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Abstract

In a recent paper, Taylor (2003) has shown that the seasonal unit root tests of
Dickey et al. (1984) [DHF] have non-degenerate limiting distributions for series
which admit unit roots at any of the zero or seasonal frequencies. In this note
we go a stage further and show that the standard practice of augmenting the
DHF regression with lagged dependent variables alters the limiting distributions
of the DHF statistics in the above scenario. Associated Monte Carlo evidence
shows that this may either increase or decrease (possibly even below the nominal
level) the rejection frequencies of the tests, relative to the unaugmented case.
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1 Introduction

Taylor (2003) has shown that the Dickey et al. (1984) [DHF] seasonal unit root test
statistics have non-degenerate limiting distributions when applied to data generated
by processes with unit roots at either the zero or seasonal frequencies. This result
confirms the validity of a conjecture made, on the basis of Monte Carlo simulation
results, by Ghysels et al. (1994) [GLN] that, and in contrast to the seasonal unit root
tests of Hylleberg et al. (1990) [HEGY], ‘... the DHF test may not separate unit roots
at each frequency ... ’ op cit. p.432. We provide a brief review of the DHF and HEGY
tests and of the key results in Taylor (2003) in Section 2.

GLN also observed from their simulations that the power of the DHF tests against a
pure random walk declines as one augments the test regression with lagged dependent
variables. In Section 3 we demonstrate that, unlike the HEGY tests, in this scenario
lag augmentation effects a shift in the large sample distributions of the DHF statistics.
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This does not alter the key result of Taylor (2003) that the DHF statistics do not
diverge, but associated Monte Carlo evidence provided demonstrates that in most cases
the probability of rejecting the null decreases relative to the unaugmented case. Our
numerical results also show that the effects of lag augmentation depend both on the
periodicity of the data and on deterministic components. We find many cases where
lag augmentation reduces the empirical rejection frequency below the nominal level,
but we do find some cases where augmentation can increase the empirical rejection
frequencies above those seen in the unaugmented case. Our main result is proved in an
Appendix.

2 Seasonal Unit Root Tests

Consider the seasonal time series process, {xt}, observed with periodicity S, S > 1,

α(L)(xt − µt) = εt, εt ∼ IID(0, σ2), t = 1, . . . , T, (1)

where α(L) ≡ 1−
∑S

j=1 αjL
j, L the usual lag operator. The roots of α(z) = 0 lie either

outside or (distinctly) on the unit circle at some or all of the zero and seasonal spectral
frequencies, exp (±i2πk/S), k = 0, ..., [S/2], [·] denoting the integer part. We consider
three cases, indexed by ξ, for the deterministic kernel µt: (i) ξ = 0, µt = 0; (ii) ξ = 1,
µt =

∑S
s=1 Ds,tγs, and (iii) ξ = 2, µt =

∑S
s=1 Ds,tγs +

∑S
s=1 Ds,tβst, where Ds,t = 1 if t

lies in season s, s = 1, . . . , S, zero otherwise.
DHF restrict (1) to case where α(z) ≡ (1− ρSzS), so one may re-write (1) as

∆Sxt = (ρS − 1)xt−S + µ∗
t + εt, t = 1, . . . , T, (2)

where µ∗
t ≡ α(1)µt. In the context of (2), DHF consider testing the null hypothesis

H0 : ρS = 1 against the one-sided stationary alternative H1 : |ρS| < 1, via the regression
statistics from (2),

T (ρ̂S − 1) = T

∑T
t=1 xξ

t−S(xξ
t − xξ

t−S)∑T
t=1(x

ξ
t−S)2

(3)

tρS=1 =
ρ̂S − 1√

σ̂2/
∑T

t=1(x
ξ
t−S)2

, (4)

where x0
t ≡ xt, and x1

t and x2
t are the OLS residuals from the regression of xt on

seasonal intercepts, and seasonal intercepts and seasonal trends, respectively, and σ̂2 =
T−1

