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Abstract

The seminal analysis of Enders and Granger (1998) is extended to examine the properties of
asymmetric unit root tests when the nature of the actual asymmetric adjustment process
underlying the observed data is unknown. The analysis is further extended by considering
joint testing for asymmetric stationarity in addition to unit root testing. It is shown that the
momentum−threshold autoregressive (MTAR) test outperforms the threshold autoregressive
(TAR) test. The results indicate that when employing asymmetric unit root tests, practitioners
will tend to detect asymmetry of an MTAR rather TAR nature, irrespective of the form of
asymmetry actually present in the data.
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1 Introduction

In recent research, Enders and Granger (1998) have extended the Dickey-Fuller (1979) testing

procedure to allow the unit root hypothesis to be tested against an alternative of asymmetric

stationarity. This development is to be welcomed as a large literature now exists suggesting

the presence of asymmetric or non-linear behaviour in a range of economic time series.1

Consider the Dickey-Fuller (DF) test in its simplest form:

∆yt = ρyt−1 + ξt (1)

It is apparent that this is an explicitly symmetric specification, with (asymptotic) stationarity

occurring when |ρ| < 1. To allow for the possibility of asymmetric stationarity, Enders

and Granger (1998), hereafter referred to as EG, extend (1) by drawing upon the threshold

autoregressive methods of Tong (1990). Following this approach, the resulting generalisation

of (1) is given as:

∆yt = Itρ1yt−1 + (1− It) ρ2yt−1 + εt (2)

where It is the zero-one Heaviside indicator function. EG consider two specifications for

the Heaviside indicator function based upon the sign and difference of yt−1. These rival

specifications are given as:

It =

(
1 if yt−1 ≥ 0
0 if yt−1 < 0

(3)

and:

It =

(
1 if ∆yt−1 ≥ 0
0 if ∆yt−1 < 0

(4)

EG refer to the model defined by (2) and (3) as threshold autoregressive (TAR), while a

model combining (2) and (4) is referred to as momentum-threshold autoregressive (MTAR).

Under both models the unit root hypothesis (H0 : ρ1 = ρ2 = 0) is tested using specifically de-

rived critical values provided by EG. To incorporate deterministic terms within the TAR and

MTAR models, a preliminary regression of the variable of interest upon the appropriate de-

terministic terms is undertaken. The resulting revised series (either demeaned or detrended)

then replaces yt in (2) and the appropriate Heaviside indicator function. The results of Tong

(1983) show that if the unit root hypothesis is rejected, the adjustment parameters (ρ1, ρ2)

converge to a multivariate normal distribution. EG therefore suggest that following rejection

of the unit root hypothesis, asymmetric stationarity can be tested formally via an F-test of

the symmetry hypothesis H0 : ρ1 6= ρ2.

1See, inter alia, Ball and Mankiw (1994), Dixit (1992), Gale (1996) and Krane (1994).
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To examine the properties of the TAR and MTAR unit root tests, EG performed a

number of power experiments for the ‘with intercept’ specification. That is, rejections of the

unit root hypothesis by the TAR test were considered in the presence of TAR adjustment

for a range of values of (ρ1, ρ2). A similar approach was then followed to examine the MTAR

test under MTAR adjustment. However, in practice a practitioner will not know the data

generation process. It is therefore of interest to examine the properties of the TAR (MTAR)

test when the data possess asymmetry in the form of MTAR (TAR) adjustment. This

allows the behaviour of the asymmetric unit root tests to be examined when the nature of

asymmetry present is mis-specified. In addition to considering this possibility, the present

paper further extends the seminal study by considering joint rejections of the unit root and

symmetry hypotheses rather than rejections of the unit root hypothesis alone, as considered

by EG.

