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Abstract

This paper reformulates the neoclassical Solow-Swan model of economic growth in discrete
time by introducing a generic population growth law that verifies the following properties: 1)
population is strictly increasing and bounded; 2) the rate of growth of population is
decreasing to zero as time tends to infinity. We show that in the long run the capital per
worker of the model converges to the non-trivial steady state of the Solow--Swan model with
zero labor growth rate. In addition we prove that the solutions of the model are
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1 Introduction

In the original neoclassical model of economic growth due to Solow (1956) and Swan (1956), it
is assumed that labour force L grows at a constant rate n > 0: In discrete time it is natural to
de�ne this growth rate as:

n =
Lt+1 � Lt

Lt
(1)

which implies that
Lt+1 = (1 + n)Lt; (2)

Then the labour force growths exponentially, and for any initial level L0, at time t the level of
labour force is

Lt = L0 (1 + n)
t : (3)

This assumption is plausible only for small values of t because growing exponentially, labour force
approaches in�nity when t goes to in�nity, which is clearly unrealistic. The simple Malthusian
model can provide an adequate approximation to such growth only for an initial period but does
not accommodate growth reductions due to competition for environmental resources such as food
and habitat. Verhulst (1838) considered that a stable population would have a characteristic
saturation level; this limit for the population size is usually called the carrying capacity of the
environment1. To incorporate this numerical upper bound on the growth size Verhulst introduced
the logistic equation as an extension of the exponential model.

It is well known that since the 1950s, population growth rate is decreasing and it is projected
to decrease to zero during the next six decades. This decrease is particularly relevant in the group
of developed countries but is also observable on a global scale. The decrease in the rate of growth
is predominantly due to the aging of the population and, consequently, a dramatic increase in the
number of deaths. From 2030 to 2050, the world population would grow more slowly than ever
before in its history. (See Day (1996))

Then, as described in Maynard (1974), a more realistic law of growth of the labour force Lt
must verify the following properties:

1. when population is small enough in proportion to environmental carrying capacity L1, then
L grows at a constant rate n > 0,

2. when population is large enough in proportion to environmental carrying capacity L1, the
economic resources become more scarce and this a�ect negatively population growth,

3. population growth rate is decreasing to 0.

In discrete time, the logistic equation due to Pielou (1969) and the Beverton-Holt equa-
tion (Beverton and Holt (1957)) are representative examples of population laws verifying these
proprieties.2.

1In Arrow et al (1995), Cohen (1995a), Cohen (1995b) and Daily and Ehrlich (1992) the reader can �nd detailed
information about the concept of carrying capacity of human population.

2See Brianzoni el at (2007) and Cushing and Henson (2001).
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In this paper we introduce a modi�cation in the neoclassical economic growth model in discrete
time by assuming that population growth follows the properties de�ned above. The same problem
in continuous time was exhaustive studied (see Accinelli and Brida (2007), Brida (2008), Brida
and Limas (2007), Donghan (1998), Guerrini (2006) and Mingari and Ritelli (2003)). The main
contribution of this short paper is to study the proprieties of the model when time is represented
in discrete form and to compare the results with the continuous model. Whenever one writes
a dynamic model, a fundamental choice that has to be made is the question of discrete versus
continuous time. This choice can a�ect dramatically outcomes of a model and conclusions that
might draw from them, because dynamics of the two types of models can be completely di�erent
and lead to di�erent predictions. This gives a �rst challenge to study a discrete version of the
model. One of the main examples of a model that is rather di�erent when we change timing
is the logistic population law. In continuous time it is a simple model: all the solutions of the
logistic di�erential equation converge monotonically to a constant level for any choice of the
parameters of the model. From the other hand, the logistic di�erence equation can produce very
complex and chaotic dynamics for a continuous range of its parameters. The complexity of the
discrete logistic model has produced a line of research in the area of dynamical systems. After
the publication of May (1976), the study of the mathematical properties of the logistic discrete
equation produced a large number of economic applications of chaos theory (see Sordi (1996))
consisting of models with �nal equation that can be reduced to an equation of the logistic type.
Most of these applications are traditional models revisited (see references in Sordi (1996)) and
reformulated in a discrete version. In economic modeling both types of timing are present and
there is not a common view between economists on which representation of time is better to model
in economics. From an economic point of view, one can present several arguments in favor of
discrete time: fundamental economic data is collected at discrete intervals, there are fundamental
decisions made at discrete intervals, transformation of capital into investments depends on the
length of a time lag, etc.3 In the same way, there are several arguments in favor of the continuous
representation of time: traditional science has used continuous timing, some economic variables
are better represented in continuous time, the time lag in transformation of variables is so small
that can be considered an instant, etc. From the mathematical perspective, in continuous time
we model with di�erential equations while discrete dynamic models are represented by di�erence
equations. This produces a technical di�erence because di�erent tools must be used to study
discrete and continuous models. Generically, when one changes a model from continuous to
discrete time the complexity of dynamics is increased and this was our �rst challenge. Then,
another challenge to study the discrete version of Brida (2008) is technical: we have a di�erent
mathematical object to study and then innovative techniques must be introduced.

