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Abstract

In this paper an original estimator of long memory is considered. It is based on the scaling
function directly extracted from multifractal formalism. Monte Carlo simulations show that
the scaling function gives interesting results, notably in terms of confidence intervals, which
are smaller than the usual methods.
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1 Introduction

The long memory has a long history and remains a topic of active research on economic
and financial time series. This property is referred to as Hurst’s effect. Two methods
are commonly used to measure the long memory: the R/S-analysis (Hurst, 1951)1 and
the GPH method2 (Geweke and Proter-Huddak, 1983).

In this paper, we compare usual methodologies (R/S-analysis and GPH) to the
scaling function method which pays tribute to multifractal formalism. Calvet and
Fisher (2002) use this to detect the multifractality of the financial series and to estimate
the long memory of the Deutch Mark/US Dollar series. Our study shows that the
scaling function presents advantages over other methods, notably this methodology
allows the estimation of long memory with a grater precision than GPH and R/S-
analysis.

Section 2 presents the definition and the estimation of the scaling function. In
section 3, three estimators (R/S-analysis, GPH and scaling function methodologies)
are compared in terms of means, variances and confidence intervals of Monte Carlo
simulations. Section 4 concludes.

2 Scaling function

To define the scaling function estimator we present briefly ARFIMA models. An
ARFIMA(0, d, 0) process xt is defined as

5dxt = zt, zt ∼ iid
¡
0, σ2z

¢
(1)

where the fractionally differencing operator 5d = (1− L)d is defined by means of the
binomial expansion. Baillie (1996) presents the links between ARFIMA(0, d, 0) and
Fractional Brownien Motion (FBM) processes. The partial sum of xt is denoted st and
behaves as follows µ

1

σs

¶
sdrT e

d
= BH (r) , for r ∈ (1/T, 1) (2)

where d
= denotes convergence in distribution, T is the length of xt, σ2s is the variance

of st, d·e is the integer part operator, and st is defined by

sdrTe =
drT eX
t=1

xt, for r ∈ (1/T, 1) (3)

BH (r) is a FBM process and H is known as the Hurst exponent, which satisfies:
H = d+ 1/2.

1See, for example, Mandelbrot (1972), Lo (1991) and Baillie (1996).

2See, for example, Hurvich and Beltrao (1994) or Baillie (1996).
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Calvet and Fisher (2002) define the scaling function of a FBM process. The scaling
function of xt is denoted τ (q) and takes into account the influence of the time t on the
moments q according to

E(|st|q) = tτ(q)+1cq (4)

where E(·) is the expectation operator and c (q) is called the prefactor. A FBM process
BH (r) is a self-affine process with a self-affinity index (d+ 1/2), hence it satisfies
st =

d td+1/2s1. From (4) we can deduce that the scaling function τ (q) = (d+ 1/2)·q−1
and the prefactor cq = E(|s1|q). The scaling function delivers the self-affinity index
through the relation

τ

µ
1

d+ 1/2

¶
= 0 (5)

To estimate the scaling function, Calvet and Fisher (2002) propose a method based
on the partition function. The partition function of xt is denoted πδ (x, q), defined for
each moments q, and obtained by partitioning the series into n subintervals of length δ

πδ (x, q) =
nX
i=1

¯̄
xdi·δe − xd(i−1)·δe

¯̄q (6)

using (4) gives us

log (πδ (x, q)) = τ (q) log (δ) + log (cq) + log (T ) (7)

For a given series xt, computing its partition function according to (6) for various
moments q allows us to deduce its scaling function according to (7). Thus, the partition
function gives an estimation of the scaling function. It is then straightforward to
characterize the long-range dependence of a process.

In the next section, we compare the scaling function methodology to the R/S ana-
lysis and GPH methods3 to estimate the Hurst exponent (H) or the fractional integra-
tion (d) of an ARFIMA(0, d, 0)4.

