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Abstract

This paper suggests modifying the Lobato test for no autocorrelation by using the bandwidth
parameter (M) of the covariance estimator as a fixed proportion of the sample size (T):
M=bT, where b (0,1] is a constant. It is shown by means of simulations that the modified test
has good control over size regardless the choice of b and a higher testing power can be
achieved if a mall b is chosen.
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1 Introduction 
 
The Box-Pierce (1970) Q statistic, defined as the product of the sample size and the sum of 
the squares of the first K sample autocorrelations, is often used to test the null hypothesis 
that the first K autocorrelations of a time series are zero (Campbell et al. 1997).  The Q test 
is considered as a test of no autocorrelation, but its asymptotic distribution (chi-square with 
K degrees of freedom) under the null actually assumes independence.  For many financial 
and economic time series, the independent assumption is questionable; among them, the 
widely-used GARCH model for financial returns is a leading example.  When the null 
hypothesis is true but the time series is statistically dependent, since the asymptotic 
covariance of the sample autocorrelations is no longer the identity matrix, the Q test is not 
valid and can produce serious misleading inferences (Romano and Thombs, 1996).   
 
         Several modified Q tests that are robust to statistical dependence have been proposed 
in the  literature.  In this paper, we are particularly inter ested in two of these tests.  The first 
test of interest is the test of Lobato, Nankervis, and Savin (2002; hereafter, LNS).  The LNS 
test is constructed using a consistent estimator of the asymptotic covariance matrix of the 
sample autocorrelations and is advantageous to have a limiting chi-square distribution 
under the null hypothesis.  However, to estimate the asymptotic covariance consistently, the 
test requires the selection of a user-chosen parameter (the bandwidth parameter) and 
statistical inference can be sensitive to that.  We are also interested in the test proposed by 
Lobato (2001).  Unlike the LNS test, the Lobato test does not utilize a consistent estimator 
of the covariance of the sample autocorrelations and is free from the bandwidth selection.  
Even though the covariance estimator itself is inconsistent the Lobato test statistic is shown 
to be asymptotically pivotal (nuisance parameter free).   
 
         Interestingly, despite the ir apparent difference, the two modified Q test statistics can 
actually be related in a special way.  Based on the work of Kiefer and Vogelsang (2002), it 
can be shown that the Lobato statistic is exactly equivalent to using the full-bandwidth (i.e. 
the bandwidth equals to the sample size) Bartlett covariance estimator in the construction of 
the LNS statistic.  Theoretical evidence shows that the full-bandwidth covariance estimates 
based tests are more accurate to approximate the limiting null distribution than those built 
on consistent estimates (Jansson, 2004; Kiefer and Vogelsang, 2003).  In fact, this 
asymptotic result has been reflected in finite-sample studies: the Lobato test provides a 
better control over size than the LNS test.  However, the good size property of the Lobato 
test comes at the cost that the test is generally less powerful than the LNS test.  See Lobato 
(2001) for details. 
 
         This paper is motivated by Kiefer and Vogelsang (2003) in studying finite sample 
properties of the Lobato test when the test is modified by setting the bandwidth parameter 
(M) of the covariance estimator as a fixed proportion of the sample size (T).  More 
specifically, we consider the bandwidth parameter: M=bT where b ∈(0,1] is a constant.  
When b=1 is chosen, the modified Lobato test coincides with the Lobato test.  In contrast, 
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since the LNS test requires estimating the asymptotic covariance consistently, the 
bandwidth has to grow at a slower rate than the sample size (that is, b must go to zero as T 
increases), so the LNS test does not belong to the family of our modified test.  Finite 
sample properties of the modified test are studied using Monte Carlo simulations.  In 
general, our simulation result s show that the modified Lobato test has surprisingly good 
control over size regardless the choice of b and a higher testing power can be achieved if a 
small b is used. 
 