Previous works about the traditional Solow model in discrete time are: Commendatore (2004),
Day (1982), Schenk-Hopp�e and Schmalfub (2001), Wei-Bin (2005) and (2007). We will resume the
fundamental properties of this model to compare with our outcomes. The paper is organized as
follows. In section 2 we review the classic Solow model with population constant growth rate and
then we introduce the reformulate model and describes there qualitative properties. In particular,
we show that economic growth accelerates when population growth rate decreases to zero and that

3See Licandro and Punch (2006) for a discussion of time dimension in economic models and references therein.
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per capita capital converges to a constant value (that is independent of the population growth law
and of the initial per capita capital) as time tends to in�nity. Conclusions and future developments
are summarized in the last section.

2 The Solow model with decreasing population growth rate.

The key elements of the original model are the production function, i.e. how the inputs of capital
K and labour L are transformed into outputs, and how capital and labour change over time. In
particular, the model assumes that:

1. the production function F (K;L) satis�es the following conditions:

(a) F (�K; �L) = �F (K;L), 8�;K;L 2 R+ (constant return to scale)
(b) F (K; 0) = F (0; L) = 0, 8K;L 2 R+

(c) @F
@K > 0; @F@L > 0;

@2F
@K2 < 0;

@2F
@L2

< 0

(d) lim
K!0+

@F
@K = lim

L!0+
@F
@L = +1; lim

K!+1
@F
@K = lim

L!+1
@F
@L = 0

2. the capital stock changes equal the gross investment I = sF (K;L) minus the capital depre-
ciation �K :

Kt+1 �Kt = sF (Kt; Lt)� �Kt (4)

3. the labour force Lt grows at a constant rate n > 0

Lt+1 = (1 + n)Lt (5)

If k = K
L is the capital per worker and f(k) = F

�
K
L ; 1

�
= F (k; 1) is the production function

in intensive form, we have the following proprieties:

f(0) = 0; f 0(k) > 08k 2 R+; lim
k!+1

f 0(k) = 0; lim
k!0+

f 0(k) = +1 and f 00(k) < 08k 2 R+

(6)
From (4) and (5), we obtain the equation of motion for the model which describes how capital
per worker varies over time:

kt+1 =
s

1 + n
f(kt) +

�
1� �
1 + n

�
kt (7)

It is straightforward to prove that there exists a unique positive solution k̂n of equation (7).
The main properties of model (7) are:

1. 8k0 > 0; the solution (kt)t2N of (7) with initial condition k0 veri�es: lim
t!+1

kt = k̂n
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2. If k0 < k̂n then (kt)t2N is strictly increasing and if k0 > k̂n then (kt)t2N is strictly decreasing

3. k̂n is asymptotically stable and it is a global attractor of (7)

4. k̂n is a decreasing continuous function of n. In particular: lim
n!0+

k̂n = k̂, where k̂ is the

positive equilibrium of (7) when n = 0: Then, if two economies have the same initial capital
per worker, the economy with smaller rate of growth of population has bigger long run
capital per worker.

