εt
(0.068) (0.231) (0.071) (0.236) (3)

5 Recently, Hansen (1992), Garcia (1998) and Carrasco et al. (2004) have proposed several solutions to test
parameter stability in a Markov-switching model. However, their solutions cannot be directly applied to our
problem because the primary concern here is to check whether p11 = 1, not parameter stability.
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Figure 1: Estimated filtering probabilities of st = 0 for TSMC and Fubon.

with σ2
ε = 1.161 for TSMC and

ΔPt = 0.034 + 1.747ΔPt−1 − 0.170εt−1 + εt
(0.036) (0.747) (0.751) (4)

with σ2
ε = 0.504 for Fubon, where the standard error of each estimated coefficient is listed

in parentheses. We re-estimate the IRS(1; 2, 2) model using the data generated from equa-
tion (3) (equation (4)) and obtained a finite-sample reference probability of p̃11. With 1000
replications, we obtain an empirical distribution of p̃11. We then compare the estimation
result of p11 = 0.815 for TSMC (p11 = 0.862 for Fubon) in Table 2 with the quantiles of this
empirical distribution. The empirical p-value of p11 is 0.042 (0.039). The null hypothesis that
the analyzed stock price follow an ARIMA processes is rejected at 5% level. The IRS model,
therefore, fits the data well.

In Figure 1, we plot the estimated filtering probabilities of st = 0 for the TSMC and
Fubon stock prices. It is abundantly clear that stock price is more likely to be in a stable
regime when probability is closer to 1. If 0.5 is taken as the discriminating value, we find
that there are 53 periods (about 26% of the whole sample period) with estimated filtering
probability IP(st = 0 | Ωt) > 0.5 in the case of TSMC and 68 periods (about 33% of the
sample) in the case of Fubon. To facilitate our analysis, the stable regimes, identified on the
basis of the above criterion, are shaded in Figure 1. Compared with that of Fubon, the stock
price of TSMC stays in stable regimes for shorter periods. That is, it is much less frequent
that TSMC stock price remains within stable price intervals. This makes good sense from
the financial perspective. Since TSMC is one of the leading companies in Taiwan’s electronic
industry, it is better known to the public and considerably more popular among investors,
with the result being that more investors buy and sell TSMC stock, which prevents its price
from staying in stable regimes.

To understand the prediction ability of the model, we also plot the one-step-ahead pre-
diction probability of a stable regime, i.e.,

IP(st+1 = 0 | Ωt) = p00 IP(st = 0 | Ωt) + p11 IP(st = 1 | Ωt).
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Figure 2: Estimated prediction probabilities of st = 0 for TSMC and Fubon.

In Figure 2, the panel of the left shows the estimated results for TSMC and that on the
right, those for Fubon. Here, 0.5 is again taken as the cut-off value. Probability greater (less)
than 0.5 indicates that stock prices are more likely to be in a stable (turbulent) regime in
the following period. It can be seen that the estimated prediction probability mainly varies
between 0.41 and 0.63 in the case of TSMC and between 0.28 and 0.72 in the case of Fubon.
These results imply that with available information up to the current period, investors can be
more confident about differentiating between stable and turbulent regimes for Fubon stock
prices. One reasonable explanation for this might be that TSMC is better known in the stock
market, and this could open it up to more information, both good and bad news, which would
surely have an impact on its stock price. As a result, stock price movements are apt to be
less predictable.

We now proceed to compute the average DRR based on these prediction probabilities.
We use data for the warrants most nearest to at-the-money to build trading strategies. It is
well known that when adopting the proposed strategies, more return can be earned only by
choosing at-the-money warrants. To confirm the profitability of our results, we also compare
the DRR with those of the buy-and-hold strategy. Table 3 compares the results of different
trading strategies and takes transaction costs into account.6 In the case of TSMC, it can be
seen that, except for the straddle-sale strategy (−C−P) in the stable regime, the proposed
trading strategies all outperform the buy-and-hold strategy in all periods. But, it should
be noted that, in the case of Fubon, these strategies may yield large negative DRR. The
reason that these strategies have an inferior performance in the case of Fubon is that the
exercising prices of the warrants deviate greatly from stock prices in each regime. Data for
the at-the-money warrants are seldom found in Taiwan’s market.

