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Abstract

This paper develops a Bayesian approach for analyzing a vector autoregressive model with
multiple structural breaks based on MCMC simulation methods, extending a method
developed for the univariate case by Wang and Zivot (2000). It derives the conditional
posterior densities using an independent Normal-Wishart prior. The number of structural
breaks is chosen by the posterior model probability based on the marginal likelihood,
calculated here by the method of Chib (1995) rather than the Gelfand-Dey (1994) method
used by Wang and Zivot. Monte Carlo simulations demonstrate that the approach provides
generally accurate estimation for the number of structural breaks as well as their locations.
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1 Introduction

This paper considers a vector autoregressive (VAR) model with multiple structural breaks, using a
Bayesian approach with Markov chain Monte Carlo simulation technique. In Bayesian analysis of VAR-
models without structural break, the Minnesota prior advocated by Litterman (1980) is often used. Other
priors that are often used include the diffuse (or Jeffreys’), the Normal-Wishart, and the Normal-diffuse
priors, see Kadiyala and Karlsson (1997) for these priors in details. In considering a VAR model with
structural breaks, both the diffuse and the Normal-diffuse priors cannot be used for detecting the number
of breaks since all priors must be proper in computing the marginal likelihood using a method proposed
by Chib (1995). The Normal-Wishart prior can be used only if all parameters are subject to change with
breaks. Therefore, in order to detect the number of breaks in a VAR model, we consider independent
Normal-Wishart prior in this paper.

The paper is structured as follows. Bayesian inference for a VAR model using independent Normal-
Wishart prior is described in Section 2. Section 3 considers the issue of model selection for detecting
multiple structural breaks using Bayes factors calculated by using Chib’s (1995) method. In Section 4,
Monte Carlo simulations are presented using artificially generated data for VAR models with multiple
breaks in order to examine the performances of detecting the number of breaks using our method. Sec-
tion 5 concludes. All computation in this paper are performed using code written by the author with Ox
v3.30 for Linux (Doornik, 1998).

2 Bayesian Inference in a Vector Autoregressive Model with Multiple
Structural Breaks

2.1 Statistical Model for a VAR with Multiple Structural Breaks

In this section we consider a Bayesian approach to a VAR model with multiple structural breaks. Let
yt denote a vector of n-dimensional (1× n) time series. If all parameters are assumed to be subject to
structural breaks, then the model is

yt = µt + tδt +
p

∑
i=1

yt−iΦt,i + εt (1)

where t = p, p + 1, . . . ,T ; p is the number of lags; and εt are assumed N(0,Ωt) and independent over
time. Dimensions of matrices are µt , δt and εt (1×n), Φt,i and Ωt (n×n). The parameters µt , δt

and Ωt are assumed to be subject to m structural breaks (m < t) with break points b1, . . . ,bm, where
b1 < b2 < · · ·< bm, so that the observations can be separated into m+1 regimes.

Equation (1) can be rewritten as:

yt = xtB+ εt (2)

where xt = (x1,t ,x2,t), x1,t = (s1,t , . . . ,sm+1,t , ts1,t , . . . , tsm+1,t),
x2,t = (s1,ty′t−1, . . . ,s1,ty′t−p+1, . . . ,sm+1,ty′t−1, . . . ,sm+1,ty′t−p+1),
B =( µ′1 , . . . , µ′m+1 δ′1 , . . . , δ′m+1 Φ′

1,1 , . . . , Φ′
p,1 , . . . , Φ′

1,m+1 , . . . , Φ′
p,m+1 )′, and si,t

in x1,t and x2,t is an indicator variable which equals to 1 if regime is i and 0 otherwise.
From equation (2), let define the (T − p+1)×n matrices Y =( y′p , . . . , y′T )′ and E =( ε′p , . . . , ε

′
T )′

, and X = ( x′p , . . . , x′T )′, then we can simplify the model as follows:

Y = XB+E (3)
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2.2 Prior Distributions and Likelihood Functions