5. If k10 < k20 then k
1
t < k2t ;8t 2 N. This means that if two economies have the same funda-

mentals, then the one with bigger initial capital per worker has bigger capital per worker
for ever. Additionally, since Kt = ktLt, then we have that: lim

t!+1
Kt =1:

Now we modify the previous model by substituting equation (5) by a population law Lt such
that:

1. L0 > 0;Lt+1 > Lt;8t � 0 and lim
t!+1

Lt = L1

2. If nt =
Lt+1�Lt

Lt
then nt+1 < nt;8t � 0 and lim

t!+1
n(t) = 0

Then the model is represented by the following new equation of motion describing how capital
per worker varies over time:

kt+1 =
s

1 + nt
f(kt) +

�
1� �
1 + nt

�
kt (8)

To solve it one needs a single initial condition k0. Note that this is a non autonomous di�erence
equation and then usual techniques to analyze stability (i.e. phase diagrams, eigenvalues) are not
useful.

In the following lemmas we compare two solutions of (8) that have di�erent initial conditions
and di�er on the population law.

Lemma 1 : Given k10 and k
2
0, such that k

1
0 < k

2
0, then the solutions

�
k1t
�
t2N and

�
k2t
�
t2N of (8)

with initial conditions k10 and k
2
0 respectively, verify that: k

1
t < k

2
t for all t 2 N.

Proof: The result is obvious when t = 0. We now proceed by induction. Suppose that for a
given t 2 N the inequality k1t < k2t holds and we will show that the theorem holds for t + 1 2 N.
Being that f is increasing we have that

k1t+1 =
s

1 + nt
f(k1t ) +

�
1� �
1 + nt

�
k1t <

s

1 + nt
f(k2t ) +

�
1� �
1 + nt

�
k2t = k

2
t+1:� (9)

Remark: Note that this result is also true for the classical model and it implies that, if two
economies have the same fundamentals, then the one with bigger initial capital per worker has
bigger capital per worker for ever.
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Lemma 2 Given the equations

kt+1 =
s

1 + n1t
f(kt) +

�
1� �
1 + n1t

�
kt

and

kt+1 =
s

1 + n2t
f(kt) +

�
1� �
1 + n2t

�
kt

If
k10 = k

2
0:

and
n1t � n2t for all t 2 N

then
k1t � k2t for all t 2 N

Proof. The result is obvious when t = 0 and then the proof proceeds by induction. We suppose
that for a given t 2 N; k1t � k2t holds and we will show that the lemma holds for t+ 1 2 N:

k1t+1 =
s

1 + n1t
f(k1t ) +

�
1� �
1 + n1t

�
k1t �

s

1 + n1t
f(k2t ) +

�
1� �
1 + n1t

�
k2t �

� s

1 + n2t
f(k2t ) +

�
1� �
1 + n2t

�
k2t = k

2
t+1

here we used that f is increasing and n1t � n2t for all t 2 N.
Remark: This proposition implies that for two economies with the same initial capital per

worker, the economy with smaller rate of growth of population has bigger capital per worker for
ever.

Theorem 1: If (kt)t2N is a solution of kt+1 =
s

1+nt
f(kt) +

�
1��
1+nt

�
kt, then:

lim
t!+1

kt = k̂:

Proof:
Let " > 0; we want to prove that there exists H > 0 such that 8t � H;

���kt � k̂��� < ".
From

lim
n!0+

k̂n = k̂

we know that there exist �n > 0 such that

8n � �n;
���k̂n � k̂��� < "

3
(10)

5



Let t1 � 0 such that nt1 � �n and let k1t and k3t be the solutions of the di�erence equations

(A) : kt+1 =
s

1 + nt1
f(kt) +

�
1� �
1 + nt1

�
kt (11)

and
(C) : kt+1 = sf(kt) + (1� �) kt (12)

respectively with the initial condition

k1t1 = k
3
t1 = kt1 : (13)

Then the previous lemma implies that

k1t � kt � k3t ;8t 2 [t1;+1) : (14)

We know that lim
t!+1

k3t = k̂ and then 9H1 > 0 such that

8t � H1;
���k3t � k̂��� < "

3
(15)

We also have that lim
t!+1

k1t = k̂nt1and then 9H2 > 0 such that

8t � H2;
���k1t � k̂nt1 ��� < "

3
(16)

Thus, 8t � H = max (H1;H2) � t1 it is:

k̂ � 2"
3
< k̂nt1 �

"