∑T
t=1(x

ξ
t − ρ̂Sxξ

t−S)2. Under H0, it is well-known that

T (ρ̂S − 1) ⇒
S

∑S
s=1

∫ 1

0
W ξ

s (r)dW ξ
s (r)∑S

s=1

∫ 1

0
W ξ

s (r)2dr
≡ ηξ(S) (5)

tρS=1 ⇒
∑S

s=1

∫ 1

0
W ξ

s (r)dW ξ
s (r)(∑S

s=1

∫ 1

0
W ξ

s (r)2dr
)1/2

≡ τξ(S), (6)
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where ⇒ denotes weak convergence, and the W ξ
s (r), s = 1, ..., S, are S independent

standard, de-meaned, and de-meaned and de-trended Brownian motion processes for
ξ = 0, ξ = 1 and ξ = 2 respectively, while, under H1, tρS=1 and T (ρ̂S − 1) both diverge
to minus infinity.

An alternative procedure, suggested by Smith and Taylor (1999) and HEGY, is
based on the unrestricted linear reparameterisation of (1)

∆Sxt = µ∗
t +

S−1∑
j=0

πjxj,t−1 + εt, t = 1, . . . , T (7)

omitting πS/2xS/2,t−1 if S is odd, and where, corresponding to ωk = 2πk/S, k =

0, ..., [S/2], x0,t ≡
∑S−1

j=0 xt−j, xS/2,t ≡
∑S−1

j=0 cos[(j + 1)π]xt−j, xk,t ≡
∑S−1

j=0 cos[(j +

1)ωk]xt−j and xS−k,t ≡ −
∑S−1

j=0 sin[(j + 1)ωk]xt−j, k = 1, ..., S∗, where S∗ = (S/2)− 1
(if S is even) and [S/2] (if S is odd). The null hypothesis H0 implies πj = 0, j =
0, . . . , S − 1, in (7). Consequently, the regression F -test, F0...[S/2], for the exclusion of
the regressors {xj,t−1}S−1

j=0 from (7) provides a test of H0. However, unlike the DHF
statistics the alternative hypothesis, is of stationarity at at least one (i.e., not necessarily
all) of the zero and seasonal frequencies, the parameters {πj}S−1

j=0 determining which
frequencies admit unit root behaviour. Consequently, one may test for unit roots at the
zero and seasonal frequencies using t- and F -statistics from (7); see Smith and Taylor
(1999) and HEGY for details. Representations for the limiting null distributions of
these statistics are provided in, inter alia, Smith and Taylor (1999).

Taylor (2003) considers the case where {xt} follows a simple random walk

xt = xt−1 + µ∗
t + εt, εt ∼ IID(0, σ2), t = 1, . . . , T, (8)

so that (2) is misspecified, and demonstrates that in this case

T (ρ̂S − 1) ⇒
S

∫ 1

0
W ξ(r)dW ξ(r)∫ 1

0
W ξ(r)2dr

≡ η∗ξ (S) (9)

tρS=1 ⇒
√

S
∫ 1

0
W ξ(r)dW ξ(r)(∫ 1

0
W ξ(r)2dr

)1/2
≡ τ ∗ξ (S), (10)

where W ξ(r) is a standard, de-meaned, and de-meaned and de-trended Brownian mo-
tion for ξ = 0, ξ = 1 and ξ = 2, respectively. A consequence of this is that neither
T (ρ̂S − 1) nor tρS=1 will diverge to minus infinity. In contrast, the HEGY statistic
F0...[S/2] from (7) diverges to plus infinity. Indeed, only the t-statistic for π0 = 0 from
(7), (which tests solely for a unit root at the zero frequency) will not diverge in this
case, since π0 = 0.