 

2 Tests for No Autocorrelation 
 
Let { } 1

T

t t
y

= be a covariance stationary time series with mean µ and the jth-lag autocovariance 
( )( )j t t jE y yγ µ µ−= − − .  We are interested in testing the null hypothesis that ty  is uncorrelated 

up to order K,  
 
   0 1: ... 0KH γ γ= = = ,                                                                              (1) 
 
against the alternative that some of the first K autocorrelations in ty  are correlated,  
 
   1 : 0jH γ ≠  for some j,    j=1,...,K.                                                            (2) 
 
Consider that a sample of ty  for t=1,...,T is observed.  The jth- lag sample autocovariance is 

given by 1
1ˆ ( )( )T

t jj t t jT y y y yγ −
= + −= − −∑  where 1

1
T
t ty T y−
== ∑  is the sample mean.  Let ˆ

KC  

1̂ ˆ( ,..., ) 'Kγ γ=  be the vector of sample autocovariances.  Also, let 1, ,( ,..., ) 't t K tZ z z=  and 

,j tz ( )( )t t jy y y y−= − − .  Following Lobato (2001) and LNS (2002), we assume covariance 
stationary and the concept of near epoch dependence (NED) on a mixing process is used.  
 
Assumption 1. (1) Let ty  be a covariance stationary process that satisfies s

tE y < ∞  for 
some 4s >  and all t, and is L2-NED of size -1/2 on a process tV  where tV  is an α-mixing 
sequence of size –s/(s-4).  (2) The null hypothesis (1) is satisfied. 
 

         Lobato (2001) suggests the following test statistic  
 
  ' 1ˆ ˆ ˆˆL

K K K KQ T C C−= Ω ,                                                                                  (3) 
 
where 2 '

1
ˆ T

K t ttT S S−
=Ω = ∑  with 1

ˆ( )t

t j KjS Z C== −∑ .  According to Lobato (2001), although ˆ
KΩ is 

not a consistent estimator of the asymptotic covariance of ˆ
KC , ˆ L

KQ  is asymptotically pivotal 
under Assumption 1 and has the following limiting null distribution: 
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  1ˆ (1) (1)'L
K K K KQ B B−⇒ Ξ .                                                                            (4) 

 

In (4), “⇒” denotes weak convergence, 
1

0
( ) ( ) 'K K KB r B r drΞ =∫ , where ( )KB r  is a standard K-

vector Brownian motio ns, and ( ) ( ) (1)K KB r B r rB= −  is a K-vector of Brownian bridges. 
 
 
         Alternatively, LNS (2002) suggest a modified Q test: 
 
 ' 1

,
ˆ ˆ ˆˆLNS

K K K M KQ T C C−= Φ ,                                                                       (5) 
 
where ,

ˆ
K MΦ  be a kernel-based nonparametric estimator of the asymptotic covariance of ˆ

KC , 
defined by 

  
1

,
1

ˆ ˆ ( )
T

K M
j T

j
j

M
κ

−

=− +

 Φ = Γ 
 

∑                                                                        (6) 

and 

               

1 '
1

1 '
1

0
ˆ ( )

0.

T j
t j tt

T
t j tt j

T Z Z for j
j

T Z Z for j

−−
+=

−
+=− +

 ≥
Γ = 
 <

∑

∑
                                                   (7) 

 
In (6), ( )κ i  is a kernel function and M is a bandwidth parameter.  Consistency of ,

ˆ
K MΦ  

requires “ M → ∞  and  / 0M T→  as T→ ∞ ”.  LNS (2002) show that ˆ LNS
KQ  converges to a 

chi-square distribution under the null hypothesis, provided that ,
ˆ

K MΦ  is a consistent 
estimator of the asymptotic covariance of ˆ

KC .  Despite the apparent difference between ˆ
kΩ  

and ,
ˆ

K MΦ , these two covariance estimators can actually be related in  a special way.  
According to Kiefer and Vogelsang (2002), if ( )κ i  is the Bartlett kernel (i.e. 

1( ) 1 | | | | 1x x for xκ −= − <  and 0, otherwise) and the bandwidth is set equal to the sample size 
(M=T), then ,

ˆ ˆ /2k K MΩ = Φ .  Therefore, in such an occasion, ˆ ˆ2L LNS
K KQ Q= . 

 
         Recently, Kiefer and Vogelsang (2003) suggest setting the bandwidth parameter as a 
fixed proportion of the sample size (i.e. M=bT, where b∈(0,1] is a constant) in defining 
heteroskedasticity-autocorrelation robust estimators in regression models.  See Kiefer and 
Vogelsang (2003) for the motivation behind.  Following Kiefer and Vogelsang (2003), we 
define ˆ ( )L

KQ b , the modified Lobato test, as follows:  
 

 ' 1
,

ˆ ˆ ˆˆ( )L
K K K M bT KQ b T C C−

== Φ .                                                                     (8) 
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In this paper we assume that the kernel function ( )κ i  using in ,
ˆ