3
< k1t � kt � k3t < k̂ +

"

3
(17)

and this implies that ���kt � k̂��� < ";8t � HN (18)

Remark: Note that k̂ is not an equilibrium of (8). This proposition implies that there
exists a constant (long run) value k̂ that attracts any solution of the model as t tends to in�nity.
Additionally we have showed that the intrinsic rate of population growth nt plays no role in
determining the long run level of per capita output, because k̂ is the unique positive solution of
the equation sf(k) = �k and it not depends on nt:

Remark: It can be proved that the capital per worker of model (8) converges monotonically.
In the appendix we show it and we present an alternative proof of Theorem 1.

Theorem 2: The solution of (8) with initial condition k0 is asymptotically stable.
Proof: To prove the (Lyapunov) stability of (kt)t2N (solution of (8) with initial condition k0)

we have to show that: 8� > 0;9� > 0 such that for any solution (qt)t2N of

kt+1 =
s

1 + nt
f(kt) +

�
1� �
1 + nt

�
kt
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with initial condition q0 verifying jq0 � k0j < �, then we have that

jkt � qtj < �; 8t 2 N: (19)

Let � > 0, and (at)t2N and (bt)t2N the solutions of (8) with initial conditions a0 = k0 � � and
b0 = k0 + � respectively. From the previous theorem we have that

lim
t!+1

at = lim
t!+1

bt = k̂ (20)

and then 9t0 > 0 such that jat � ktj < � and jbt � ktj < �;8t 2 [t0;+1). Then, from lemma 1 we
have that 8q0 2 [a0; b0], if (qt)t2N is the solution of (8) with initial condition q0 we have that

at � qt � bt;8t 2 [0;+1) : (21)

Thus, 8q0 2 [a0; b0] the solution (qt)t2N veri�es

jkt � qtj < �; 8t 2 [t0;+1) : (22)

Now we have to choose 0 < � < � such that for any solution (qt)t2N of

kt+1 =
s

1 + nt
f(kt) +

�
1� �
1 + nt

�
kt

with initial condition q0 verifying jq0 � k0j < �, then we have that

jkt � qtj < �; 8t < t0: (23)

This is a consequence of the continuity of the functions

jt (x) =
s

1 + nt
f(x) +

�
1� �
1 + nt

�
x

for t = 1; 2; : : : ; t0 � 1. In particular we have that, given � > 0, 9�t0 > 0 such that 8x 2
(kt0�1 � �t0 ; kt0�1 + �t0) it is

jjt0�1 (x)� jt0�1 (kt0�1)j < �

Then, for this �t0 > 0, 9�t0�1 > 0 such that 8x 2 (kt0�2 � �t0�1; kt0�2 + �t0�1) it is

jjt0�2 (x)� jt0�2 (kt0�2)j < �t0

and if we continue this procedure, we can �nd �1 > 0 such that 8x 2 (k0 � �1; k0 + �1) it is

jj0 (x)� j0 (k0)j < �2:

Any value � < min(�1;
�
2) is the required value.

Then � veri�es that if (qt)t2N is the solution of (8) with initial condition q0 verifying jq0 � k0j <
�, then it is

jkt � qtj < �; 8t 2 N: (24)
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This shows that the solution of (8) is (Lyapunov) stable. From the previous theorem we have that
for any solutions (kt)t2N and (qt)t2N of (8) it is

lim
t!+1

kt = lim
t!+1

qt = k̂ (25)

and then it is
lim
t!+1

[kt � qt] = 0: (26)

This shows that the solution of (8) with initial condition k0 is asymptotically stable.N
Remark: This proposition implies that small variations of the initial per worker capital do

not change very much the economic growth process.
Remark: We can analyze the impact of technology on economic growth through its impact

on the environmental carrying capacity L1. We assume that technological development increases
the carrying capacity of the environment, i.e. L1 (A) is an increasing function of the variable A
(the technology). Of course, if technology A just a�ects the environmental carrying capacity it
does not impact the dynamics of the classical Solow model (with exponential population growth).
However, it does impact the Solow model reformulated in this paper. As technological development
leads to greater population, and as the steady state equilibrium values of consumption per capita,
capital per capita and output per capita remain constant when technology develops, it implies
that technology increases the aggregate levels of consumption, capital and output.