3 Including Lagged Dependent Variables

Focusing on quarterly data (S = 4), GLN also investigated, for ξ = 1, the effects of
augmenting (2) with the lagged dependent variables {∆Sxt−j}p

j=1. Their simulation
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results, computed for p = 4 and p = 8, suggest that the empirical rejection frequencies
of both of the DHF tests against a random walk process decline, relative to the case of
p = 0, as p is increased. GLN also observe a decline in finite sample power when the
quarterly HEGY regression (7) is similarly augmented. However, we now show that
in the case of the DHF statistics, this is not a purely finite sample effect, and that
the inclusion of the lagged dependent variables acts to alter the limiting distributions
of the DHF statistics when the data is generated as a random walk. In contrast, the
HEGY statistics are asymptotically unaffected by such augmentation; cf. Burridge and
Taylor (2001). For reasons of exposition we shall focus on the case of p = 1, which is
predictive for the key result that the limiting distributions of the DHF statistics differ
for p > 0 vis-à-vis p = 0. We will use Monte Carlo experimentation to illustrate not
only the finite sample effects of p = 1, but also larger values of p. Moreover, although
we focus on the case where {xt} is generated as a random walk with IID innovations,
the same qualitative conclusions are drawn if any of the zero and seasonal frequency
unit roots z = exp{i2πk/S}, k = 0, . . . , S−1 solve the characteristic equation α(z) = 0
and under weaker conditions on the innovations.

We therefore consider the behaviour of the OLS estimators and regression t-statistics
from the first-order augmented regression equation

∆Sxt = (ρS − 1)xt−S + µ∗
t + φ∆Sxt−1 + εt, (11)

when the process {xt} is generated according to (8).

Theorem 1 If the process {xt} is generated according to (8), then the DHF statistics
tρS=1 and T (ρ̂S−1), together with the OLS estimator φ̂, obtained from OLS estimation
of (11) have the following large sample properties

T (ρ̂S − 1) ⇒

(∫ 1

0
W ξ(r)dW ξ(r)

)
+ (1− S)∫ 1

0
W ξ(r)2dr

≡ η∗∗ξ (S) (12)

tρS=1 ⇒

√
S

2S−1

(∫ 1

0
W ξ(r)dW ξ(r)

)
+ (1− S)(∫ 1

0
W ξ(r)2dr

)1/2
≡ τ ∗∗ξ (S) (13)

φ̂ →p S − 1

S
(14)

T 1/2φ̂ → +∞. (15)

Remark 1: Theorem 1 demonstrates that the presence of ∆Sxt−1 in (11) alters the
limiting distributions of the tρS=1 and T (ρ̂S − 1) statistics from the form given in
(10) and (9) respectively, appropriate for p = 0. This contrasts sharply with the
HEGY tests of Section 2 whose limiting distributions are unaffected by the addition
of lagged dependent variables to (7); cf. Burridge and Taylor (2001). To understand
why, consider first the (scaled) second moment matrix R ≡ (DT (X′X)DT ). It is clear

4



from results (16), (18) and (17) of Lemma 1 of the Appendix that R is asymptotically
(block) diagonal between the lagged regressor, xt−S, and the lagged dependent variable,
∆Sxt−1, of (11). For the limiting distributions of the tρS=1 and T (ρ̂S − 1) statistics
to be unaffected by the inclusion of the lagged dependent regressor in (11), we also
require that DTX′y is Op(1); as it is for the corresponding vector from the augmented
HEGY regression. It is clear from (17) and (19) that while the first element of this
vector is Op(1), the second is Op(T

1/2). Consequently, DTX′y is Op(T
1/2), not Op(1).

Remark 2: A consequence of Remark 1 is that the limiting distribution of the T (ρ̂S−1)
and the right member of (9) are related via

T (ρ̂S − 1) ⇒ 1

S
η∗ξ (S) +

1− S∫ 1

0
W ξ(r)2dr

.

Although the scaling of η∗ξ (S) by S−1 will clearly cause tail shrinkage, the additional

term (1 − S)(
∫ 1

0
W ξ(r)2dr)−1 takes negative values with probability one which will

off-set this effect, hence the relative position of the lower tails of the distributions of
η∗ξ (S) and η∗∗ξ (S) is not immediately obvious and will clearly vary across both S and ξ.