Let b = (b1,b2, . . . ,bm)′ denote the vector of break dates. We specify priors for parameters, assum-
ing prior independence between b, B and Ωi, i = 1,2, . . . ,m+1, such that p(b,B,Ω1,Ω2, . . . ,Ωm+1) =
p(b) p(vec(B))∏

m+1
i=1 p(Ωi). This is because if we consider that the prior for B is conditional on Ω

as is often used in regression models with the natural conjugate priors, it is not convenient to consider
a case when the error covariance is also subject to structural breaks. Thus, the prior density for B is
set as the marginal distribution and vectorized as vec(B) unconditional on Ωi for convenience. The
prior for the covariance-variance matrix, Ωi, is specified with an inverted Wishart density. For the prior
for the location of the break dates b, we choose a diffuse but proper prior such that the prior is dis-
crete uniform over all ordered subsequences of t = p + 1, . . . ,T − 1. We consider that all priors for b,
Ωi, and vec(B) are proper as p(b) ∼ U(p + 1,T −1), Ωi ∼ IW (ψ0,i,ν0,i), vec(B) ∼ MN (vec(B0) ,V0)
where U refers to a uniform distribution; IW refers to an inverted Wishart distribution with parameters
ψ0,i ∈Rn×n and degrees of freedom, ν0,i; MN refers to a multivariate normal with mean vec(B0)∈Rκn×1,
κ = (np+2)(m+1) and covariance-variance matrix V0 ∈ Rκn×κn.

Using the definition of the matric-variate Normal density (see Bauwens, et al., 1999), the likelihood
function for the structural break VAR model with the parameters, b,B,Ω1, . . . ,Ωm+1, is given by,

L(b,B,Ω1, . . . ,Ωm+1 | Y )

∝

(
m+1

∏
i=1

|Ωi|−ti/2

)
exp

(
−1

2
tr

[
m+1

∑
i=1

{
Ω
−1
i (Yi−XiB)′ (Yi−XiB)

}])

=

(
m+1

∏
i=1

|Ωi|−ti/2

)
exp

(
−1

2

m+1

∑
i=1

[
(vec(Yi−XiB))′ (Ωi⊗ Iti)

−1 (vec(Yi−XiB))
])

(4)

where ti denotes the number of observations in regime i, i = 1,2, . . . ,m+1; Yi is the ti × n partitioned
matrix of Y values in regime i; and Xi is ti×κ partitioned matrix of X values in regime i.

2.3 Posterior Specifications and Estimation

The joint posterior distribution can be obtained from the joint priors multiplied by the likelihood function
in (4), that is,

p(b,B,Ω1, . . . ,Ωm+1 | Y ) ∝ p(b,B,Ω1, . . . ,Ωm+1)L(b,B,Ω1, . . . ,Ωm+1 | Y )

∝

(
m+1

∏
i=1

{
|ψ0,i|ν0,i/2 |Ωi|−(ti+ν0,i+n+1)/2

})
|V0|−1/2

×exp

(
−1

2

[
tr

(
m+1

∑
i=1

Ω
−1
i

)
+

m+1

∑
i=1

{(
[vec(Yi−XiB)]′ (Ωi⊗ Iti)

−1 vec(Yi−XiB)
)}

+vec(B−B0)
′V−1

0 vec(B−B0)
])

(5)

Consider first the conditional posterior of bi, i = 1,2, . . . ,m. Given that p = b0 < · · · < bi−1 < bi <
bi+1 < · · · < bm+1 = T and the form of the joint prior, the sample space of the conditional posterior of
bi only depends on the neighboring break dates bi−1 and bi+1. It follows that, for bi ∈ [bi−1,bi+1],

p(bi | [b−bi],B,Ω1, . . . ,Ωm+1,Y ) ∝ p(bi | bi−1,bi+1,B,Ωi,Ωi+1,Yi) (6)

for i = 1, . . .m, which is proportional to the likelihood function evaluated with a break at bi only using
data between bi−1 and bi+1 and probabilities proportional to the likelihood function. Hence, bi can be
drawn from multinomial distribution as
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bi ∼ M (bi+1−bi−1, pL) (7)

where pL is a vector of probabilities proportional to the likelihood functions.
Next, we consider the conditional posterior of Ωi, and vec(B). To derive these densities, the follow-

ing theorem can be applied:

Theorem: In the linear multivariate regression model Y = XB+E, with the prior densities of vec(B)∼
MN(vec(B0),V0) and Ω ∼ IW (Ψ0,ν0), the conditional posterior densities of vec(B) and Ω are

vec(B) | Ω,Y ∼ MN (vec(B?),VB)

