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Abstract

The paper analyzes a Cournot model with two types of firms: Maximizers of profits and
maximizers of relative payoffs. It is shown that the equilibrium is located somewhere
between the regular Cournot-Nash equilibrium and the competitive Walrasian (or Bertrand-)
equilibrium.
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1 Introduction

The Cournot model of simultaneous oligopolistic quantity choice is one of the
classic workhorses of economic theory. Since its origin in 1838, countless varia-
tions of the original model have been brought up. More or lessall aspects of the
model have been changed, varied and re–organized, analyzedand re–analyzed.1

What has very rarely been looked at is the aspect of the firms’ behavioral mo-
tives: What happens if firms have aims other than the mere maximization of their
profits? Apart from ‘classical’ profit maximization, there is another out-standing
way of behavior: maximization of relative payoff, meaning that a firm aims to
have higher profits than the competitors. Besides the fact that individuals may
hold certain preferences about relative payoffs (Fehr and Schmidt, 1999; Bolton
and Ockenfels, 2000), there are many more reasons why a firm might concentrate
on being better than the others, instead of just trying to be as profitable as possi-
ble. One frequently named reason is the firm’s wish to increase its market share,
which can serve as a means of pushing other firms out of the market or to pre-
vent market entry. A second possible reason for maximization of relative payoffs
is the fact that managers are paid due to relative performance of their firm: The
manager of the largest firm in the market gets the highest pay.A third reason is
a lack of information. Vriend (2000) shows that firms that cannot rely on private
information and are forced to determine their production quantity by mimicking
other firms’ decisions are de–facto maximizers of relative payoff. Finally, it seems
worthwhile noting that, in a somewhat broader sense, it is the Bertrand model of
oligopoly that represents the most severe model of maximizing relative payoff by
maximizing the market share.

Schaffer (1989) was probably the first author to analytically analyze firm be-
havior in a Cournot model in an evolutionary context. Referring to the concept
of spite from evolutionary biology (Hamilton, 1970), he shows that there is a way
of unilaterally deviating from a Cournot equilibrium that decreases the profit of
the deviator, but at the same time decreases the other firms’ profits even more.
Given a force that ‘selects for’ the firm with the highest profit, the deviator will
be better off than the others. The Cournot equilibrium is not‘stable’ in an evolu-
tionary sense. The evolutionarily stable solution resultsfrom a process of every
firm trying to be ahead of every other one (maximizing relative payoff), which
in the Cournot model results in the Walrasian (competitive market) equilibrium.
Schaffer shows this for a model with zero costs.

For the basic evolutionary concept of ‘being better than theothers’, it does not
matter if a firm’s ‘relative payoff’ means the ratio of its ownpayoff to the total
payoff of all firms or if it means the difference between the firm’s payoff and the

1For an instructive survey on oligopoly theory, see Shapiro (1989).
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average payoff of all firms. The latter concept, which shouldmore aptly be named
‘differential payoff’ is the one used by Schaffer (1988, 1989).

In an important subsequent paper, Vega-Redondo (1997), using differential
payoffs, replicates Schaffer’s results in a dynamic framework, while Riechmann
(2006) finds the same results for a more general class of Cournot games, again
using differential payoffs. Relative payoffs in form of ratios are in frequent use
in basic evolutionary dynamics, but turn into the differential formulation as soon
as these dynamics take place in continuous time (see, e.g. Weibull 1995; Vega-
Redondo 1996; Samuelson 1997; Fudenberg and Levine 1998).

Thus, the results of two extreme forms of Cournot models are quite clear: If
all firms follow the classical motive of profit maximization,the result will be the
Cournot equilibrium. If all firms maximize relative payoff,they will all end up
in the Walrasian equilibrium of a competitive market (which, in turn, is identical
to the oligopolistic Bertrand equilibrium). What has not been analyzed yet is the
question of what happens if in the same market there are both types of firms,
maximizers of absolute payoff as well as maximizers of relative payoff.