Similar comments also apply to the tρS=1 statistic, since τ ∗∗ξ (S) ≡ (2S − 1)−1/2τ ∗ξ (S) +

(1− S)(
∫ 1

0
W ξ(r)2dr)−1/2.

Remark 3: Theorem 1 also shows that the unscaled OLS coefficient estimator on
the lagged dependent variable converges in probability to S−1(S − 1), while T 1/2φ̂ is
Op(T

1/2). The latter contrasts with the case where a lagged dependent variable is
included in (7), where standard root-T asymptotic normality applies. Moreover, the
associated t-statistic for testing φ = 0 against φ 6= 0 diverges to +∞, at rate T 1/2.
This follows immediately from (14) and results (16) and (18) from the Appendix.

Table 1 reports the Monte Carlo simulated rejection frequencies of the DHF tρS=1

and T (ρ̂S − 1) and HEGY F0...[S/2] tests against the random walk DGP, where (2)
and (7) are augmented with the lagged dependent variables {∆Sxt−j}p

j=1. We report
results for the cases of p = 1, p = S and p = 2S; other values of p were also considered
but qualitatively added little to what is reported, while results for p = 0 are reported
in Table 3.1 of Taylor (2003). In all cases, the tests were run using the .05 level
critical values obtained by Monte Carlo simulation from the seasonal random walk
∆Sxt = εt ∼ IN(0, 1), x0 = · · · = x1−S = 0, for the given values of T , S and ξ. All
simulations were programmed using the RNDN random number generator of Gauss 3.2
on a Pentium II micro-computer over 100,000 replications.

It is clear from Table 1 that the empirical rejection frequencies of the tρS=1 and
T (ρ̂S − 1) tests, and to a lesser extent the HEGY F0...[S/2] test, depend on S, the
periodicity of the data, and on ξ and p. In the case of F0...[S/2] such dependence
vanishes rapidly with T , reflecting the consistency of the test. Contrastingly, and as
predicted by Theorem 1, the rejection frequencies for the two DHF tests seem to depend
little on T . For all values of S and ξ considered, the rejection frequencies of the tρS=1

and T (ρ̂S − 1) tests decrease as p is increased. Generally speaking, the effects of p on
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the rejection frequencies of the DHF tests increase with ξ, this effect also appears to
interact positively with S, being most pronounced for S = 12. For ξ > 0, the rejection
frequencies of the DHF tests lie below the nominal level for all S whenever p = 2S.
For S = 4 and S = 12 this is also true for p = S, while for S = 12 it is also true for
p = 1.

Table 1: Empirical Rejection Frequencies (Nominal 0.05 level) of the
T (ρ̂S − 1), tρS=1 and F0...[S/2] Seasonal Unit Root Tests

DGP: (1− L)xt = εt ∼ IN(0, 1), t = 1, . . . , T
Test Regressions (2) and (7) augmented by {∆Sxt−j}p

j=1.
S T/S p ξ = 0 ξ = 1 ξ = 2

T (ρ̂S − 1) tρS=1 F0...[S/2] T (ρ̂S − 1) tρS=1 F0...[S/2] T (ρ̂S − 1) tρS=1 F0...[S/2]

2 25 1 .178 .256 1.000 .136 .185 .980 .128 .225 .908
S .087 .091 .982 .062 .050 .760 .052 .039 .524
2S .079 .081 .739 .049 .040 .349 .050 .028 .198

50 1 .176 .254 1.000 .141 .199 1.000 .135 .255 1.000
S .092 .093 1.000 .058 .051 1.000 .044 .036 .992
2S .072 .076 .999 .044 .036 .926 .031 .020 .773

100 1 .175 .257 1.000 .142 .202 1.000 .141 .260 1.000
S .085 .091 1.000 .050 .047 1.000 .035 .031 1.000
2S .074 .078 1.000 .040 .032 1.000 .024 .019 1.000

4 25 1 .215 .355 1.000 .100 .160 1.000 .065 .154 1.000
S .110 .134 1.000 .046 .032 1.000 .027 .014 .992
2S .085 .104 1.000 .035 .016 .933 .021 .006 .683