Ω | B,Y ∼ IW (Ψ?,ν?)

where the hyperparameters are defined by

vec(B?) =
[
V−1

0 +Ω−1⊗ (X ′X)
]−1
[
V−1

0 vec(B0)+(Ω⊗ Iκ)
−1 vec(X ′Y )

]
VB =

[
V−1

0 +Ω−1⊗ (X ′X)
]−1

Ψ? = (Y −XB)′(Y −XB)+Ψ0

ν? = T +ν0

Proof : see Appendix.�

From (5), we can write two terms using the above theorem as:

m+1

∑
i=1

{
[vec(Yi−XiB)]′ (Ωi⊗ Iti)

−1 vec(Yi−XiB)
}

+[vec(B−B0)]
′V−1

0 vec(B−B0)

= [vec(B−B?)]
′V−1

B vec(B−B?)+Q

where

Q =
m+1

∑
i=1

{
[vec(Yi)]

′ (Ωi⊗ Iti)
−1 vec(Yi)

}
+[vec(B0)]

′V−1
0 vec(B0)− [vec(B?)]

′V−1
B vec(B?)

Thus, with the above theorem, the conditional posterior of Ωi is derived as an inverted Wishart distribu-
tion as Ωi | b,B,Y ∼ IW (Ψi,?,ν?,i) where Ψi,? = (Yi−XiB)′ (Yi−XiB)+ψ0,i and ν?,i = ti +ν0,i, thus:

p(Ωi | b,B,Y ) = C−1
IW |Ωi|−(ti+νi+n+1)/2 exp

[
−1

2
tr
(
Ω
−1
i Ψi,?

)]
(8)

where CIW = 2n(ti+ν0,i)/2πn(n−1)/4
∏

n
j=1 Γ{(ti +ν0,i +1− j)/2}|Ψi,?|−(ti+ν0,i)/2, Γ(α)=

R
∞

0 xα−1exp(−x)dx
for x > 0. The conditional posterior of vec(B) is a multivariate normal density with covariance-variance
matrix, VB, that is,

p(vec(B) | b,Ω1, . . . ,Ωm+1,Y ) = (2π)−κn/2 |VB|−1/2 exp
[
−1

2
{
[vec(B−B?)]

′V−1
B vec(B−B?)

}]
where

vec(B?) =

[
V−1

0 +
m+1

∑
i=1

{
Ω
−1
i ⊗

(
X ′

i Xi
)}]−1[

V−1
0 vec(B0)+

m+1

∑
i=1

{
(Ωi⊗ Iκ)

−1 vec
(
X ′

i Yi
)}]

, (9)
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and

VB =

[
V−1

0 +
m+1

∑
i=1

{
Ω
−1
i ⊗

(
X ′

i Xi
)}]−1

(10)

Given the full set of conditional posterior specifications above, we illustrate the Gibbs sampling
algorithm for generating sample draws from the joint posterior. The following steps can be replicated:

• Step 1: Set j = 1. Specify starting values for the parameters of the model, b(0) B(0), and Ω
(0)
i ,

where Ωi is a covariance-variance matrix at regime i.

• Step 2a: Compute likelihood probabilities sequentially for each date at b1 = b( j−1)
0 +1, . . . ,b( j−1)

2 −
1 to construct a multinomial distribution. Weight these probabilities such that the sum of them
equals 1.

• Step 2b: Generate a draw for the first break date b1 on the sample space (b( j−1)
0 ,b( j−1)

2 ) from
p(b( j)

1 | b( j−1)
0 ,b( j−1)

2 ,B( j−1),Ω
( j−1)
1 ,Ω

( j−1)
2 ,Y ) .

• Step 3a: For i = 3, . . . ,m+1, compute likelihood probabilities sequentially for each date at bi−1 =
b( j−1)

i−2 + 1, . . . ,b( j−1)
i −1 to construct a multinomial distribution. Weight these probabilities such

that the sum of them equals 1.

• Step 3b: Generate a draw of the (i−1)th break date b( j)
i−1 from the conditional posterior p(b( j)

i−1 |
b( j−1)

i−2 ,b( j−1)
i ,B( j−1),Ω

( j−1)
i−1 ,Ω

( j−1)
i ,Y ). Go back to Step 3a to generate next break date, but with

imposing previously generated break date. Iterate until all breaks are generated.

