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Abstract

Recently, there has been made a substantial progress in the analysis of repeated games with
private monitoring. This progress began with introducing a new class of sequential
equilibrium strategies, called belief-free equilibria, that can be analyzed using recursive
techniques. The purpose of this paper is to explain the general method of constructing
belief-free equilibria, and the limit (or bound) on the set of payoff vectors that can be
achieved in these strategies in a way that should be easily accessible, even for those who do
not pretend to be experts in repeated games.
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1. Introduction

Repeated games is the simplest setting for studying long-run interactions. Most
real-life examples of long-run interactions involve imperfect private monitoring of
actions, i.e. situations in which players observe possibly different signals, so they
might not know the signals of their opponents. Repeated games with private moni-
toring have long been known for their intractability. This intractability comes from
a complex statistical inference that one has to conduct to determine the optimal
continuation strategies for any given player.1

Recently however, there has been made a substantial progress in the analysis of
repeated games with private monitoring. This progress began with introducing a new
class of sequential equilibrium strategies, belief-free equilibria, that can be analyzed
using recursive techniques. The key characteristic of belief-free strategies is that
when they are used, the set of optimal continuation strategies for any given player is
independent of the prior history of play. That is, the problem of complex statistical
inference is, for these class of strategies, assumed away.

Belief-free equilibrium was first used by Piccione (2002) to establish the folk the-
orem for the repeated, two-player Prisoner’s Dilemma with private, almost-perfect
monitoring. Ely and Välimäki (2002) proved the same result by using a substan-
tially simpler construction (of belief-free equilibria). It should also be mentioned
that Kandori and Obara (2006) used independently a construction similar to Ely and
Välimäki in a paper on repeated games with public monitoring. For some time, there
was a consensus among researchers that belief-free equilibrium was the most promis-
ing tool for the analysis of imperfect private monitoring. Ely et al. (2005) provide
a simple and sharp characterization of equilibrium payoffs that can be achieved in
belief-free equilibria; they conclude that while this set of payoffs is large, belief-free
strategies are not rich enough to generate a folk theorem in most games besides the
prisoner’s dilemma, even under almost-perfect monitoring. Recently, their character-
ization was generalized to the case of more than two players in Yamamoto (2006b).
Despite the impossibility of generating a folk theorem, belief-free equilibria remain
an important tool in the studies on private monitoring (see, for example, Matsushima
(2004), Hörner and Olszewski (2006), and Yamamoto (2006a)), as well as on some
other topics in repeated games (see Takahashi (2007)).

Although belief-free strategies are the simplest among all known equilibria in re-
peated games with imperfect private monitoring, the construction of these strategies,
especially the general methods developed in Ely et al., may not be so straightforward
even for experts in repeated games. The purpose of this paper is to explain the gen-
eral method of constructing belief-free equilibria, and the limit (or bound) on the set
of payoff vectors that can be achieved in these strategies. The exposition should be
fairly easily accessible, even for those who do not pretend to be experts in repeated
games. This is achieved partially by restricting attention to specific examples. These

1We refer the reader to Kandori (2002), and Mailath and Samuelson (2006) for a detailed discus-
sion of difficulties that arise in the analysis of repeated games with private monitoring.
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examples require less tedious calculations and allow for more explicit description of
strategies than the general case, yet basically identical ideas as those behind the
specific examples apply in the general case.

We attempt to achieve our objective by presenting detailed (rather than verbal
and informal) arguments. Also, we discuss only very briefly the properties of belief-
free equilibria. We refer the reader to Ely et al., and Mailath and Samuelson (2006)
for a much more complete discussion; Bhaskar, Mailath and Morris (2006) provide
a criticism of usefulness of belief-free equilibria for studying long-run interactions on
the grounds of Harsanyi’s purifiability.

2. Basic Model of Repeated Games with Private Monitoring

We follow most of the notation from Fudenberg et al. (1994). In the stage game,
player i = 1, ..., n chooses action ai from a finite set Ai. We call a vector a ∈ A =
A1 × ... × An a profile of actions. A private monitoring structure is a collection of
distributions {π (·|a) : a ∈ A} over Y1 × ... × Yn, where all sets Yi are finite. The
interpretation is that each player receives a signal yi ∈ Yi, and each signal profile
(y1, . . . , yn) obtains with probability π(y1, . . . , yn|a). Player i’s realized payoff ri(ai, yi)
depends on the action ai and the private signal yi. Player i’s expected payoff from
action profile a is therefore

gi(a) =
∑

(y1,...,yn)∈Y1×...×Yn

π(y1, . . . , yn|a)ri(ai, yi).