In the field of experimental economics, a finding common to most Cournot
experiments is the one that the experimental outcome is ‘usually more competitive
than the Cournot prediction’ (Holt, 1995, p. 367). This paper will show that this
finding can be explained by a heterogeneity of individuals’ motives in the game:
As soon as both, maximizers of absoluteand maximizers of relative payoff are
active in the same market, the resulting equilibrium must necessarily be located
somewhere in between the oligopolistic Cournot- and the competitive Walrasian
outcome.

The paper proceeds as follows. In the second section, the oligopolistic model
is introduced. Section three analyzes a duopolistic version of the model, before
the fourth section presents the general model of mixed motives in a Cournot game.
The paper ends with a summary.

2 The Model

The basic model is the following: Market demand is given by

D = 1− p , (1)

with p giving the (market) equilibrium price. Letsi denote the quantity of firmi.
Firms must supply non–negative quantities. Aggregate supply, S, is given as the
sum of the supplied quantities of then firms involved,S = ∑n

i=1si. The equilibrium
price,p, results as

p = 1−
n

∑
i=1

si . (2)
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Assume that the total of all firms’ joint capacities are too low to reach or even
exceed autonomous demand,S < 1, such that prices will be positive.

Let then firms have identical quadratic cost functionsC (·),

C (si) =
1
2

s2
i . (3)

Fixed costs are assumed to be zero.
The (absolute) profit of each firmi is given by

πi (si, S−i) = psi −C (si) = (1−S) si −
1
2

s2
i , (4)

whereS−i gives the aggregate quantity of all firms except ofi, S−i = ∑n
j=1
j 6=i

s j.

Relative payoff to firmi will be defined in the tradition of evolutionary
game theory (Samuelson 1997, p. 66; Weibull 1995, pp. 72–74)as the differ-
ence betweeni’s absolute payoff and the average absolute payoff off all firms,
π = 1

n ∑n
j=1 π j:

πr
i (si, S−i) = πi (si ,S−i)−π(si, S−i) , (5)

=
n−1

n

(

(1−S)si−
1
2

s2
i

)

−
1
n

n

∑
j=1
j 6=i

(

(1−S)s j −
1
2

s2
j

)

. (6)

3 Duopoly

For a start, let us take a look at a duopolistic version of the model. For only two
firms in the market,A andR, (4) becomes

πi (si, s−i) = (1− s−i) si −
3
2

s2
i , i, −i ∈ {A, R} . (7)

From this, the reaction function for firmA, aiming to maximize absolute pay-
offs, becomes

s⋆
A =

1
3

(1− s−i) . (8)

A maximizer of relative payoff, though, derives the reaction function from the
duopolistic version of (5), which is

πr
i (si, s−i) =

1
2

[πi (si, s−i)−π−i (si, s−i)] . (9)

Maximizing (9) with respect tosi results in the reaction function for firmR, max-
imizing relative payoff:

s⋆
R =

1
3

. (10)
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This is in fact identical to the Walrasian (competitive market) equilibrium quantity:
A firm neglecting its influence on the equilibrium price and consequently using
the rule ‘produce the quantity that equates the price to yourmarginal costs’ to
determine the output level will produce exactlys⋆

R. (A Bertrand model would of
course result in the same equilibrium quantity.)

It is remarkable to see that the reaction function for relative payoffs (10) is a
degenerate function. For a maximizer of relative payoffs ina duopoly, producing
the quantitys⋆

R is the optimum strategy as long as the opponent is restrictedto pro-
ducing quantities that keep prices positive (which is guaranteed by the assumption
that∑i si < 1): No matter what the opponent does, a maximizer of relativepayoffs
should produce the Walrasian quantity. Note, thought, thatthis is a special trait of
the duopolistic case. As soon as there are more than two firms involved, no type
of firms has a constant best strategy any more. (See equation (15) below, which
shows the general best response function for anR–type firm.)