• Step 4: Generate vec(B)( j) from p(vec(B) | b( j),Ω
( j−1)
i , . . .Ω

( j−1)
m+1 ,Y ) and convert to B( j).

• Step 5: Generate Ω
( j)
i from p(Ωi | b( j),B( j),Y ) for all i = 1, . . . ,m+1.

• Step 6: Set j = j +1, and go back to Step 2.

Step 2 through to Step 6 can be iterated N times to obtain the posterior densities. Note that the first L
iterations are discarded in order to remove the effect of the initial values.

3 Detecting for the Number of the Structural Breaks by Bayes Factors

In this section we consider detecting for the number of structural breaks as a problem of model selection.
In Bayesian context, model selection for model i and j means computing the posterior odds ratio, that is
the ratio of their posterior model probabilities, POi j:

POi j =
p(Mi | Y )
p(M j | Y )

=
p(Y | Mi)
p(Y | M j)

· p(Mi)
p(M j)

= BFi j ·
p(Mi)
p(M j)

(11)

where BFi j denotes Bayes factor, defined as the ratio of marginal likelihood, p(Y |Mi) and p(Y |M j). We
compute the posterior odds for all possible models i = 1, . . . ,J and then obtain the posterior probability
for each model by computing

Pr(Mi | Y ) =
POi j

∑
J
m=1 POm j

(12)

where J is the number of models we consider.
There are several methods to compute the Bayes factor. Chib (1995) provides a method of computing

the marginal likelihood that utilizes the output of the Gibbs sampler. The marginal likelihood can be
expressed from the Bayes rule as
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p(Y | Mi) =
p(Y | θi)p(θi)

p(θi | Y )
. (13)

where p(Y | θi) is the likelihood for Model i evaluated at θi, p(θi) is the prior density and p(θi | Y ) is
the posterior density. Thus, for any value of θ?

i which is the Gibbs output or the posterior mean of θi,
the marginal likelihood can be estimated using (13). If the exact forms of the marginal posteriors are not
known like our case, p(θ?

i |Y ) cannot be calculated. To estimate the marginal posterior density evaluated
at θ?

i using the conditional posteriors, first block θ into l segments as θ = (θ′1, . . . ,θ
′
l)
′, and define ϕi−1 =

(θ′1, . . . ,θ
′
i−1) and ϕi+1 = (θ′i+1, . . . ,θ

′
l). Since p(θ? |Y ) = ∏

l
i=1 p(θ?

i |Y,ϕ?
i−1), we can draw θ

( j)
i , ϕi+1,( j),

where j indicates the Gibbs output j = 1, . . . ,N, from (θi, . . . ,θl) = (θi,ϕ
i+1)∼ p(θi,ϕ

i+1 |Y,ϕ?
i−1), and

then estimate p̂(θ?
i | Y,ϕ?

i−1) as

p̂(θ?
i | y,ϕ?

i−1) =
1
N

N

∑
j=1

p(θ?
i | Y,ϕ?

i−1,ϕ
i+1,( j)).

Thus, the posterior p(θ?
i | Y ) can be estimated as

p̂(θ? | Y ) =
l

∏
i=1

{
1
N

N

∑
j=1

p(θ?
i | Y,ϕ?

i−1,ϕ
i+1,( j))

}
. (14)

Note that p(b1, . . . ,bm | B,Ω1, . . . ,Ωm+1,Y ) = ∏
m
i=1 p(bi | bi−1,bi+1,B,Ωi,Ωi+1,Yi) can be directly ob-

tained from the Gibbs algorithm shown in Step 2 (a) in the section 2.3.
For a VAR model with multiple structural breaks, we adopt Chib’s (1995) method to compute

marginal likelihood p(y | Mi) to determine the number of structural breaks.