Player i’s private history in the repeated game is hti = (a
1
i , y

1
i , ..., a

t−1
i , yt−1i ). We

call a vector ht = (ht1, ..., h
t
n) a profile of histories. A strategy σi for player i is a

sequence of functions (σti)
∞
t=1 where σ

t
i maps each hti to a probability distribution over

Ai. Players share a common discount factor δ < 1. All repeated game payoffs are
discounted and normalized by a factor 1− δ. Thus, if (gti)

∞
t=1 is player i’s sequence of

stage-game payoffs, the repeated game payoff is

(1− δ)
∞∑

t=1

δt−1gti .

3. Definition of Belief-Free Equilibrium

The key difficulty in the analysis of repeated games with private monitoring is
complex statistical inference. To determine the best-response continuation strategies
of a player i at his/her private history hti, one typically has to determine player
i’s expectation regarding his/her opponents’ strategy; in practice, one thus has to
compute the probability distribution, conditional on hti, over private histories of player
i’s opponents. This task is very complicated even for very simple strategies and
monitoring structures.
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Belief-free equilibria is a class of equilibria in repeated games. They can be defined
not only for private, but also for perfect and public monitoring structures. However,
they became particularly useful in research on private monitoring. Belief-free equi-
libria are most tractable among all known classes of equilibria in repeated games
with private monitoring. They are simple, because the problem of complex statistical
inference is, by definition, assumed away for this class of equilibria.

Definition 1. A strategy profile σ is belief-free if for every profile of histories ht =
(ht1, ..., h

t
n), the continuation strategy σi|h

t
i is a best response of player i to the con-

tinuation strategies σj|h
t
j (j �= i) of player i’s opponents.

Notice the difference with the equilibrium condition, which requires that σi|hti is a
best response contingent on player i’s beliefs about the history profile ht−i at history
hti, not contingent on every single history profile ht−i.

Every belief-free equilibrium gives rise to a sequence of (nonempty) regimes (At)∞t=1,
which are defined as the largest subsets of action profiles At = At1 × ... × Atn ⊂
A1× ...×An with the property that playing any sequence of actions (ati)

∞
t=t∗, a

t
i ∈ A

t
i

for t ≥ t∗, is a best response of player i to the continuation strategies of player i’s
opponents contingent on any history profile ht−i. By the definition of belief-free equi-
librium, Ati contains all actions ai such that for some history hti mixed strategy σti(h

t
i)

assigns a positive probability to ai, but Ati may contain also other actions.
At first, the definition of regime may look complicated, and the usefulness of this

concept may not be immediately appreciated. We hope, however, that the examples
from Section 4 will be turn out very helpful.

4. Folk Theorem for Prisoner’s Dilemma

Consider the following two-player Prisoner’s Dilemma:

C D
C 2, 2 0, 3
D 3, 0 1, 1

Each player i obtains one of two possible signals: c or d; the probability distribution
over signals depends only on the action of his/her opponent; the signal is correct, i.e.
it is c when player −i’s action was C, or (respectively) it is d when player −i’s action
was D, with probability p > 1/2.

This payoff matrix is purposely non-generic: A player’s payoff to playing C is
always by 1 smaller than the payoff to playing D, independently of the player op-
ponent’s action; also, a player’s payoff is always by 2 larger when his/her opponent
plays C (compared to playing D), independently of the player’s own action. The
two non-generic features enable us to present ideas without running into complicated
calculations.
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4.1. Full Cooperation

We shall first show that full cooperation, i.e. payoff vector (2, 2), can be approx-
imated by belief-free equilibria when δ → 1 and p → 1, i.e. when discounting and
monitoring imperfections vanish. Consider the following strategies with one-period
memory:

σti = C with prob. 1 if yt−1i = c;

σti = D with prob. β if yt−1i = d.