3 Monte Carlo Simulations

We simulate 10000 ARFIMA (0, d, 0) paths with three sample sizes T (T = 100, 500
and 1000). We compare these methodologies for selected values of d ∈ {0, 0.2, 0.4}. In
Tables (1-2-3) we report some simulation evidence on the performance of the scaling
function.

We present our study relative to the sample sizes T = 500 (Table 2). For mean
values d, the scaling function and the GPH5 have quite similar results. These estima-
tions are better than the R/S-analysis estimators. This phenomenon increases when d
is large. For example, when d = 0.4, the mean values of the R/S estimators is equal

3The R/S analysis and the GPH methods are the most commonly used estimations of the long-range
dependence. For details see references in the section 1

4See Hosking (1981).
5We consider the standard value for the periodogram T 0.5 , see Diebold and Rudelusch (1989).
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to 0.22 and respectively of 0.38 and 0.41 for the scaling function and GPH methods.
On the other hand, in terms of variances

¡
σd
¢
and confidence intervals (CI), the scal-

ing function presents better results than other methods. In fact, the scaling function
presents for each value d a confidence interval tighter than GPH and R/S-analysis es-
timators. Thus, the scaling function allows us to estimate the long memory with a
largest precision than GPH and R/S-analysis. The results are the same for smaller
(T = 100−Table 1) and larger (T = 1000−Table 3) sample sizes. Notice that the pre-
cision of the estimation obtained by the scaling function is independent of the sample
sizes.

4 Conclusion

We use original scaling function’s method to estimate the long memory of series like
ARFIMA(0, d, 0).Monte Carlo simulations show that estimators obtained by this method
are more accurate than usual methods such as R/S-analysis and GPH.
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T = 100 τ(q) R/S GPH

d = 0
d
σd
CI

−0.01
0.01

[−0.19, 0.13]

0.024
0.0025

[−0.06; 0.1]

−0.002
0.09

[−0.51, 0.45]

d = 0.2
d
σd
CI

0.18
0.007

[0.04, 0.3]

0.109
0.029

[0.017; 0.19]

0.21
0.08

[−0.28, 0.66]

d = 0.4
d
σd
CI

0.37
0.0052

[0.24, 0.47]

0.18
0.003

[0.08; 0.26]

0.42
0.08

[−0.08, 0.88]
Table 1: Means, variances and confidence intervals for the three methods, d ∈
{0, 0.2, 0.4} and T = 100. d: mean of the estimator, σd : variance of the estimator and
CI: confidence interval
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T = 500 τ(q) R/S GPH

d = 0
d
σd
CI

−0.008
0.0013

[−0.007, 0.04]

0.0254
0.0013

[−0.040; 0.057]

−0.0018
0.029

[−0.29, 0.26]

d = 0.2
d
σd
CI

0.19
0.0015

[0.13, 0.25]

0.1332
0.0018

[0.12; 0.19]

0.21
0.029

[−0.07, 0.47]

d = 0.4
d
σd
CI

0.38
0.0026
[0.3, 0.46]

0.2243
0.0020

[0.15; 0.28]

0.41
0.029

[0.11, 0.67]

Table 2: Means, variances and confidence intervals for the three methods, d ∈
{0, 0.2, 0.4} and T = 500 d: mean of the estimator, σd : variance of the estimator
and CI: confidence interval
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T = 1000 τ(q) R/S GPH

d = 0
d
σd
CI

−0.0058
0.0007

[−0.05, 0.035]

0.0251
0.0010

[−0.048; 0.077]

0.003
0.018

[−0.22, 0.22]

d = 0.2
d
σd
CI

0.195
0.001

[0.15, 0.24]

0.14
0.0015

[0.099; 0.178]

0.21
0.01

[−0.038; 0.41]

d = 0.4
d
σd
CI

0.384
0.0021

[0.31, 0.46]

0.238
0.0017

[0.158; 0.31]

0.407
0.019

[0.17, 0.62]

Table 3: Means, variances and confidence intervals for the three methodologies, d ∈
{0, 0.2, 0.4} and T = 1000 d: mean of the estimator, σd : variance of the estimator and
CI: confidence interval
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