4 Simulation

In this section Monte Carlo simulation is conducted to examine the performance of the approach outlined
in the previous sections. Two structural breaks are given in artificially generated data for both simula-
tions. We are interested in examining the performance in both detecting the number of breaks when the
number of the breaks is unknown and the estimation of the location of the breaks when the number of
breaks is correctly specified. The following five data generation processes (DGPs) of two-variable VAR
models with two structural breaks are considered:

DGP 1: yt = µ1 + yt−1Φ1 +σ1εt

DGP 2: yt = µt + yt−1Φ1 +σ1εt

DGP 3: yt = µt + yt−1Φ1 +σtεt

DGP 4: yt = µt + yt−1Φt +σ1εt

DGP 5: yt = µt + yt−1Φt +σtεt

for t = 1,2, . . . ,300,

where εt ∼ iidN(0,1), µt = µ1 = (−0.1,−0.1), Φt = Φ1 = 0.2I2, σt = σ1 = 0.02I2 for 0 < t < 100,

µt = µ2 = (0,0), Φt = Φ2 =
(

0.3 −0.2
−0.2 0.5

)
, σt = σ2 = 0.1I2, for 100≤ t < 200, µt = µ3 = (0.1,0.1),

Φt = Φ3 = −0.2I2 , σt = σ3 = 0.02I2, for 200 ≤ t ≤ 300. DGP 1 contains no structural break while
other models contain two structural breaks. In DGP 2, only the constant term changes with breaks. DGP
3 allows the constant terms and volatility to change with breaks. DGP 4 allows µ and Φ to change with
breaks. DGP 5 is the most general model in which breaks affect all parameters of the model.

The Gibbs sampling algorithm presented in Subsection 2.3 is employed for the estimation of models
for m = 0,1, . . . ,4 break points. For prior parameters, we set Ψ0,i = 0.1I2 and ν0,i = 2.001 for all i for
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Table 1: Monte Carlo results: average posterior probabilities
DGP\no.of breaks m = 0 m = 1 m = 2 m = 3 m = 4

DGP 1 0.942 0.057 0.001 0.000 0.000
DGP 2 0.000 0.013 0.945 0.042 0.000
DGP 3 0.000 0.000 0.995 0.004 0.000
DGP 4 0.000 0.000 0.967 0.033 0.000
DGP 5 0.000 0.008 0.981 0.011 0.000

Table 2: Monte Carlo mean of the mode of the posterior for the break points when m = 2
()=Monte Carlo standard deviation

DGP 2 DGP 3 DGP 4 DGP 5
1st break 99.571 (3.092) 100.06 (1.635) 99.987 (2.216) 100.03 (1.504)
2nd break 200.94 (2.237) 200.97 (1.403) 200.85 (3.093) 201.02 (1.883)

The true value of the first break is at t = 100, and the second is at t = 200.

the variance-covariance prior, B0 = 0 and V0 = 100× Inκ to ensure fairly large variance for representing
prior ignorance. The number of lags in VAR is assumed to be known. Also, we assume that, except
the number of breaks, correct model specifications are known for each model. We assign an equal prior
probability to each model with i breaks, so that Pr(m=i)

Pr(m=0) = 11. After running the Gibbs sampler for 500
iterations, we save the next 2,000 draws for inference. This procedure is replicated 500 times.

Table 1 summarizes the results of the Monte Carlo simulations. Each element in the Table shows
the average posterior probability out of 500 replications for each number of breaks. We compute the
posterior probability with Chib’s method described in Section 4. For DGP 1, where there are no breaks,
the average posterior probability when m = 0 is 94.2%. For DGP 2, 3, 4, and 5, the correct number of
breaks, m = 2, is detected at about 94.5%, 99.5%, 96.7%, and 98.1% respectively. Thus, the DGP of
the VAR models with breaks in volatility (DGP3 and 5) perform better than those of the homoskedastic
VAR. Overall most of the iterations choose the correct number of breaks. Table 2 reports that the Monte
Carlo mean of estimated break points that are the mode of the posterior when the correct number of
breaks m = 2 is chosen. The estimates are all close to the true values, b = (100,200).

5 Conclusion

This paper considers a vector autoregressive model with multiple structural breaks, using a Bayesian
approach with Markov chain Monte Carlo simulation technique. We derive the conditional posterior
densities for multivariate system using independent normal-Wishart prior. The number of structural
breaks is determined as a sort of model selection by the posterior odds from the values of the marginal
likelihood. The Monte Carlo experiments were conducted.