2 Simulation results

To examine the powers of the rival asymmetric unit root tests, the analysis of EG is followed

with the TAR and MTAR tests considered in their ‘with intercept’ forms. The TAR and

MTAR tests, denoted as Φµ and Φ∗µ respectively, are derived via application of (2) and

(3) or (4) as appropriate, following the regression of yt upon a constant. In addition to

the asymmetric tests, the familiar DF τµ test, given as the t-ratio for φ in the following

regression, is also considered:

∆yt = α+ φyt−1 + ηt (5)

To examine the properties of the tests under TAR adjustment, a data generation process

given by (2) and (3) above is employed. For MTAR adjustment, the data generation process

is given by (2) and (4). In each case the properties of the Φµ, Φ
∗
µ and τµ tests are considered

for a range of values of the adjustment parameters (ρ1, ρ2) , the specific values being reported

in each set of tabulated results below. Again following EG, all experiments are performed for

an effective sample size of 100 observations.2 Empirical rejection frequencies of the unit root

hypothesis for the Φµ, Φ
∗
µ and τµ tests are calculated at the 5% level of significance using

critical values presented by EG and Fuller (1996) respectively. Joint rejections of the unit

2The error series {εt} is generated as pseudo i.i.d. N(0, 1) random numbers using the RNDNS procedure in
the Gauss programming language version 3.2.13. For all experiments, an additional, initial 100 observations
are created and discarded to remove the effects of initial condition y0 = 0. All experiments are performed
over 10,000 replications.
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root and symmetry hypotheses by the Φµ and Φ
∗
µ tests at the 5% level of significance employ

the appropriate critical value from the F-distribution for the secondary test of symmetry.

The results for rejection of the unit root hypothesis under TAR adjustment are reported in

Table One. From inspection of this table it can be seen that the τµ test exhibits the greatest

power of the tests in all experiments apart from where (ρ1, ρ2) = (−0.1,−0.8) in which case
the Φµ test has highest power. The relatively poor performance of the Φµ test in comparison

to the τµ test under TAR adjustment was noted by EG. When comparing the Φ
∗
µ and Φµ

tests, the former has greater power apart from cases where there is a high degree of both

asymmetry and stationarity. Generally, the results therefore suggest a ranking in which the

τµ test is preferred to the Φ
∗
µ test, which is in turn preferred to the Φµ test. However, it must

be noted that the differences between the tests are slight and the results obtained for the tests

are qualitatively very similar. The results for MTAR adjustment in Table Two are in sharp

contrast to this as the Φ∗µ test can be seen to possess much greater power than the rival Φµ

and τµ tests. As an example of this, consider the results for (ρ1, ρ2) = (−0.025,−0.2) where
the empirical rejection frequency of the Φ∗µ test is 62.56% compared to 38.59% and 33.97%

respectively for the τµ and Φµ tests. This example also illustrates the slightly higher power

generally exhibited by the τµ test in comparison to the Φµ test. In summary, the results for

testing of the unit root hypothesis show that under TAR adjustment all three tests possess

similar properties, while under MTAR adjustment, the Φ∗µ test is clearly preferred, as might

be expected.

As noted above, testing the unit root hypothesis can be considered to be the first stage in

the application of asymmetric unit root tests, as the hypothesis of symmetry can be tested

explicitly should the unit root be rejected. The results for the joint rejection of the unit

root and symmetry are presented in Tables Three and Four. Intuitively it is to be expected

that the rival Φµ and Φ∗µ tests would perform better in the presence of their own form of

asymmetry. However, from inspection of Table Three it is clear that this is not the case as the

Φ∗µ test outperforms the Φµ test in the presence of TAR asymmetry. It should also be noted

that neither of the tests performs well in the presence of TAR adjustment, as joint rejection

of non-stationarity and symmetry is rarely observed under either test. In particular, it can

be seen that low rejection frequencies correspond to undersizing of the test of symmetry, a

phenomenon noted and discussed by Cook and Manning (2003). This undersizing therefore

questions the applicability of the (asymptotically justified) F-test of symmetry for finite

samples. Considering the results for MTAR adjustment presented in Table Four, the Φ∗µ test
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clearly outperforms the Φµ test, with the joint hypothesis frequently rejected by the former,

but seldom by the latter. The results therefore indicate that should asymmetric stationarity

of an MTAR form exist, it is likely that it will be detected by the Φ∗µ test, but unlikely that

it will be uncovered by the Φµ test. In contrast, if asymmetric stationarity is of a TAR form,

it is unlikely to be detected by either of the asymmetric unit root tests, although it is more

probable that it will be uncovered by the Φ∗µ test than the Φµ test.