50 1 .229 .364 1.000 .098 .167 1.000 .061 .161 1.000
S .105 .133 1.000 .032 .023 1.000 .014 .009 1.000
2S .080 .100 1.000 .018 .010 1.000 .007 .003 1.000

100 1 .218 .359 1.000 .098 .162 1.000 .055 .163 1.000
S .103 .125 1.000 .028 .023 1.000 .009 .006 1.000
2S .079 .105 1.000 .013 .010 1.000 .004 .002 1.000

12 25 1 .193 .429 1.000 .015 .032 1.000 .003 .009 1.000
S .095 .187 1.000 .007 .002 1.000 .002 .000 1.000
2S .068 .145 1.000 .003 .001 1.000 .001 .000 .999

50 1 .190 .430 1.000 .012 .032 1.000 .001 .007 1.000
S .089 .175 1.000 .003 .001 1.000 .000 .000 1.000
2S .059 .134 1.000 .001 .000 1.000 .000 .000 1.000

100 1 .191 .426 1.000 .010 .031 1.000 .001 .008 1.000
S .088 .176 1.000 .002 .001 1.000 .000 .000 1.000
2S .057 .135 1.000 .001 .001 1.000 .000 .000 1.000

Our results for S = 4, ξ = 1 and p ∈ {S, 2S} are similar to those reported in GLN.
In contrast, for p = 1, in both the quarterly (S = 4) and biannual (S = 2), but not
the monthly (S = 12), cases there are many examples where the DHF tests, tρS=1 and
T (ρ̂S − 1), display larger rejection frequencies than the corresponding outcomes for
p = 0 reported in Table 3.1 of Taylor (2003). For example, for S = 2 and ξ = 2 we
see from Table 1 that the rejection frequency of the tρS=1 test for T = 50 is 0.225 for
p = 1; this is almost double the corresponding rejection frequency of 0.131 reported
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for p = 0 in Table 3.1 of Taylor (2003). The case of p = 1 is therefore very interesting:
here one may observe either an increase or a decrease in the rejection frequencies of
the DHF tests, relative to the unaugmented case.

Appendix: Proof of Theorem 1
We prove results for ξ = 0 throughout. The results for ξ = 1 and ξ = 2 follow in
the same way, replacing the standard Brownian motion W 0(r) by its de-meaned or
de-meaned and de-trended counterparts, W 1(r) and W 2(r), respectively. We assume
that T−1/2x−j →p 0, j = 0, ..., S − 1, but this may be dropped for both ξ = 1 and
ξ = 2. In order to prove the results stated in Theorem 1 we first present some key
results in a preparatory Lemma.

Lemma 1 Under the conditions of Theorem 1

T−2
∑

x2
t−S ⇒ σ2

∫ 1

0

W 0(r)2dr (16)

T−1
∑

xt−S∆Sxt−j ⇒ σ2

(
S

∫ 1

0

W 0(r)dW 0(r) + j

)
, j = 0, 1, (17)

T−1
∑

(∆Sxt−j)
2 →p Sσ2, j = 0, 1 (18)

T−1
∑

∆Sxt∆Sxt−1 →p (S − 1)σ2, (19)

where W 0(r) is a standard Brownian motion process, r ∈ [0, 1].

Proof of Lemma 1
Proof of (16): See Proposition 17.1, part (e), of Hamilton (1994,p.486).
Proof of (17): Notice first that T−1

∑
xt−S∆Sxt−j = T−1

∑
xt−S(εt−j + · · ·+ εt−S+1−j)

= T−1[
∑

xt−Sεt−j +· · ·+
∑

xt−Sεt−S+1−j], j = 0, 1. From Lemma 1 of Hall (1989,p.52),
we have that

T−1
∑

xt−Sεt−k ⇒ σ2

∫ 1

0

W 0(r)dW 0(r), k = 0, . . . S − 1, (20)

and the result for j = 0 therefore follows directly using applications of the Continuous
Mapping Theorem (CMT). For j = 1,

