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Abstract

This article presents the basics of multifractal modelling and shows the multifractal
properties of the French Stock Market (CAC40). Monte Carlo simulations prove that the
Multifractal Model of Asset Returns (MMAR) is a better model to replicate the scaling
properties observed in the CAC40 series than alternative specifications like GARCH or
FIGARCH.
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1 Introduction

The Multifractal Model of Asset Returns (MMAR) was introduced by Calvet et al. (1997abc) and Calvet

and Fisher (2002) as a development of Mandelbrot’s findings (1974) in the field of multifractal measures.

MMAR processes pay tribute to the fractional Brownian motion theory (Mandelbrot and Ness, 1968) by

incorporating the trading time approach1 (Mandelbrot and Taylor, 1967). MMAR processes were built

to exhibit the same properties as financial series: long-range dependence and long-tails. Authors have

developed a method - based on scaling function and multifractal spectrum - to detect multifractality of

a process. These tools have allowed Calvet and Fisher (2002) to detect the multifractal properties of the

Deutsche Mark / US Dollar exchange rate. We apply these tools to the CAC40 series2.

Section 2 presents MMAR modelisation. Section 3 introduces multifractal formalism. In Section 4, we

detect the multifractality of the CAC40 and we model it with MMAR. Using Monte Carlo simulations we

compare the performances of MMAR and alternative specifications (GARCH, FIGARCH) to replicate

the scaling properties exhibited in CAC40. Section 5 concludes.

2 Multifractal Model

The MMAR’s principle is to consider a stochastic process {P (t); 0 ≤ t ≤ T}

X(t) = lnP (t)− lnP (0) (1)

where {X(t)} is a multifractal process which verifies the following three definitions3

Definition 1 X(t) is a compound process

X(t) ≡ BH [θ(t)] (2)

where BH(t) is a fractional Brownian motion, H being the Hurst exponent (0 < H < 1), and θ(t) is a

stochastic trading time defined in Definition 2.

Definition 2 Trading time θ(t) is the cumulative distribution function of a multifractal measure µ defined

on [0, T ].

1This approach is based on a random time-deformation process. The trading time has been used to build financial

models, see for example, Dacorogna et al. (1993) or Ghysels et al. (1996).
2CAC40 (quotation assisted uninterrrupted) is the main index of the French Stock Market. It is composed of the 40

most important companies quoted in the French Stock Market.
3Calvet and Fisher (2002) and Calvet et al. (1997a).
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Definition 3 {BH(t)} and {θ(t)} are independent.

Calvet and Fisher (2002) propose an innovation in financial modelisation through Definition 2. This

definition rests on the multifractal measure4 which is paramount to the MMAR. To build a MMAR it is

necessary to estimate the parameters of the trading time θ(t) and the Hurst exponent of the fractional

Brownian motion (BH). The next section presents the multifractal formalism whose tools allow us to

detect the multifractality of the CAC40 and to estimate the MMAR parameters.

3 Multifractal Formalism

3.1 Scaling Function and Multifractal Spectrum

The scaling function’s notion is extracted from multifractal formalism. We present Calvet and Fisher’s

(2002) definition.

Definition 4 A stochastic process {X(t)} is called multifractal if it has stationary increments and sat-
isfies

E (|X(t)|q) = c(q) tτ(q)+1, for all t ∈ B, q ∈ Q (3)

where, E(.) is the expectation operator and c(q) is called the prefactor, B and Q are intervals on the real

line. Moreover, B and Q have positive lengths, and 0 ∈ B, [0, 1] ⊆ Q.

The scaling function is denoted τ(q) and takes into account the influence of the time t on the moments q.

To explain the scaling function’s notion, we briefly present the scaling function in the particular case of

an unifractal process like the fractional Brownian motion. A fractional Brownian motion, with a Hurst

exponent H, satisfies5

X(t) = tHX(1) (4)

which implies that

E (|X(t)|q) = tHqE (|X(1)|q) (5)

In this special case, we obtain the prefactor c(q) = E (|X(1)|q) and the scaling function τ(q) = Hq−1. So,
the scaling function is linear if the process is unifractal. On the contrary, multifractal processes present

multiscaling properties that imply the nonlinearity of the scaling function.

4We present the notion of multifractal measure in Appendix 1.
5 See for example Baillie (1996).
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The scaling function exhibit interesting properties. Indeed, Calvet and Fisher (2002) show that the

scaling function τ(q) presents the following properties

τ

µ
1

H

¶
= 0 (6)

τX (q) = τθ (Hq) (7)

which allow us to estimate the MMAR parameters. The relation (6) gives the particular value (inverse

of the Hurst exponent) for which the scaling function is equal to zero. So (6) allows us to estimate the

Hurst exponent bH of the process X(t)6 (i.e B bH in the MMAR). The relation (7) connects the scaling

function of the price series τX to the scaling function of the trading time τθ. So, the estimation of the

scaling function of the price series allows us to know the properties of the trading time (i.e θ(t) in the

MMAR).