3 Conclusion

In this paper the analysis of asymmetric unit root tests presented by Enders and Granger

(1998) has been extended. In addition to examining the properties of the TAR and MTAR

tests under mis-specification of the asymmetric adjustment process, the ability of the tests

to jointly reject non-stationarity and symmetry were also considered. The results obtained

showed that when considering rejection of the unit root hypothesis, the TAR and MTAR

tests have similar power in the presence of TAR adjustment. However, when asymmetry is of

an MTAR nature, the MTAR clearly outperforms the TAR test. The superior performance

of the MTAR test was further emphasised by results of joint testing of the non-stationarity

and symmetry hypotheses. Analysis of the joint hypothesis produced two interesting results.

First, the MTAR test was found to have greater power than the TAR test irrespective of

the form of asymmetry considered. Second, it was found that substantial rejection of the

joint hypothesis occurred when the MTAR test was employed in the presence of MTAR

asymmetry. The results suggest that when data generation process is unknown, as will be

the case in practice, application of the asymmetric unit root tests of Enders and Granger

(1998) will lead to a tendency for a practitioner to uncover asymmetry of an MTAR form

alone, irrespective of the true nature of the asymmetric adjustment process present. The

superiority of the MTAR test might be viewed as advantageous as this is arguably the form of

asymmetry more commonly expected in economic time series. When considering asymmetry

in either the level (TAR) or change of a series (MTAR), it is often the latter that attracts

more interest as it can be related to turning points and growth rates. In addition, early

interest in business cycle asymmetry focussed on the speed at which peaks and troughs

were approached, with recessions thought to be shorter and sharper than recovery periods.

However, the attractive properties of the MTAR test may not persist when the underlying

mechanism giving rise to the data is neither TAR nor MTAR in form. The analysis of

alternative asymmetric adjustment mechanisms is one potentially fruitful area of future
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research.
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Table One

Unit root testing under TAR adjustment

ρ1 ρ2 Φµ Φ∗µ τµ

0.00 0.00 4.97 5.05 5.03

−0.025 −0.05 7.80 8.72 9.49
−0.025 −0.075 9.30 10.43 11.34
−0.025 −0.1 10.64 11.89 12.97
−0.025 −0.125 11.98 13.27 14.49
−0.025 −0.15 13.42 14.45 15.87
−0.025 −0.2 15.80 16.86 17.83

−0.05 −0.1 16.39 17.48 19.51
−0.05 −0.15 21.57 22.76 25.25
−0.05 −0.2 26.60 27.15 30.41
−0.05 −0.25 30.66 30.75 34.56
−0.05 −0.3 34.26 34.18 37.77
−0.05 −0.4 39.94 39.30 42.78

−0.1 −0.2 51.48 49.83 57.13
−0.1 −0.3 66.02 63.52 69.98
−0.1 −0.4 74.88 71.38 77.39
−0.1 −0.5 80.65 76.95 81.59
−0.1 −0.6 84.40 81.05 84.68
−0.1 −0.8 89.13 86.38 88.88

Notes: Percentage rejection frequencies of the unit root hypothesis using the DGP of (2)

and (3). All experiments performed using a sample size of 100 observations and 10,000

replications.
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Table Two

Unit root testing under MTAR adjustment

ρ1 ρ2 Φµ Φ∗µ τµ

0.00 0.00 4.99 5.01 5.02

−0.025 −0.05 7.87 9.55 9.31
−0.025 −0.075 10.09 14.39 11.98
−0.025 −0.1 13.17 20.44 16.05
−0.025 −0.125 17.34 28.93 20.51
−0.025 −0.15 21.95 39.83 25.99
−0.025 −0.2 33.97 62.56 38.59