Player i begins with playing D with probability (1 − p)β in period 1. This pair of
strategies is a belief-free equilibrium (with the constant sequence of regimes {C,D}×
{C,D}) if each player i is indifferent between playing C and playingD, independently
of his/her opponent’s history, i.e. when

1 = δ(2p− 1)β2. (1)

The left-hand side of this equality is equal to the difference in player i’s flow payoffs
to playing D and C; it is independent of player −i’s action, and so his/her history
up to period t. The right-hand side is equal to the discounted expected difference
in continuation payoffs that follow playing C and D. As strategies have one-period
memory, this difference comes entirely from player −i’s action in period t+1. Playing
D by player i increases (compared to playing C) the chance that player −i will receive
signal d by 2p − 1; receiving signal d by player −i increases (compared to receiving
signal c) the chance of playing D by β, and if the opponent plays D, it reduces player
i’s payoff by 2, independently of his/her own action. Again, the right-hand side is
independent of player −i’s history up to period t.

The idea is that player −i plays D with a slightly higher probability contingent
on signal d. This gives player i an incentive to play C, and offsets his/her myopic
incentive to play C. If the probability of playing D by player −i contingent on signal
d is appropriately chosen, player i is indifferent between playing C and D.

Notice that β → 1/2 when δ → 1 and p→ 1.
Since the prescribed strategies are belief-free, player i’s equilibrium payoff can be

computed under the assumption that player i plays C in every period. Thus, player
i receives in period 1 the flow payoff of 2[1 − (1 − p)β] = 2[p + (1 − p)(1− β)] with
probability 1; in periods t > 1, player i receives the flow payoff of 2 if player −i plays
C, which happens with probability p + (1 − p)(1 − β), and the flow payoff of 0 if
player −i plays D, which happens with the remaining probability. This yields the
total (normalized) payoff of

(1− δ)
∞∑

t=1

δt−12[p+ (1− p)(1− β)] = [p+ (1− p)(1− β)]2.

In the limit as p tends to 1, this yields payoff vector (2, 2).
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The same idea enabled Ely and Välimäki to approximate full cooperation in a
“general” version of the Prisoner’s Dilemma; however, condition (1) must then be
replaced by a system of more complicated linear equations which must be satisfied
by a number of probabilities which correspond to single probability β.

4.2. Other Payoffs

A repetition of stage-game Nash equilibrium (D,D) achieves the payoff vector
(1, 1). The set of feasible and IR payoffs (see Figure 1) is spanned by two more payoff
vectors: (2.5, 1) and (1, 2.5); they can also be approximated in belief-free equilibria
(when δ → 1 and p→ 1).

An obvious idea for constructing a belief-free equilibrium that approximates payoff
vector (2.5, 1) is to modify the strategies from the previous section so that: player 1 is
allowed to play D in every second period with no effect on the continuation play, and
(s)he is indifferent between playing C and D in all remaining periods, while player 2
is indifferent between playing C and D in all periods.

To examine this idea more formally, consider the following strategy (of player 1)
with two-period memory:

σt1 = D with prob. 1 if t is even;

σt1 = C with prob. 1 if t is odd, and yt−11 = yt−21 = c;

σt1 = D with prob. β if t is odd, yt−11 = c and yt−21 = d;

σt1 = D with prob. γ if t is odd, yt−11 = d and yt−21 = c;

σt1 = D with prob. β + γ if t is odd, and yt−11 = yt−21 = d,

where β is defined by (1), and γ is defined by

1 = δ2(2p− 1)γ2. (2)

Player 1 begins with playing C with probability q (which will be specified later) in
period 1.

Consider also the following strategy of player 2:

σt2 = C with prob. 1 if t is even;

σt2 = C with prob. 1 if t is odd, and yt−22 = c;

σt2 = D with prob. γ if t is odd, and yt−22 = d.

Player 2 begins with playin C with probability p+ (1− p)(1− γ).
Notice that the definition of the strategy of player 1 is incorrect, because

β + γ =
1

δ(2p− 1)2
+

1

δ2(2p− 1)2
> 1

if δ or p is smaller than 1, but disregard this problem for a moment. We shall
show that this is actually the only problem with this pair of strategies, and then we
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explain how they can be modified to obtain a well-defined belief-free equilibrium that
approximates payoff vector (2.5, 1).