The equilibrium is easily derived as

s⋆
A =

2
9

, s⋆
R =

1
3

. (11)

Obviously,s⋆
A < s⋆

R. TheR–firm produces a higher quantity than theA–firm.
Moreover, it can be shown that the relative–payoff–maximizer has higher absolute
payoff. (Of course it has, because it maximized the difference.)

πR (s⋆
R, s⋆

A) > πA (s⋆
A, s⋆

R) . (12)

Thus, the maximizer of relative payoff does exactly this: She maximizes her rela-
tive payoff. All that is left to do for the maximizer of absolute payoff is to find his
best response to the strategy of his opponent. The maximizerof absolute payoff
does indeed maximize his payoff given the relative-payoff-maximizers quantity.

Considering this outcome, it might be asked why firmA does not switch to us-
ing R’s strategy, too. The answer to this question is straightforward: By switching
from s⋆

A to s⋆
R, he reduces his (absolute) payoff to a level less than his previous pay-

off from playingsA (This should of course be obvious from the reaction function
(8).):

πA (s⋆
R, s⋆

R) < πA (s⋆
A, s⋆

R) . (13)

Moreover, following the usual definition of efficiency as a measure in absolute
payoffs, the resulting equilibrium is inefficient for the firms.2 Still, it should be

2Of course, if we looked at a broader measure of efficiency likethe sum of producers’ and con-
sumers’ surpluses, efficiency would probably rise comparedto the original Cournot situation. An
efficient state for the producers would have both players usethe standard Cournot-Nash quantity
or even collude on the monopolistic quantity.
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kept in mind thatabsolute payoff is not what firmR cares for, such that the regular
measures of welfare might be inadequate in this model.

This result implies a structure that holds true for the general case of then–
player model. As will be shown further down in this paper, in the general case,
too, maximizers of relative payoff will at the same time achieve higher payoffs
than maximizers of absolute payoff.

All in all, the model subsumes at three different outcomes. It has been shown
before (Riechmann, 2006) that, given both players aim to maximize absolute pay-
offs, the result will be the usual Cournot equilibrium, but if both players care for
relative payoffs instead, the result will be Walrasian. If players hold different mo-
tives, the result will be the one presented in (11). A specialcase of this equilibrium
bears a nice interpretation. For the case of no variable costs (δ = 0), the result is
equal to a Stackelberg equilibrium where theR–type firm is the Stackelberg leader
and theA–type firm is the follower.3 This outcome derives from the fact that in
the duopolistic case, theR–type firm has an optimum strategy it needs not condi-
tion on what theA–type firm will do. In a strategic sense, this implicitly makes the
R–firm the Stackelberg–leader, who (trivially) decides first. TheA–type ‘follows’
by playing a best response.

4 The General Case

The derivation of respective results for the generaln–player case is not compli-
cated, but involves some rather tedious computation. In order to preserve readabil-
ity, this section only gives the most important results, while the technical details
are postponed to the appendix.

From (4), the reaction function forA–type firm numberj derives as

s⋆
A, j =

1
3

(

1−S− j
)

, (14)

with S− j giving the total quantity minus (A–type) firm j’s quantity,S− j = S−sA, j.
The respective function forR–type firmk derives from (6):

s⋆
R,k =

1
3

(

1−
n−2
n−1

S−k

)

, (15)

with S−k giving the total quantity minus firmk’s quantity.
Note that the reaction function ofR–types explicitely contains the number

of firms while the reaction function ofA–types does not. The reason for this is
straightforward.A–types effectively play against the rest of the economy’s supply
side, whileR–types effectively play against every single supplier.

3I am thankful to a referee to point out this fact.
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The equilibrium will be a semi–symmetric one (an equilibrium with all players
of the same type behaving identically). WithnR giving the number ofR–type firms,
the equilibrium quantities result as

s⋆
A =

2n−nR −1
2(n2−1)+3(n−nR)

, (16)

s⋆
R =

3n−nR −2
2(n2−1)+3(n−nR)

. (17)

Notably, the equilibrium quantities are determined by boththe size of the sup-
ply side of the market (i.e. the number of firms,n) and the composition of the
supply side (measured by the number ofR–types,nR). There are no ‘dominant’
strategies any more.