−0.05 −0.1 17.56 20.97 21.12
−0.05 −0.15 28.47 38.96 33.00
−0.05 −0.2 41.90 60.54 47.28
−0.05 −0.25 56.57 79.22 61.95
−0.05 −0.3 70.26 91.13 74.64
−0.05 −0.4 89.35 99.14 91.35

−0.1 −0.2 58.01 63.70 63.91
−0.1 −0.3 82.97 91.50 87.19
−0.1 −0.4 95.55 99.30 96.87
−0.1 −0.5 99.26 99.95 99.31
−0.1 −0.6 99.88 100.00 99.90
−0.1 −0.8 100.00 100.00 99.99

Notes: Percentage rejection frequencies of the unit root hypothesis using the DGP of (2)

and (4). All experiments performed using a sample size of 100 observations and 10,000

replications.
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Table Three

Joint testing of the unit root and symmetry hypotheses testing under TAR adjustment

ρ1 ρ2 Φµ Φ∗µ

−0.025 −0.025 0.10 1.92
−0.025 −0.05 0.07 2.13
−0.025 −0.075 0.05 2.44
−0.025 −0.1 0.07 2.65
−0.025 −0.125 0.06 2.78
−0.025 −0.15 0.08 2.86
−0.025 −0.2 0.09 3.10

−0.05 −0.05 0.08 2.66
−0.05 −0.1 0.06 3.10
−0.05 −0.15 0.07 3.44
−0.05 −0.2 0.12 3.67
−0.05 −0.25 0.16 4.03
−0.05 −0.3 0.23 4.35
−0.05 −0.4 0.60 4.89

−0.1 −0.1 0.05 3.83
−0.1 −0.2 0.13 4.31
−0.1 −0.3 0.27 4.77
−0.1 −0.4 0.70 5.65
−0.1 −0.5 1.15 6.73
−0.1 −0.6 2.07 8.17
−0.1 −0.8 4.28 11.50

−0.2 −0.5 0.72 5.56
−0.3 −0.75 2.22 8.11
−0.5 −0.9 1.58 6.94

Notes: Percentage rejection frequencies of the joint symmetry and unit root hypothesis using

the DGP of (2) and (3). All experiments performed using a sample size of 100 observations

and 10,000 replications.
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Table Four

Joint testing of the unit root and symmetry hypotheses testing under MTAR adjustment

ρ1 ρ2 Φµ Φ∗µ

−0.025 −0.025 0.17 1.85
−0.025 −0.05 0.14 2.74
−0.025 −0.075 0.13 4.84
−0.025 −0.1 0.18 8.28
−0.025 −0.125 0.20 12.77
−0.025 −0.15 0.17 19.30
−0.025 −0.2 0.23 34.07

−0.05 −0.05 0.13 2.61
−0.05 −0.1 0.15 5.16
−0.05 −0.15 0.15 12.71
−0.05 −0.2 0.17 24.21
−0.05 −0.25 0.25 37.39
−0.05 −0.3 0.29 48.67
−0.05 −0.4 0.65 68.46

−0.1 −0.1 0.13 3.45
−0.1 −0.2 0.13 11.71
−0.1 −0.3 0.24 30.61
−0.1 −0.4 0.49 50.62
−0.1 −0.5 1.03 68.84
−0.1 −0.6 1.82 82.03
−0.1 −0.8 4.80 95.19

−0.2 −0.5 0.45 37.78
−0.3 −0.75 1.33 54.39
−0.5 −0.9 1.07 33.06

Notes: Percentage rejection frequencies of the joint symmetry and unit root hypothesis using

the DGP of (2) and (4). All experiments performed using a sample size of 100 observations

and 10,000 replications.
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