Player 1 strictly prefers playing D in every even period, as it yields a higher flow
payoff (compared to playing C) and the continuation payoff (from the following odd
period) is independent of player 2’s signal. By the argument used in the construc-
tion of equilibrium that approximates full cooperation, player 1 is indifferent between
playing C and D in odd periods if condition (1) is satisfied. It is the case indepen-
dently of player 2’s history up to period t. Similarly, player 2 is indifferent (in every
period) between playing C and D, independently of player 1’s history. Notice that
the indifference between playing C and D in even periods is guaranteed by condition
condition (1), and in odd periods by condition (2).

Thus, the prescribed strategies would be a belief-free equilibriumwith the sequence
of regimes {C,D} × {C,D}, {D} × {C,D}, {C,D} × {C,D}, {D} × {C,D}, ..., if
β + γ were a number from interval [0, 1]. To compute the payoff of player 1 in this
“equilibrium”, one can assume that player 1 plays C in odd periods and D in even
periods, while player 2 plays the prescribed strategy. This yields

(1− δ)

{
∑

t odd

δt−12[p+ (1− p)(1− γ)] +
∑

t even

δt−13

}

=

=
δ2[p + (1− p)(1− γ)]

1 + δ
+

3δ

1 + δ
→p,δ→1 2.5.

Similarly, to compute the payoff of player 2 in this “equilibrium”, one can assume
that player 2 plays C in every period, while player 1 plays the prescribed strategy.
This yields

(1− δ)
∑

t odd

δt−12[p2 + p(1− p)(1− β) + p(1− p)(1− γ) + (1− p)2(1− β − γ)] =

=
2[p2 + p(1− p)(1− β) + p(1− p)(1− γ) + (1− p)2(1− β − γ)]

1 + δ
→p,δ→1 1,

if the probability that player 1 plays C in period 1 is defined by

q := p2 + p(1− p)(1− β) + p(1− p)(1− γ) + (1− p)2(1− β − γ).

Indeed, the flow payoff of player 2 is equal to 0 in even periods. In odd periods,
the flow payoff of player 2 is equal to 0 if player 1 plays D, and it is equal to 2 if
player 1 plays C. Player 1 plays C in odd periods t > 1 with positive probability in
the following cases: (a) (s)he plays C with probability 1 if yt−11 = yt−21 = c, which
happens with probability p2; (b) with probability (1 − β) if yt−11 = c and yt−21 = d
or with probability (1 − γ) if yt−11 = d and yt−21 = c (both happen with probability
p(1− p)), and(c) with probability (1− β− γ) if yt−11 = yt−21 = d, which happens with
probability (1− p)2.
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Hence the only problem is that strategy σ1 is not well-defined (β + γ > 1). Since
player 1 is allowed to playD in every second period with no effect on the continuation
play, his/her strategy in those periods cannot depend on signals. This leaves only
“half of the periods” for giving player 2 incentives to play C, and it turns out not to
be enough.

However, the problem does not seem too serious. Although, β+γ > 1, it converges
to 1 as δ → 1 and p→ 1. This suggests that if there were a little more time (than half
of the periods) for giving player 2 incentives to play C, strategies similar to σ1 and σ2
could be a well-defined belief-free equilibrium. One can therefore try to modify these
strategies so that: player 1 is allowed to play D in every m out of 2m + 1 periods
with no effect on the continuation play, and (s)he is indifferent between playing C
and D in the remaining m+1 out of the 2m+1 periods, while player 2 is indifferent
between playing C and D in all periods. In Appendix A, we show that this new pair
of strategies is indeed a belief-free equilibrium (for sufficiently large discount factors),
and it yields a payoff vector that converges to (2.5, 1) as δ → 1.

5. A Bound on Belief-Free Equilibrium Payoff Vectors

We shall now provide a bound on the set of all payoff vectors that can be achieved
in belief-free equilibria. Let J denote the set of all regimes. For all i = 1, ..., n and
A ∈ J define

mA
i := min

α−i∈∆A−i
max
ai∈Ai

gi(α) and MA
i := max

α−i∈∆A−i
min
ai∈Ai

gi(α), (3)

and let mi and Mi denote vectors
(
mA
i

)
A∈J

and
(
MA
i

)
A∈J

, respectively. Given a
probability distribution over regimes p ∈ ∆J , let

p ◦mi :=
∑

A∈J

p(A)mA
i and p ◦Mi :=

∑

A∈J

p(A)MA
i .