All the other results remain true in then–player game. Again,R–type firms
produce a higher quantity thanA–type firms, such thatR–type firms are better off
thanA–type firms even in terms of absolute payoff. Again, switching from s⋆

A to
s⋆

R is not worthwhile.
Again, the result in (16) and (17) includes two special cases, namely the Wal-

rasian and the Cournot equilibrium. For a market with onlyA–type firms, the
equilibrium quantity becomes

s⋆
A (nR = 0) =

1
n+2

, (18)

the Cournot equilibrium quantity.
In a market with onlyR–type firms, the individual equilibrium quantity is

s⋆
R (nR = n) =

1
n+1

, (19)

which is the Bertrand equilibrium quantity and the Walrasian competitive market
equilibrium quantity.

These two special cases represent the limiting cases for themodel. The
more R–types there are in the market, the more the market tends to the
Bertrand/Walrasian outcome. The moreA–types there are, the closer the re-
sult will be to the Cournot outcome. Generally, the result will always fall into the
range between (including) the Cournot and the Walrasian equilibrium.

5 Summary

This paper makes one short point: In a Cournot model of oligopolistic quantity
choice with regular profit maximizers and maximizers of relative payoffs active at
the same time, the resulting equilibrium quantity will generally be located in the
range between (including) the Cournot and the Walrasian/Bertrand quantity.
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Appendix: The General Case

In the generaln–player case, there aren firms, nR of themR–types andn− nR

A–types. LetsA, j denote the quantity thatA–type firm numberj produces and use
the respective notationsR,k for R–types.

S, the total quantity, is the sum of the individual quantitiesof A– andR–types:

S =
n−nR

∑
j=1

sA, j +
nR

∑
k=1

sR,k . (20)

From (4), the reaction function forA–type firms numberj derives as

s⋆
A, j =

1
3
−

1
3

S− j , (21)

with S− j giving the total quantity minus (A–type) firm j’s quantity,S− j = S−sA, j.
The respective function forR–type firmsk derives from (6):

s⋆
R,k =

1
3
−

1
3

n−2
n−1

S−k , (22)

with S−k giving the total quantity minus firmk’s quantity.
As the equilibrium will be a semi–symmetric one (an equilibrium with all

players of the same type behaving identically, i.e.sA, j = s⋆
A, j = s⋆

A for all A–types
and sR,k = s⋆

R,k = s⋆
R for all R–types), the equilibrium quantities can be derived

from a simple system of two equations. We find that

s⋆
A =

1
2+n−nR

−
nR

2+n−nR
s⋆

R , (23)

s⋆
R =

(n−1)

2n−2nR +nnR −1
−

(n−2)(n−nR)

2n−2nR +nnR −1
s⋆

A (24)

The equilibrium quantities result as

s⋆
A =

2n−nR −1
2(n2−1)+3(n−nR)

, (25)

s⋆
R =

3n−nR −2
2(n2−1)+3(n−nR)

. (26)

From

s⋆
A =

2n−nR −1
3n−nR −2

s⋆
R , (27)

it can be seen that

s⋆
R (nR = i) > s⋆

A (nR = i) ∀1 < i ≤ n , (28)
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and
πR (nR = i) > πA (nR = i) ∀1 < i ≤ n . (29)

Switching froms⋆
A to s⋆

R is not worthwhile:

πR (s⋆
A, nR = i) > πR (s⋆

R, nR = i+1) ∀1 < i ≤ n−1. (30)

For a market with onlyA–type firms, the equilibrium quantity becomes the
Cournot quantity:

s⋆
A (nR = 0) =

1
n+2

. (31)

In a market with onlyR–type firms, the individual equilibrium quantity is
Walrasian:

s⋆
R (nR = n) =

1
n+1

. (32)
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