It is possible to detect a multifractal process by studying the multifractal spectrum, which is defined by

the following theorem7.

Theorem 1 The multifractal spectrum f(α) is the Legendre transform of the scaling function τ(q)

f(α) = inf
q
[qα− τ(q)] (8)

A unifractal process presents a linear scaling function and a multifractal spectrum that equals to a

single point H : f(α) = H. A multifractal process presents a nonlinear scaling function and a concave

multifractal spectrum8.

In the next section, we present estimations of the scaling function and of the multifractal spectrum with

the partition function.

3.2 Partition Function

To estimate the scaling function, Calvet and Fisher (2002) propose a method based on the partition

function. The partition function of Xt is denoted πδ (X, q), defined for each moment q, and obtained by

partitioning the series into n subintervals of length δ

πδ (X, q) =
nX
i=1

¯̄
Xdi·δe −Xd(i−1)·δe

¯̄q
(9)

where d·e is the integer part operator.
6The scaling function methodology to estimate the long memory parameter is presented in Fillol and Tripier (2003).
7 See Calvet et al. (1997b).
8Notice that the particular value of α0 satisfaying f(α0) = 1 is the maximum of the multifractal spectrum.
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Using (3) gives us

log (πδ (X, q)) = τ (q) log (δ) + log (cq) + log (T ) (10)

For a given series Xt, computing its partition function according to (9) for various moments q allows us

to deduce its scaling function according to (10). Thus, the partition function gives an estimate of the

scaling function bτ (q). Using relation (8), we obtain an estimation of the multifractal spectrum bf(α)
bf(α) = min

q
[qα− bτ(q)] (11)

We estimate the multifractal spectrum with the Legendre transform of the scaling function. In the next

section we apply the above methodology to detect the multifractality of the CAC40 and to estimate the

MMAR parameters.

4 Empirical Application

Let us consider the CAC40 series (ranging from 1990/03/01 to 2003/05/20 in daily frequencies). Our

objectives are to identify multifractality in CAC40, to estimate the associated MMAR and to compare

this model to GARCH and FIGARCH models9.

4.1 Estimating Multifractal Spectrum

Figures 1-2 present estimations of the partition and scaling functions. The particular value of the scaling

function : bτ ¡ 1H ¢ = 0 allows us to estimate the Hurst exponent bH = 0.452. We use bH to build the

MMAR. Figure 3 presents the estimation of the multifractal spectrum. The spectrum is characterized by

its maximum α0 (notice that it is also the most probable Hölder exponent). Our estimation is reported

in Table 1. We obtain a concave spectrum for α < α0, similar to a quadratic function. The concavity of

the spectrum implies the multifractality of the CAC40.

4.2 Multifractal Model of CAC40

Calvet et al. (1997b) show that the trading time function specified in Definition 2 should be the cumu-

lative distribution function of a multifractal random measure with lognormal masses10 . Authors give the

following formulation for the spectrum of trading time (θ (t))

fθ(α) = 1− 1

2 ln b

µ
α− λ

ϑ

¶2
(12)

9These models are usually used in finance (see for example Bollerslev (1986) and Baillie et al. (1996)).
10This construction is explained in Appendix 1.
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where f is hump-shaped and symmetric around its maximum at α0 = λ.

To build the MMAR associated with the CAC40, it is necessary to estimate the lognormal parameters

(λ, ϑ2) of the trading time. We estimate bλ by the following theorem 211

Theorem 2 Let fθ(α) denote the multifractal process of the trading time θ(t). Under definitions [1]− [3],
processes X(t) and P (t) have the same multifractal spectrum fX(α) = fθ(

α
H ).

Therefore, for the log price spectrum we have the relation bα0 = bλ bH, which give us bλ (Table 1). To obtainbϑ2, we can consider a further restriction by requiring average conservation of mass, and it is easy to show
that this relation implies12

log b = 2
λ− 1
ϑ2

(13)

Estimation13 of ϑ2 is reported in Table 1. Our estimations of bλ the bϑ2allow us to construct the trading
time of CAC40 and to build the MMAR. In the next section we compare the MMAR to the GARCH and

FIGARCH models.

4.3 Monte Carlo Simulations14

For each model (MMAR, GARCH and FIGARCH) we simulate 10000 paths with the same sample size

T = 4000. We focus our analysis on the moments q ∈ {1, 2, 3, 4, 5}. We compare mean values of the
scaling function for each moment q. Table 2 summarizes the results. Estimations show that for each

moment q the MMAR model is very close to the empirical data. MMAR is a better model to replicate

the main scaling features of the data than the GARCH and FIGARCH models. Moreover, the small size

of confidence intervals show the robustness of the MMAR simulations.

