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Abstract

We study the effects of ARCH errors on the performance of the commonly used lag length
selection criteria. The most important finding of this study is that SIC, FPE, HQC and BIC
perform considerably well in estimating the true autoregressive lag length, even in the
presence of ARCH errors. Thus, we conclude that these criteria are applicable to empirical
data such as stock market returns and exchange rate volatility that exhibit ARCH effects.
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1. Introduction 
 
Recently, Başçi and Zaman (1998) has done a simulation study to see the effects of 
nonnormal errors on various autoregressive (AR) lag length selection criteria. In the past, the 
performance of these criteria has been studied based on the assumptions that the error terms 
are normal in nature. Liew (2004) for instance, study the performance of few commonly used 
selection criteria in the presence of normal errors. Başçi and Zaman (1998) argued that it is 
important for applied econometricians to understand the behaviour of various criteria under 
nonnormal errors. They further demonstrate via a simulation study that the performances of 
some criteria are affected by kurtosis but not skewness. In the spirit of Başçi and Zaman 
(1998), our main objective is to investigate via a simulation study, the effects autoregressive 
conditional heteroscedastic (ARCH) (Engle, 1982) errors on the performance of the 
aforementioned criteria in the estimation of true lag length. Specifically, we are interested to 
know whether the application of these criteria is still appropriate in the presence of ARCH 
effects, as it is widely known that many empirical data especially financial variables such as 
stock price returns and exchange rate volatility are actually better characterized by the ARCH 
models (Engle 1982; Engle et al. 1990; Bollerslev et al. 1992; Speight and McMillan 2001; 
Bautista 2003; Li and Lin 2004 and many more).   
 
We note that the current study differs from the former in threefold. First, rather than studying 
the general form of nonnormality, we include the specific ARCH errors, which is a common 
form of nonnormal errors attributed to most economic data sets. Second, besides evaluating 
the probability of correctly picking up the true lag length, we are also interested to know the 
probabilities of under- and over-estimating the true lag length, in which the estimated lag 
length based on the selection criteria is less than and more than the true lag length, 
respectively. Thirdly, to obtain a clearer picture on the effects of ARCH errors over the 
homoscedastic errors, we contrast the performance of various criteria under both errors. 
 
The most important finding of this study is that the commonly used selection criteria like 
SIC, FPE, HQC and BIC perform considerably well in estimating the true autoregressive lag 
length, even in the presence of ARCH errors. Thus, we conclude that these criteria are 
applicable to empirical data that exhibits ARCH effects.  
 
 

2. Methodology 
 
To accomplish our objective discussed in the preceding section we simulate AR (p) process 
with ARCH (q) errors, which is defined for a given set of data {X1, …, XT} that is in fact 
observations of an AR process of lag length p as: 
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where c is a constant, iφ , i = 1, …, p are autoregressive parameters to be estimated and 
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where 0α > 0, iα ≥  0 , i = 1, …, q, with q is the order of ARCH errors. 
 
We arbitrary set the true lag length p = 4 and generate iφ , i =1, 2, 3, 4 from a uniform 
distribution in the region (– 0.25, 0.25). The choice of this region allows us to avoid 
undesired nonstationary process. We consider ARCH (q) errors for q = 1, 2, 3, and 4 and 
generate jα , j = 0, 1, 2, 3, 4 from a uniform distribution in the region (0.0, 1.0). A special 
case of ARCH errors namely the homoscedastic errors is generated from the standard normal 
distribution with zero mean and unit variance, for the purpose of comparison. We simulate 
data sets for various sample sizes: 25, 50, 100, 500, 1000 and 100000. For each combination of 
sample sizes and types of error, we simulated 1000 independent series for the purpose of lag length 
estimation.  The estimated p can be any integer from 1 to 20.  
 
 
Following Liew (2004), the following lag length selection criterion are evaluated in this 
study: 
 
(a) Akaike information criterion,  
 
            AICp= –ln( 2ˆ pσ )+2p/T;                                                                                                 (3) 
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(b) Schwarz information criterion,  
 

 SICp = ln( 2ˆ pσ )+ [p ln(T)]/T;                                                                                       (4) 
 
(c) Hannan-Quinn criterion,  
 

            HQCp = ln( 2ˆ pσ )+2 1−T p ln[ln(T)];                                                                            (5) 
 
(d) the final prediction error,  
 
            FPEp= 2ˆ pσ )()( 1 pTpT +− − ;                                                                                       (6) 
 
(e) Bayesian information criterion, 
 

 BICp=(T–p) ln[ 21)( pTpT σ−− ]+T[1+ln( π2 )]+ p ln[ )ˆ(
1
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and finally, we include the improved version of AIC, but not studied in Liew (2004), namely, 
 
(f) Akaike’s information corrected criterion,  
 
            AICCp=  – 2T[ln( 2ˆ pσ )]+T 1]/)2(1[ −−− Tp [ )]/(1 Tp+ ;                                            (8) 
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Interested readers are referred to Brockwell and Davis (1996) and Başçi and Zaman (1998) 
and the references therein for more details.  
 
The probability of estimating the true lag length by each of these criteria is determined. We 
also compute the probabilities of under- and over-parameterization as mentioned in the 
preceding section. 
 

3. Simulation Results 
 
To conserve space, only the probabilities of various criteria in correctly estimating the true 
lag length are tabulated in this paper, as in Table 1.  
  