To overcome this problem, we simulate reasonable stock option prices based on the Black-
6 To make the portfolios more close to reality, we take the transaction cost into account. When the investors

change their positions of portfolio, for example, from long position to short position, they should be charged

the securities transactions tax 0.1425% and transactions fee 0.3%.
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Table 3: Comparison of the average DRRs of the trading strategies based on the warrants.

TSMC Fubon

Trading Rules Whole Period Turbulent Stable Whole Period Turbulent Stable

Straddle: 0.263% – – −0.935% – –

Purchase (+C+P) – 0.573% – – −1.134% –

Sale (−C−P) – – −0.351% – – −0.320%

1:2 hedging: 0.455% – – 0.031% – –

Purchase (−S+2C) – 0.344% – – 0.078% –

Sale (+S−2C) – – 0.811% – – −0.053%

Buy-and-hold: 0.135% 0.261% −0.251% 0.123% −0.063% 0.201%

Note: A straddle-purchase strategy (+C+P) involves buying a call and a put at different strike prices. A 1:2

hedging purchase strategy (−S+2C) consists of a short position in a stock plus two long positions in a call

option. The reverse positions of these strategies are denoted as −C−P and +S−2C, respectively. Transaction

costs are taken into account.

Scholes formula:

PC = SΦ(d1) −Ke−rT Φ(d2),

PP = Ke−rT Φ(−d2) − SΦ(−d1),

where PC (PP ) is the estimated price of a call (put) option; S is the daily closing stock price;
K is the exercising price set based on market conditions; r = 1.4% is the one-year average
deposit interest rate of the five major banks announced by the Central Bank of Taiwan in
2003; T is the maturity date; Φ(·) is the cumulative normal distribution; σ is the standard
deviation calculated by the real stock return; and

d1 =
ln

(
S/K

)
+

(
r + σ2/2

)
T

σ
√
T

, d2 = d1 − σ
√
T .

We then compare the performance of these strategies based on the simulated stock option
prices; the results are summarized in Table 4. It is noteworthy that, except for the straddle-
sale strategy for TSMC and the 1:2 hedging sale strategy for Fubon, the proposed trading
strategies for both stocks beat the buy-and-hold strategy. Although the proposed strategies
do not uniformly dominate the buy-and-hold strategy in all regimes, it is fair to say that the
trading strategies developed here compare favorably with it.

4 Conclusions

Trading rules involving derivatives, such as the straddle-strategy and the 1:2 hedging strat-
egy, have been widely applied by practitioners. But, only if investors can correctly foresee
the change points between stable and turbulent regimes in future stock prices, can these
strategies perform well. To the best of the authors’ knowledge, to date there have been no
suitable econometric models to do so. In this paper, we employ the IRS model to capture
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Table 4: Comparison of the average DRRs of the trading strategies based on the simulated option
prices.

TSMC Fubon

Trading Rules Whole Period Turbulent Stable Whole Period Turbulent Stable

Straddle: 1.973% – – 0.721% – –

Purchase (+C+P) – 4.402% – – 0.771% –

Sale (−C−P) – – −1.375% – – 0.653%

1:2 hedging: 1.051% – – 0.269% – –

Purchase (−S+2C) – 0.581% – – 0.735% –

Sale (+S−2C) – – 0.021% – – 0.049%

Buy-and-hold: 0.135% 0.261% −0.251% 0.123% −0.063% 0.201%

Note: Same as Table 3.

different dynamic patterns and to predict the change points between these regimes in Tai-
wan’s stock market. Several interesting results emerge. Firstly, we find that random-walk
nonstationarity is likely to be the prevailing dynamic pattern in more than 60 percent of the
sample periods, whereas stationarity and stable regimes are likely to prevail in the remaining
periods. Movements in the prices of the two stocks can thus be classified on the basis of the
timing of stable and turbulent regimes. This is in sharp contrast to earlier findings in the
literature, cf. Samuelson (1965) and Summers (1986). Secondly, the empirical applications
to TSMC and Fubon stock prices suggest that making the distinction between stable and
turbulent regimes provides valuable information vis-à-vis the stock market. In particular, we
find that, based on our simulation results, profitable strategies can be determined. Compared
with the buy-and-hold strategy, these profitable strategies can lead to higher returns even
when transaction costs are taken into account.
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