Let V BF be the set of all payoff vectors that can be achieved in belief-free equilibria

Theorem 1.

V BF ⊂
⋃
{

n∏

i=1

[p ◦mi, p ◦Mi] : p ∈ ∆J

}

Notice that this theorem applies to any (finite) game and any (finite) monitoring
structure. See Appendix B for the proof.

For a large class of stage games, inclusion can be replaced in Theorem 1 with equal-
ity, and for all games Theorem 1 is one of the key steps to a complete characterization
of belief-free equilibrium payoffs. In the case of two players, such a characterization
was obtained by Ely et al. (2005) by using a combination of the argument behind
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Theorem 1 and a generalization of the construction from Section 4. In Appendix C,
we apply Theorem 1 to showing that for some stage games, belief-free strategies are
not rich enough to generate a folk theorem.

In the case of more than two players and almost-perfect monitoring, the char-
acterization of belief-free equilibrium payoffs was obtained by Yamamoto (2006b).
The construction from Section 4 does not extend easily to more than two players;
instead, Yamamoto adapts a much more complicated construction from Hörner and
Olszewski (2006). The difference in studying two and more than two players is that
the self-generation techniques developed by Abreu et al. (1990) fairly easily gener-
alize to private monitoring (for the class of belief-free equilibria) in the case of two
players, but no generalization is known for more than two players. Nevertheless,
some belief-free equilibria can be constructed in a manner similar to Section 4, or by
techniques developed by Abreu et al. (1990); Yamamoto (2006a) shows, for example,
that one can approximate in this way full cooperation in games similar to the n-player
Prisoner’s Dilemma.

6. Appendix A

We will construct a belief-free equilibrium that approximates payoff vector (2.5, 1).
Let the strategy of player 1 be given by

σt1 = D with prob. 1 if t = k(2m+ 1) + 1, ..., k(2m+ 1) +m;
σt1 = C with prob. 1 if t ∈ {k(2m+ 1) +m+ 1, ..., k(2m+ 1) + 2m},

yt−2m−11 = yt−3m−11 = c;
σt1 = D with prob. β1 if t ∈ {k(2m+ 1) +m+ 1, ..., k(2m+ 1) + 2m},

yt−2m−11 = c and yt−3m−11 = d;
σt1 = D with prob. γ1 if t ∈ {k(2m+ 1) +m+ 1, ..., k(2m+ 1) + 2m},

yt−2m−11 = d and yt−3m−11 = c;
σt1 = D with prob. β1 + γ1 if t ∈ {k(2m+ 1) +m+ 1, ..., k(2m+ 1) + 2m},

yt−2m−11 = yt−3m−11 = d;

σt1 = D with prob. γ1 +
m∑

i=1

αi · εi if t = k(2m+ 1) +m+ 1, and yt−2m−11 = d;

σt1 = D with prob.
m∑

i=1

αi · εi if t = k(2m+ 1) +m+ 1, and yt−2m−11 = c,

where

εi = 1 if yt−i−3m−11 = d;

εi = 0 if yt−i−3m−11 = c;
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1 = δm(2p− 1)γ12, (4)

and
1 = δ2m(2p− 1)β12 + δ2m+i(2p− 1)αi2. (5)

Of course, we have to pick numbers β1 , γ1, and αi, i = 1, ...,m, such that all
probabilities belong to interval [0, 1]. For a fixed m, γ1 → 1/2 when δ → 1 and
p → 1; so, taking β1 = 1 − γ1, we have that also β1 → 1/2. Thus, we can take
αi → 0, and so all probabilities belong to interval [0, 1].