Table 1 
Probability of Correctly Estimating the True Lag Length 

T = 25  T = 50 
Types of Errors  Types of Errors Criteria 

H A(1) A(2) A(3) A(4)  
Criteria 

H A(1) A(2) A(3) A(4) 
AICC 18.8 21.5 19.4 19.8 20.0  AICC 18.1 20.3 17.7 19.0 19.0 
AIC 18.8 21.5 19.4 19.8 20.0  AIC 18.1 20.3 17.7 19.0 19.0 
SIC 57.7 58.5 59.8 58.7 59.8  SIC 58.0 60.3 59.1 59.2 60.9 
FPE 65.4 67.7 67.5 65.6 67.8  FPE 65.4 67.2 67.0 67.3 67.6 
HQC 64.5 66.0 68.2 66.0 66.9  HQC 65.7 68.3 66.5 66.8 66.7 
BIC 65.7 68.1 69.4 67.3 67.9  BIC 66.6 68.6 68.3 69.1 67.8 
 

T = 100  T = 500 
Types of Errors  Types of Errors Criteria 

H A(1) A(2) A(3) A(4)  
Criteria 

H A(1) A(2) A(3) A(4) 
AICC 21.0 20.7 19.4 19.3 21.0  AICC 19.8 19.4 19.2 21.2 19.3 
AIC 21.0 20.7 19.4 19.3 21.0  AIC 19.8 19.4 19.2 21.2 19.3 
SIC 61.0 57.7 59.5 63.1 60.2  SIC 67.9 65.1 64.1 67.0 65.8 
FPE 70.2 67.6 67.5 67.4 69.4  FPE 71.9 70.9 68.0 70.5 71.6 
HQC 69.1 66.2 66.6 69.1 67.6  HQC 74.5 71.4 70.8 73.4 73.3 
BIC 70.3 67.7 68.5 70.1 70.0  BIC 74.5 72.7 71.0 73.5 74.1 
 

T = 1000  T = 100000 
Types of Errors  Types of Errors Criteria 

H A(1) A(2) A(3) A(4)  
Criteria 

H A(1) A(2) A(3) A(4) 
AICC 18.2 20.5 21.1 23.3 21.1  AICC 23.0 24.4 20.5 22.8 24.0 
AIC 18.2 20.5 21.1 23.3 21.1  AIC 23.0 24.4 20.5 22.8 24.0 
SIC 69.6 65.4 65.6 67.4 69.4  SIC 96.5 91.2 89.6 93.1 92.8 
FPE 73.5 71.5 72.0 73.0 74.1  FPE 85.0 86.8 80.8 84.0 82.7 
HQC 74.8 71.6 71.8 73.8 74.7  HQC 96.6 90.4 90.0 93.2 88.8 
BIC 75.7 72.8 72.8 75.2 74.8  BIC 96.8 92.0 90.0 94.0 91.6 
Notes: H denotes homoscedastic errors with N (0, 1) distribution. A(i) stands for ARCH errors of order i for 
i = 1,…, 4.  
 
 
Table 1 revealed three stylized facts. First, SIC, FPE, HQC and BIC (but not AICC and AIC) 
perform considerably well in estimating the true autoregressive lag length in all simulated 
series. Second, the performance of these selection criteria involved improves as the sample 
size increases. For instance with a sample size of 100000 observations for homoscedastic 
errors, we find that their performances have achieved a record of 96.5 for SIC, 85.0 (FPE), 
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96.6 (HQC), 96.8 (BIC), 23.0 (AICC) and 23.0 (AIC). Note that AICC and AIC perform 
poorly even for extraordinary large sample size. 
 
Table 1 shows that there is no distinct difference in the performance of these criteria in 
correctly estimating the true lag order p for all processes. For instance, the probability score 
of BIC in correctly estimating the true order of are 75.7, 72.8, 72.8, 75.2 and 74.8, in that 
order, for homoscedastic, ARCH (1), ARCH (2), ARCH (3) and ARCH (4) errors (T=1000). 
This implies that BIC is applicable in AR process regardless of whether the errors are 
heteroscedastic or homoscedastic in nature. The last statement applies for SIC, FPE and HQC 
as well. 
 
We observed further that whenever the criteria fail to pick up the true p, the chance of under-
estimation by SIC, FPE, HQC and BIC is drastically higher than over-estimation for both the 
ARCH and homoscedastic errors, whereas the reverse is true for AICC and AIC (full results 
not shown).  For instance, with a sample size of 1000 observations in the case of 
homoscedastic errors, the probabilities of under-estimation (over-estimation) by SIC, FPE, 
HQC, BIC, AICC and AIC are, in that order, 30.3 (0.1), 16.5 (10.0), 23.1 (2.1), 21.0 (3.3), 2.8 
(79.0) and 2.8 (79.0). 
 

4. Conclusions 
 
Various lag length selection criteria have been proposed based on the normal errors, which 
may be easily violated in the empirical economic research. One common form of nonnormal 
errors is the heteroscedastic errors. This study investigates the effects of ARCH errors on the 
performance of the commonly used lag length selection criteria. The most important finding 
of this study is that SIC, FPE, HQC and BIC perform considerably well in estimating the true 
autoregressive lag length, even in the presence of ARCH errors. Thus we conclude that these 
criteria are applicable to autoregressive process that exhibits ARCH effects.  
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