K M bT=Φ  is the Bartlett kernel.  
Under Assumption 1, we are able to copy the proof of Theorem 1 in Kiefer and Vogelsang 
(2003) to show that 
 

 1ˆ ( ) (1) ( ) (1)' ( )K K K K KQ b B b B U b−⇒ Ξ ≡ ,                                                    (9) 
 
where 

 
1 1

0 0

2 1
( ) ( ) ( )' ( ) ( )' ( ) ( )'

b
K K K K K K Kb B r B r dr B r b B r B r B r b dr

b b

−
 Ξ = − + + + ∫ ∫ .     (10) 

 
Here, ( )B r  is a K-vector of Brownian bridges defined as before.  The modified Lobato test 
has a limiting null distribution that depends on b (but is otherwise nuisance free) and its 
critical values can be derived using the asymptotic critical value function given in Kiefer 
and Vogelsang (2003, Table I). 
 
 

3 Size and Power in Finite Samples 
 
In this section we report the results of Monte Carlo experiments designed to investigate the 
size and power of the modified Lobato test ( ˆ ( )KQ b ) for K=1.  Simulations are performed in 
GAUSS.  Throughout this section, the simulation results are calculated using 10,000 
iterations at sample sizes 100 and 500 and the empirical rejection probabilities are reported 
at 5% significance level for the modified test with b=0.1, 0.2, …, 0.9, 1.0.  Note that when 
b=1.0, the modified test and the Lobato test are exactly equivalent. 
 
          Finite sample performance in size is studied first.  Following Lobato (2001), we first 
consider three uncorrelated processes.  The first two are iid sequences with innovations 
drawn from (0,1)N  and t distribution with six degrees of freedom (T(6)).  The third process 
is a uncorrelated none martingale difference sequence (non-MDS): 2 1 2( 1)t t t t ty z z z z− − −= + + , 
where tz  is a sequence of iid (0,1)N  random variables.  We report the simulation results in 
Table 1.  Table 1 shows that the modified Lobato test has correct size regardless the choice 
of b in the cases of (0,1)N  and T(6).  For the case of non-MDS, the modified test is under-
sized, particularly when b and T are both small.   
 
         Still following Lobato (2001), two empirically relevant models are considered: a 
GARCH(1,1) and a bilinear model.  Let tz  be sequence of iid (0,1)N , the GARCH(1,1) 
model is given by t t ty z σ= , where and 2 2 2

1 10.001 0.02 0.8t t tyσ σ− −= + + , and the bilinear model is 
given by 1 20.5t t t ty z z y− −= + .  It is well-known that the GARCH(1,1) is uncorrelated but not 
independent over time.  So is the bilinear model, see Granger and Teräsvirta (1993).  We 
report the simulation result in Table 2.  Table 2 shows that rejection rate of the modified 
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test is invariant to the choice of b.  In both models, the test is very accurate at T=500 but 
slightly over-sized at T=100. 
 
         We now turn our attention to finite sample  power.  We generate the data by an AR(1) 
process with N(0,1), T(6), non_MDS, GARCH and bilinear innovations.  The AR 
coefficients (φ ’s) considered are 0.10 and 0.20.  We report power and size-adjusted power 
(in the parentheses) – power using simulated finite sample critical values – for each 
experiment in Tables 3-4.  The key facts observed in Tables 3-4 can be summarized as 
follows.  It is generally that the power of each test becomes larger as the AR coefficient 
increases and as the sample size increases.  Also, tests with smaller b tend to be more 
powerful than those with larger b.  Among all the tests considered, the test with b=0.1 
seems to enjoy the largest (size-adjusted) power in all but one case (non-MDs, T=100).  As 
a matter of fact, in the case of non-MDs, the power of the Lobato test and the modified test 
(regardless the choice of b) is relatively low comparing to other cases.  For all other cases, 
power improvement of the L-KV test is substantial, particularly when b=0.3 or smaller is 
chosen.  For example, when 0.10φ = and T=500 is considered, the size-adjusted power of 
the Lobato test (i.e. b=1) is 0.420 (N(0,1)), 0.398 (T(6)), 0.393 (GARCH), 0.303 (Bilinear) 
while the power of the modified test with b=0.1 is 0.532 (N(0,1)), 0.519 (T(6)), 0.509 
(GARCH), 0.384 (Bilinear).  In other words, at T=500, the modified test with b=0.1 enjoys 
more than 25% increase in power comparing to the Lobato test. 
 