Let further the strategy of player 2 be given by

σt2 = C with prob. 1 if t = k(2m+ 1) + 1, ..., k(2m+ 1) +m;
σt2 = C with prob. 1 if t ∈ {k(2m+ 1) +m+ 1, ..., (k + 1)(2m+ 1)},

yt−2m−12 = c;
σt2 = D with prob. γ if t ∈ {k(2m+ 1) +m+ 1, ..., (k + 1)(2m+ 1)},

yt−2m−12 = d,

where
1 = δ2m+1(2p− 1)γ22. (6)

Conditions (4)-(6) guarantee that player 2 is indifferent between playing C and
D in all periods, and player 1 strictly prefers playing D in periods k(2m+ 1) + 1, ...,
k(2m+1)+m and is indifferent between playing C andD in periods k(2m+1)+m+1,
..., k(2m+1)+2m+1. Thus, the prescribed strategy profile is a belief-free equilibrium
with the sequence of regimes

{D} × {C,D}︸ ︷︷ ︸
m times

,
{C,D} × {C,D}︸ ︷︷ ︸

m+ 1 times
,
{D} × {C,D}︸ ︷︷ ︸

m times
,
{C,D} × {C,D}︸ ︷︷ ︸

m+ 1 times
, ...

To compute the payoff of player 1, one can assume that player 1 plays D in
periods t = k(2m+ 1) + 1, ..., k(2m+ 1) +m and C in periods k(2m+ 1) +m+ 1,
..., (k + 1)(2m + 1), while player 2 plays the prescribed strategy; and to compute
the payoff of player 2, one can assume that player 2 plays C in every period, while
player 1 plays the prescribed strategy. The precise expression for this payoff vector
is slightly tedious, but it is easy to see that in the limit (as δ → 1 and p → 1) the
payoff of player 1 is equal to the average of the payoff to playing (D,C) in m out
of (2m + 1) periods and the payoff to playing (C,C) in the remaining m + 1 out of
(2m+ 1) periods. Taking m sufficiently large, this average is close to 2.5. Similarly,
the payoff of player 2 is equal to the average of the payoff to playing (D,C) in m out
of (2m + 1) periods and the payoff to playing (C,C) in the remaining m + 1 out of
(2m+ 1) periods; for m sufficiently large, this average is close to 1.

7. Appendix B

Proof of Theorem 1: Consider a belief-free equilibrium with the sequence of
regimes A1, A2, .... Let wti(h

t
−i) denote the equilibrium continuation payoff of player

10



i (the payoff in the repeated game that begins in period t), contingent on private
histories of player i’s opponents at the beginning of period t. Because the equilibrium
is belief-free, this continuation payoff is independent of player i’s private history; in
general, the equilibrium continuation payoff of player i would depend on his/her own
private history, as the continuation strategy typically depends on player i’s private
history. Let further

W t
i := max

ht
−i

wti(h
t
−i).

For every private history profile ht−i, we have

wti(h
t
−i) ≤ (1− δ) min

ai∈Ati

gi(ai, σ−i | h
t
−i) + δW t+1

i ≤ (1− δ)MAt

i + δW t+1
i ;

the first inequality follows from the definition of regime and the definition of W t+1
i ,

and the second inequality follows from the definition of MAt

i . Thus,

W t
i ≤ (1− δ)MAt

i + δW t+1
i ;

applying this inequality iteratively, we obtain that

W 1
i ≤

∞∑

t=1

(1− δ)δt−1MAt

i .

Define a probability distribution over regimes p ∈ ∆J by letting

p(A) :=
∑

t:At=A

(1− δ)δt−1.

Then the last inequality can be written as

W 1
i ≤ p ◦Mi.

Similarly, let
wti := min

ht
−i

wti(h
t
−i).

For every private history profile ht−i, we have

wti(h
t
−i) ≥ (1− δ) max

ai∈Ai
gi(ai, σ−i | h

t
−i) + δwt+1i ≥ (1− δ)mAt

i + δwt+1i ,

so
wti ≥ (1− δ)mAt

i + δwt+1i ;

and applying this inequality iteratively,

w1i ≥
∞∑

t=1

(1− δ)δt−1mAt

i = p ◦mi.
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It remains to notice that the equilibrium payoff of player i is equal to w1i = W 1
i . �

8. Appendix C

We shall now show that for some stage games, belief-free strategies are not rich
enough to generate a folk theorem. Consider the following Battle of Sexes:

B O
B 2, 1 0, 0
O 0, 0 1, 2

This game has three stage-game Nash equilibria: (B,B), (O,O), and an equilibrium
in mixed strategies in which player 1 (row) plays B with probability 2/3 and player 2
(column) plays O with probability 2/3. The three stage-game equilibria yield payoffs:
(2, 1), (1, 2) and (2/3, 2/3), respectively. We shall show that the convex hull the three
payoff vectors contains V BF , the set of all payoff vectors that can be achieved in
belief-free equilibria of the repeated game. Thus, for the Battle of Sexes, the set V BF

is strictly smaller than the set of feasible and IR payoff vectors (see Figure 2).
It follows directly from formula (3) that

MA
1

MA
2

mA
1

mA
2

{B} × {B} {B} × {O} {O} × {B} {O} × {O} {B,O} × {B}
2 0 0 1 0
1 0 0 2 1
2 1 2 1 2
1 1 2 2 2/3

MA
1

MA
2

mA
1

mA
2

{B,O} × {O} {B} × {B,O} {O} × {B,O} {B,O} × {B,O}
0 2 1 2/3
2 0 0 2/3
1 2/3 2/3 2/3
2/3 1 2 2/3

For the purpose of computing the bound from Theorem 1, two regimes: {B} × {O}
and {O} × {B} can be disregarded as mA

i > MA
i for i = 1, 2. Other two regimes

{B,O}×{B} and {B}×{B,O} can be disregarded as well; {B,O}×{B} is dominated
by {B,O} × {O}, in the sense that mA

i for the former is no lower than mA
i for the

latter and MA
i for the former is no higher than mA

i for the latter, and {B} × {B,O}
is dominated (in the same sense) by {O} × {B,O}.

Further, notice that

[
mA
1 ,×M

A
1

]
×
[
mA
2 ,×M

A
2

]
=

[
17

21
,
24

21

]
×

{
6

7

}
⊂ co{(2, 1), (1, 2), (2/3, 2/3)},
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for the regime A = {B,O} × {O} (co stands for the convex-hull operator), and
similarly

[
mA
1 ,×M

A
1

]
×
[
mA
2 ,×M

A
2

]
=

{
6

7

}
×

[
17

21
,
24

21

]
⊂ co{(2, 1), (1, 2), (2/3, 2/3)}

for the regime A = {O} × {B,O}. Since

[
m
{B}×{B}
1 ,×M

{B}×{B}
1

]
×
[
m
{B}×{B}
2 ,×M

{B}×{B}
2

]
= {(2, 1)},

[
m
{O}×{O}
1 ,×M

{O}×{O}
1

]
×
[
m
{O}×{O}
2 ,×M

{O}×{O}
2

]
= {(1, 2)},

and
[
m
{B,O}×{B,O}
1 ,×M

{B,O}×{B,O}
1

]
×
[
m
{B,O}×{B,O}
2 ,×M

{B,O}×{B,O}
2

]
= {(2/3, 2/3)},

regimes {B,O} × {O} and {O} × {B,O} can also be disregarded for the purpose
of computing the bound from Theorem 1, and consequently, this bound is equal to
co{(2, 1), (1, 2), (2/3, 2/3)}.
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Figure 1 (The Prisoner’s Dilemma): The set of feasible payoffs is spanned by vectors: 

(1,1), (2,2), (3,0) and (0,3), and the minmax payoff is equal to 1, both for player 1 and for 

player 2. Thus, the set of all feasible and IR payoffs (equal to the set of all belief-free 

payoff vectors) is spanned by payoff vectors: (1,1), (2,2), (2.5,1) and (1,2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

      2 

 

 

 

 

       1 

 

      2/3 

 

 

 

 

                             2/3    1                         2 

 

 

Figure 2 (The Battle of Sexes): The set of feasible payoffs is spanned by vectors: (2,1), 

(1,2), and (0,0), and the minmax payoff is equal to 2/3, both for player 1 and for player 2. 

The set of all belief-free payoff vectors is spanned by payoff vectors: (2,1), (1,2), and 

(2/3,2/3). It is equal to the convex hull of stage-game Nash equilibrium payoffs, and it is 

strictly smaller than the set of all feasible and IR payoffs. 

 

 

 