1Inclan (1993) and Wang and Zivot (2000) use the prior odds as an independent Bernoulli process with probability p∈ [0,1].
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Appendix. Proof of Theorem

For a linear regression model Y = XB + E, E ∼ iidN(0,Ω), where Y and E are T ×n; X is T ×κ; B is
κ×n, given the prior density for vec(B) ∼ MN(vec(B0),V0) and Ω ∼ IW (Ψ0,ν0), the joint posterior is
obtained by the joint prior

p(vec(B),Ω) = p(vec(B))p(Ω)

∝ |Ψ0|ν0/2 |Ω|−(ν0+n+1)/2 |V0|−1/2 exp
[
−1

2
{

tr
(
Ω
−1

Ψ0
)
+ vec(B−B0)′V−1

0 vec(B−B0)
}]

with the likelihood

L(B,Ω | Y ) ∝ |Ω|−T/2 exp
[
−1

2
tr
{

Ω
−1(Y −XB)′(Y −XB)

}]
(15)

so that the joint posterior is

p(vec(B),Ω | Y ) ∝ p(vec(B),Ω)L(B,Ω | Y )

|Ψ0|ν0/2 |Ω|−(T+ν0+n+1)/2 |V0|−1/2 exp
[
−1

2
tr
{

Ω
−1 ((Y −XB)′(Y −XB)+Ψ0

)}]
×exp

[
−1

2
{

vec(B−B0)′V−1
0 vec(B−B0)

}]
. (16)

From the joint posterior (16), it is easy to derive the conditional posterior density for Ω, which is the
inverted Wishart density IW (Ψ?,ν?) as

p(Ω | B,Y ) =
p(B,Ω | Y )

p(B | Y )
∝ p(B,Ω | Y )

∝ |Ω|−(T+ν0+n+1)/2 exp
[
−1

2
tr
{

Ω
−1 ((Y −XB)′(Y −XB)+Ψ0

)}]
= |Ω|−(T+ν0+n+1)/2 exp

[
−1

2
tr
(
Ω
−1

Ψ?

)]
(17)

where Ψ? = (Y −XB)′(Y −XB)+Ψ0 and ν? = T +ν0.
As for the conditional posterior density for vec(B), the likelihood

L(B,Ω | Y ) ∝ |Ω|−T/2 exp
[
−1

2
tr
{

Ω
−1(Y −XB)′(Y −XB)

}]
∝ |Ω|−T/2 exp

[
−1

2
(vec(Y −XB))′ (Ω⊗ IT )−1 (vec(Y −XB))

]
(18)

can be used for obtaining the joint posterior density instead of (15) as:

p(vec(B),Ω | Y ) ∝ p(vec(B),Ω)L(B,Ω | Y )

∝ |Ψ0|ν0/2 |Ω|−(T+ν0+n+1)/2 |V0|−1/2 exp
[
−1

2
tr
(
Ω
−1

Ψ0
)]

× exp
[
−1

2

{
(vec(Y −XB))′ (Ω⊗ IT )−1 (vec(Y −XB))+(vec(B−B0))

′V−1
0 vec(B−B0)

}]
.
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The key term in the third line of the joint posterior density in the above equation can be written as:

(vec(Y −XB))′ (Ω⊗ IT )−1 (vec(Y −XB))+(vec(B−B0))
′V−1

0 vec(B−B0)
= (vec(B−B?))′V−1

B vec(B−B?)+Q (19)

where Q =(vec(Y ))′(Ω⊗IT )−1vec(Y )+(vec(B0))′V−1
0 vec(B0)−(vec(B?))′V−1

B vec(B?), VB =
[
V−1

0 +(Ω−1⊗ (X ′X)
]−1

,
and vec(B?) = VB

[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X ′Y )
]
.

To prove equation (19), first rewrite the LHS of equation (19) as:

LHS = (vec(Y −XB))′ (Ω⊗ IT )−1 (vec(Y −XB))+(vec(B−B0))
′V−1

0 vec(B−B0)
= (vec(Y ))′ (Ω−1⊗ IT )vec(Y )+(vec(XB))′ (Ω−1⊗ IT )vec(XB)−2(vec((Y ))′ (Ω−1⊗ IT )vec(XB)
+(vec(B))′V−1

0 vec(B)+(vec(B0))
′V−1

0 vec(B0)−2(vec(B0))
′V−1

0 vec(B). (20)

The RHS can be written as:

RHS = (vec(B−B?))′V−1
B vec(B−B?)+(vec(Y ))′(Ω⊗ IT )−1vec(Y )