 

4 Conclusions  
 
In this paper, we suggest modifying the Lobato test by using the bandwidth parameter (M) 
of the covariance estimator as a fixed proportion of the sample size (T): M=bT, where 
b∈(0,1] is a constant.  It is shown by means of simulations that the modified test has good 
control over size regardless the choice of b and a higher testing power can be achieved 
when b is small. 
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Table 1: Size (I) at the 5% level 
 

      N(0,1)      T(6)     Non-MDS  
test T=100 T=500 T=100 T=500 T=100 T=500 

Lobato 0.049 0.049 0.048 0.051 0.029 0.042 
Modified L(0.1) 0.050 0.048 0.046 0.049 0.024 0.038 
Modified L(0.2) 0.049 0.048 0.045 0.048 0.025 0.037 
Modified L(0.3) 0.049 0.048 0.045 0.048 0.026 0.038 
Modified L(0.4) 0.049 0.049 0.048 0.050 0.028 0.040 
Modified L(0.5) 0.050 0.050 0.049 0.050 0.031 0.040 
Modified L(0.6) 0.051 0.048 0.050 0.049 0.030 0.041 
Modified L(0.7) 0.049 0.048 0.049 0.049 0.029 0.041 
Modified L(0.8) 0.049 0.048 0.048 0.049 0.029 0.040 
Modified L(0.9) 0.048 0.047 0.048 0.049 0.029 0.040 

 
 
 

 
Table 2: Size (II) at the 5% level 

 
  GARCH Bilinear 

test T=100 T=100 T=100 T=500 
Lobato 0.052 0.050 0.053 0.049 

Modified L(0.1) 0.052 0.050 0.054 0.048 
Modified L (0.2) 0.050 0.050 0.052 0.049 
Modified L (0.3) 0.052 0.052 0.053 0.049 
Modified L (0.4) 0.052 0.050 0.054 0.048 
Modified L (0.5) 0.054 0.050 0.054 0.049 
Modified L (0.6) 0.052 0.049 0.055 0.049 
Modified L (0.7) 0.052 0.048 0.053 0.049 
Modified L (0.8) 0.052 0.048 0.052 0.048 
Modified L (0.9) 0.051 0.048 0.052 0.048 
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Table 3: Power (I) at the 5% level 
 

(Α) φ=0.1, adjusted power in the parentheses 
 

        Normal          T(6)   Mon_MDs 
test T=100 T=500 T=100 T=500 T=100 T=500 

Lobato 0.108 0.415 0.106 0.404 0.029 0.086 
 (0.110) (0.420) (0.111) (0.398) (0.048) (0.097) 

Modified L(0.1) 0.120 0.521 0.123 0.515 0.026 0.086 
 (0.120) (0.532) (0.132) (0.519) (0.051) (0.111) 

Modified L(0.2) 0.113 0.478 0.112 0.471 0.023 0.080 
 (0.115) (0.485) (0.122) (0.484) (0.053) (0.109) 

Modified L(0.3) 0.111 0.452 0.108 0.440 0.025 0.077 
 (0.110) (0.463) (0.116) (0.446) (0.053) (0.100) 

Modified L(0.4) 0.111 0.434 0.106 0.421 0.028 0.080 
 (0.112) (0.438) (0.110) (0.424) (0.051) (0.098) 

Modified L(0.5) 0.111 0.424 0.105 0.410 0.029 0.081 
 (0.111) (0.426) (0.107) (0.410) (0.050) (0.096) 

Modified L(0.6) 0.110 0.414 0.105 0.400 0.029 0.082 
 (0.110) (0.421) (0.105) (0.403) (0.049) (0.099) 

Modified L(0.7) 0.109 0.411 0.106 0.398 0.029 0.081 
 (0.110) (0.419) (0.107) (0.401) (0.049) (0.095) 

Modified L(0.8) 0.108 0.409 0.104 0.394 0.030 0.082 
 (0.111) (0.418) (0.107) (0.399) (0.048) (0.095) 

Modified L(0.9) 0.107 0.410 0.105 0.397 0.029 0.083 
 (0.109) (0.420) (0.111) (0.400) (0.048) (0.097) 

 
 (Β) φ=0.2, adjusted power in the parentheses 

 
        Normal          T(6)   Mon_MDs 

test T=100 T=500 T=100 T=500 T=100 T=500 
Lobato 0.288 0.879 0.289 0.867 0.068 0.270 