T−1
∑

xt−Sεt−S ≡ T−1
∑

(xt−S−1 + εt−S) εt−S = T−1
∑

xt−S−1εt−S + T−1
∑

ε2
t−S

⇒ σ2

(∫ 1

0

W 0(r)dW 0(r) + 1

)
(21)

and so the result for j = 1 follows from (20), (21) and applications of the CMT.
Proof of (18): Noting that T−1

∑
(∆Sxt−j)

2 ≡ T−1
∑

(εt−j + · · ·+ εt−S+1−j)
2, j = 0, 1,

(18) follows from the assumption that εt ∼ IID(0, σ2).
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Proof of (19): On noting that T−1
∑

∆Sxt∆Sxt−1 ≡ T−1
∑

(ut + · · ·+ ut−S+1)(ut−1 +
· · ·+ ut−S), (19) follows from the assumption that εt ∼ IID(0, σ2). �
Proof of (12): Defining the scaling matrix DT = diag{T−1, T−1/2}, the scaled OLS
estimator from (11) may be written as D−1

T β̂ = (DT (X′X)DT )−1DTX′y where the
T ×2 regressor matrix X collects together the sample observations of xt−S and ∆Sxt−1,
in the standard way, and y collects together the T observations on ∆4xt. The scaled
OLS estimator may be written as

D−1
T β̂ = δ−1

[
T−1

∑
(∆Sxt−1)

2 −T−3/2
∑

xt−S∆Sxt−1

−T−3/2
∑

xt−S∆Sxt−1 T−2
∑

x2
t−S

] [
T−1

∑
∆Sxtxt−S

T−1/2
∑

∆Sxt∆Sxt−1

]
(22)

where δ =
(
T−2

∑
x2

t−S

)
(T−1

∑
(∆Sxt−1)

2) −T−3 (
∑

xt−S∆Sxt−1)
2, with first element:

T (ρ̂S − 1) = δ−1
[(

T−1
∑

(∆Sxt−1)
2
) (

T−1
∑

∆Sxtxt−S

)
−

(
T−1/2

∑
∆Sxt∆Sxt−1

) (
T−3/2

∑
xt−S∆Sxt−1

)]
. (23)

Now using the identity, (T−1/2
∑

∆Sxt∆Sxt−1)(T
−3/2

∑
xt−S∆Sxt−1) ≡ (T−1

∑
∆Sxt∆Sxt−1)

(T−1
∑

xt−S∆Sxt−1), (12) follows from Lemma 1 and applications of the CMT.
Proof of (13): First observe from the results in (12) and (14) that σ̂2 is asymptoti-

cally equal to T−1
∑(

∆Sxt − S−1
S

∆Sxt−1

)2
. Noting that T−1

∑
(∆Sxt − S−1

S
∆Sxt−1)

2

≡ T−1
∑

(εt + 1
S
εt−1 + . . . + 1

S
εt−S+1 − S−1

S
εt−S)2, we see immediately that σ̂2 →p

σ2
[
1 + S−1

S2 + (S−1)2

S2

]
= σ2

[
2S−1

S

]
, from which, using (12), Lemma 1 and applications

of the CMT, (13) follows.
Proof of (14): Multiplying the second element of (22) through by T−1/2, we have that
φ̂ = T−1/2δ−1[(−T−3/2

∑
xt−S∆Sxt−1)(T

−1
∑

∆Sxtxt−S) +(T−2
∑

x2
t−S)(T−1/2

∑
∆Sxt∆Sxt−1)].

Using Lemma 1 and applications of the CMT the stated result follows.
Proof of (15): From (22), the numerator of T 1/2φ̂ is (−T−3/2

∑
xt−S∆Sxt−1)(T

−1
∑

∆Sxtxt−S)
+(T−2

∑
x2

t−S)(T−1/2
∑

∆Sxt∆Sxt−1). From foregoing results it is seen that the first
of these terms is Op(1). However, T−1/2

∑
∆Sxt∆Sxt−1, and hence the second term, is

Op(T
1/2) and positive. Consequently, T 1/2φ̂ is also Op(T

1/2) and positive, as stated.
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