5 Conclusion

The method developed by Calvet et al. (1997abc) and Calvet and Fisher (2002) which use concepts such

as scaling function and multifractal spectrum, allows us to detect multifractality of the CAC40 series.

This result implies the use of the MMAR to model the CAC40 series. Monte Carlo simulations show that

MMAR seems to be a better model than GARCH or FIGARCH to replicate the main scaling features

observed in the financial time series.

11 See Calvet et al. (1997c) for a proof.
12 See Appendix 2.
13We use b = 2, as Calvet and Fisher (2002).
14We present the construction of the MMAR in Appendix 3.
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Appendix 1 - Multifractal Measure

Multifractal measures can be built by iterating a simple procedure. We present one of the simplest

examples: the binomial measure on [0, 1]15 .

Consider the uniform probability measure µ0 on the unit interval, and two positive numbers m0 and m1

adding up to 1. b denotes the number of masses, here, b = 2. In the first step of the cascade, we define a

measure µ1 by uniformly spreading the mass m0 on the left subinterval [0, 0.5], and the mass m1 on the

right subinterval [0.5, 1]. The density of µ1 is the step function. In the second stage, we split the interval

into two subintervals of equal length. The left subinterval [0, 0.25] is allocated a fraction m0 of µ1[0, 0.5],

whereas the right subinterval [0.25, 0.5] receives a fraction m1. Applying a similar procedure to [0.5, 1].

Iteration of this procedure generates an infinite sequence of measure (µk) that weakly converges to the

binomial measure µ.

To build a multifractal random measure with lognormal masses, we consider a random variable M such

as − logbM ∼ N [λ, θ2]. At each stage of the construction we draw the masses M .

Appendix 2 - Relation (13)

Conservation of mass imposes that E(M) = 1
b where M such as − logbM ∼ N [λ, θ2].

Let u be a random variable satisifies E(u) = 1/b and the following relation

v = − logb(u) ∼ N(λ, ϑ2) (14)

thus,

log(u) ∼ N
¡−[log(b)]λ, [log(b)2]ϑ2¢ (15)

Let y ∼ N(m, s2) and x = exp(y). x ∼lognormal and verifies

E(x) = em+s
2/2 (16)

V (x) = e2m+s
2

(es
2 − 1) (17)

we then obtain

E(u) =

µ
1

b

¶λ
exp

½
[log(b)ϑ]2

2

¾
=
1

b
(18)

log(b) = 2
λ− 1
ϑ2

(19)

15Calvet and Fisher (2002).
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Appendix 3 - Data simulations of the MMAR

To build a MMAR, it is necessary to build a multifractal random measure and a fractional Brownian

motion.

• The Multifractal Random Measure

- The scaling function of the CAC40 allows us to estimate parameters (bλ, bϑ2) of the multifractal random
measure with lognormal masses : − logbM ∼ N [bλ,bθ2].
- If a simulation of length T is desired, we choose the minimum integer number of stages k such that

2k ≥ T. Here we consider k = 12.

• The fractional Brownian motion

- We simulate a fractional Brownian motion with parameter bH = 0.452. This estimation is given by the

particular value of the scaling function : bτ ¡ 1H ¢ = 0.
• Interpolation provides value of the path BH [θ(t)] at the simulated values from the path θ(t).
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Series bH cα0 bλ bϑ2
CAC 0.452 0.491 1.09 0.26

Table 1: MMAR parameters

CAC MMAR FIGARCH GARCH

q/τ τemp τ τ τ

1 −0.52 −0.52
[−0.53,−0.49]

−0.48
[−0.51,−0.46]

−0.5
[−0.52,−0.47]

2 −0.08 −0.08
[−0.13,−0.01]

0.02

[−0.016,0.08]
−0.0

[−0.05,0.05]

3 0.31 0.31

[0.20,043]

0.53

[0.45,0.61]

0.48

[0.37,0.59]

4 0.65 0.66

[0.45,0.86]

1.01

[0.87,1.15]

0.94

[0.75,1.14]

5 0.94 0.96

[0.62,1.28]

1.47

[1.26,1.68]

1.37

[1.09,1.67]

τemp : is the empirical values of the CAC40 series

τ : is the estimated mean values

Table 2: Means and confidence intervals of each model
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Figure 1: Partition function of the CAC40 series
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Figure 2: Scaling function of the CAC40 series (τ(2.21) = 0 then bH = 0.452)
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Figure 3: Multifractal spectrum of the CAC40 series
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