+(vec(B0))′V−1
0 vec(B0)− (vec(B?))′V−1

B vec(B?)
= (vec(B))′V−1

B vec(B)−2(vec(B?))
′V−1

B vec(B)
+(vec(Y ))′ (Ω−1⊗ IT )vec(Y )+(vec(B0))

′V−1
0 vec(B0). (21)

So, from (20) and (21), LHS−RHS is

LHS−RHS = (vec(XB))′ (Ω−1⊗ IT )vec(XB)+(vec(B))′V−1
0 vec(B)− (vec(B))′V−1

B vec(B)
−2
{
(vec(Y ))′ (Ω−1⊗ IT )vec(XB)+(vec(B0))

′V−1
0 vec(B)− (vec(B?))

′V−1
B vec(B)

}
= C−2D (22)

where C and D are defined as
C = (vec(XB))′ (Ω−1⊗ IT )vec(XB)+(vec(B))′V−1

0 vec(B)− (vec(B))′V−1
B vec(B) (23)

D = (vec(Y ))′ (Ω−1⊗ IT )vec(XB)+(vec(B0))
′V−1

0 vec(B)− (vec(B?))
′V−1

B vec(B). (24)

By substituting VB =
[
V−1

0 +
{

Ω−1⊗ (X ′X)
}]−1

, the third term of C in (23) is

(vec(B))′V−1
B vec(B) = (vec(B))′

[
V−1

0 +
{

Ω
−1⊗ (X ′X)

}]
vec(B)

= (vec(B))′V−1
0 vec(B)+(vec(B))′

[
Ω
−1⊗ (X ′X)

]
vec(B)

= (vec(B))′V−1
0 vec(B)+(vec(B))′ vec

[
(X ′X)BΩ

−1] . (25)

Using (25) in (23), we have

C = (vec(XB))′ (Ω−1⊗ IT )vec(XB)− (vec(B))′ vec(X ′XBΩ
−1).

Since (vec(XB))′ (Ω−1⊗IT )vec(XB)= ((In⊗X)vec(B))′ vec(XBΩ−1)= (vec(B))′ (In⊗X)′vec(XBΩ−1),
and (vec(B))′ vec(X ′XBΩ−1) = (vec(B))′ (In⊗X)′vec(XBΩ−1), so we have C = 0.

Next, we consider D. The first term of D in (24) is

(vec(Y ))′ (Ω−1⊗ IT )vec(XB) = (vec(Y ))′ (Ω−1⊗ IT )(In⊗X)vec(B)
= (vec(Y ))′ (Ω−1⊗X)vec(B). (26)
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Since vec(B?) = VB
[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X ′Y )
]

= VB
[
V−1

0 vec(B0)+ vec(X ′Y Ω−1)
]
, the third

term of D is,

(vec(B?))
′V−1

B vec(B) =
[
V−1

0 vec(B0)+ vec(X ′Y Ω
−1)
]′

vec(B)

= (vec(B0))
′V−1

0 vec(B)+
[
(Ω−1⊗X ′)vec(Y )

]′
vec(B)

= (vec(B0))
′V−1

0 vec(B)+(vec(Y ))′ (Ω−1⊗X)vec(B). (27)

Thus, with (26) and (27), we have D as:

D = (vec(Y ))′ (Ω−1⊗X)vec(B)+(vec(B0))
′V−1

0 vec(B)
−
{
(vec(B0))

′V−1
0 vec(B)+(vec(Y ))′ (Ω−1⊗X)vec(B)

}
= 0.

Therefore, with C = D = 0, we have LHS−RHS = C−2D = 0, so that equation (19) is proved and thus
the conditional posterior density for vec(B) is

p(vec(B) | Ω,Y ) =
p(B,Ω | Y )
p(Ω | Y )

∝ p(vec(B),Ω | Y )

∝ exp
[
−1

2

{
(vec(Y −XB))′ (Ω⊗ IT )−1 (vec(Y −XB))+(vec(B−B0))

′V−1
0 vec(B−B0)

}]
∝ exp

[
−1

2
{
(vec(B−B?))′V−1

B vec(B−B?)
}]

where
VB =

[
V−1

0 +(Ω−1⊗ (X ′X))
]−1

and
vec(B?) = VB

[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X ′Y )
]
,

so that vec(B) | Ω,Y ∼ MN(vec(B?),VB).
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