 (0.291) (0.883) (0.298) (0.863) (0.108) (0.297) 
Modified L(0.1) 0.378 0.981 0.374 0.980 0.069 0.361 

 (0.378) (0.983) (0.391) (0.981) (0.129) (0.417) 
Modified L(0.2) 0.335 0.961 0.332 0.959 0.061 0.308 

 (0.340) (0.963) (0.351) (0.964) (0.126) (0.372) 
Modified L(0.3) 0.313 0.935 0.312 0.932 0.064 0.285 

 (0.319) (0.939) (0.326) (0.936) (0.118) (0.334) 
Modified L(0.4) 0.304 0.911 0.300 0.907 0.068 0.270 

 (0.309) (0.913) (0.310) (0.909) (0.111) (0.313) 
Modified L(0.5) 0.296 0.895 0.291 0.886 0.070 0.263 

 (0.297) (0.897) (0.293) (0.886) (0.108) (0.294) 
Modified L(0.6) 0.291 0.882 0.288 0.873 0.070 0.263 

 (0.288) (0.886) (0.289) (0.876) (0.106) (0.300) 
Modified L(0.7) 0.289 0.876 0.287 0.866 0.067 0.261 

 (0.290) (0.881) (0.291) (0.867) (0.108) (0.295) 
Modified L(0.8) 0.286 0.874 0.286 0.863 0.067 0.262 

 (0.291) (0.881) (0.294) (0.866) (0.107) (0.293) 
Modified L(0.9) 0.286 0.872 0.286 0.862 0.068 0.262 

 (0.291) (0.882) (0.298) (0.865) (0.108) (0.297) 
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Table 4: Power (II) at the 5% level 
  
 (Α) φ=0.1, adjusted power in the parentheses 
 

  GARCH Bilinear 
test T=100 T=500 T=100 T=500 

Lobato 0.104 0.395 0.082 0.299 
 (0.100) (0.393) (0.077) (0.303) 

Modified L(0.1) 0.118 0.509 0.099 0.375 
 (0.115) (0.509) (0.092) (0.384) 

Modified L(0.2) 0.112 0.460 0.088 0.342 
 (0.112) (0.460) (0.087) (0.348) 

Modified L(0.3) 0.108 0.429 0.086 0.322 
 (0.106) (0.424) (0.082) (0.327) 

Modified L(0.4) 0.109 0.411 0.085 0.309 
 (0.106) (0.412) (0.079) (0.314) 

Modified L(0.5) 0.108 0.398 0.082 0.304 
 (0.102) (0.398) (0.077) (0.307) 

Modified L(0.6) 0.106 0.391 0.083 0.298 
 (0.101) (0.394) (0.075) (0.300) 

Modified L(0.7) 0.104 0.388 0.081 0.294 
 (0.100) (0.396) (0.076) (0.297) 

Modified L(0.8) 0.103 0.387 0.082 0.291 
 (0.100) (0.394) (0.079) (0.299) 

Modified L(0.9) 0.103 0.388 0.081 0.292 
 (0.100) (0.396) (0.077) (0.302) 

 
                                     (Β) φ=0.2, adjusted power in the parentheses 
 

  GARCH Bilinear 
test T=100 T=100 T=100 T=500 

Lobato 0.277 0.227 0.227 0.761 
 (0.271) (0.218) (0.218) (0.763) 

Modified L(0.1) 0.367 0.295 0.295 0.920 
 (0.357) (0.283) (0.283) (0.923) 

Modified L(0.2) 0.322 0.262 0.262 0.879 
 (0.322) (0.259) (0.259) (0.883) 

Modified L(0.3) 0.303 0.243 0.243 0.838 
 (0.299) (0.236) (0.236) (0.843) 

Modified L(0.4) 0.292 0.235 0.235 0.802 
 (0.286) (0.223) (0.223) (0.807) 

Modified L(0.5) 0.285 0.232 0.232 0.777 
 (0.268) (0.220) (0.220) (0.781) 

Modified L(0.6) 0.277 0.226 0.226 0.762 
 (0.266) (0.214) (0.214) (0.763) 

Modified L(0.7) 0.276 0.224 0.224 0.755 
 (0.268) (0.216) (0.216) (0.759) 

Modified L(0.8) 0.275 0.225 0.225 0.753 
 (0.268) (0.220) (0.220) (0.760) 

Modified L(0.9) 0.275 0.226 0.226 0.754 
 (0.270) (0.218) (0.218) (0.763) 

 