3 Conclusions

In growth theory it is usually assumed that population growth follows an exponential law. This
is clearly unrealistic because, in particular, it implies that population goes to in�nity when time
goes to in�nity. In this paper we suggest a more realistic approach by considering that population
is strictly increasing and bounded, and that its rate of growth is strictly decreasing to zero. The
paper shows that there exists a constant (long run) value k̂ that attracts any solution of the
model as t tends to in�nity. Being k̂ the unique positive solution of sf(k) = �k, it depends only
on the technology f , the fraction s of output that is saved and the rate of capital depreciation
�; and thus the intrinsic rate of population growth nt plays no role in determining the long run
level of per capita output. Then two economies with di�erent rate of growth of population (both
of them decreasing to zero), but with the same technology f , fraction s of output that is saved
and rate of capital depreciation �; will converge to the same long run value k̂. By the contrary,
with exponential population growth an increase in the intrinsic rate of population growth leads
to lower levels of long run output per capita. Moreover, since the previous theorem implies that
k̂ is a global attractor of equation (8), small variations of the initial per worker capital do not
change very much the economic growth process. The paper also shows that long run values of
per capita levels of consumption, capital and output are greater than those of the classical model.
Thus, in the long run, economic growth is improved if labour force growth rate decreases. This
is a motivation for policy makers to have an e�cient population growth rate. Additionally, note
that being lim

t!+1
Lt = L1 and lim

t!+1
kt = k̂ then

lim
t!+1

Kt <1
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This is more realistic than in the original model where lim
t!+1

Kt =1.
Finally, if we assume that nt+1 < nt;8t � 0 and lim

t!+1
n(t) = en > 0, we can obtain the same

results with suitable modi�cations. But this is material of future research.

4 Appendix

In this appendix we present a theorem to compare the solutions of the original Solow model and
(8) when they start from the same initial condition. We show that the capital per worker of the
reformulated model varies monotonically:

Theorem 3. Let
�
k1t
�
t2N,

�
k2t
�
t2N and

�
k3t
�
t2N solutions of the following di�erence equations:

(A) : kt+1 =
s

1 + n0
f(kt) +

�
1� �
1 + n0

�
kt (27)

(B) : kt+1 =
s

1 + nt
f(kt) +

�
1� �
1 + nt

�
kt (28)

and
(C) : kt+1 = sf(kt) + (1� �) kt (29)

respectively, and with the same initial condition:

k10 = k
2
0 = k

3
0 = k0

If k̂n and k̂ are solutions of the equations (A) and (C), then:

1. k1t � k2t � k3t 8 t 2 N

2. if k0 < k̂n then
�
k2t
�
t2N is strictly increasing in [0;+1) : In the case that k0 = k̂n then�

k2t
�
t2N is increasing in [0;+1)

3. if k̂n < k0 � k̂ then 9 t̂ 2 N such that:
�
k2t
�
t2N is decreasing 8t � t̂ and is strictly increasing

8t > t̂

4. if k̂ < k0 then
�
k2t
�
t2N is strictly decreasing 8t � 0 or 9 t̂ 2 N such that:

�
k2t
�
t2N is strictly

decreasing 8t � t̂ and is increasing 8t > t̂

Proof. 1. It is a consequence of 0 � nt � n0 8 t 2 N and lemma 2.
2. It must be prove that k2t < k

2
t+18t � 0; if k0 < k̂n: By the de�nition of k2t , we have:

k21 =
s

1 + n0
f(k20) +

(1� �)
1 + n0

k20 =
s

1 + n0
f(k10) +

(1� �)
1 + n0

k10 = k
1
1 (30)
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But since k0 < k̂n; k
1
1 > k

1
0 = k

2
0; then: k

2
1 > k

2
0: For t = 0, the inequation is proved. Suppose

now that it is true for t = h� 1; it will be proved that k2h+1 > k2h :

k2h+1 =
s

1 + nh
f(k2h) +

(1� �)
1 + nh

k2h >
s

1 + nh�1
f(k2h�1) +

(1� �)
1 + nh�1

k2h�1 = k
2
h (31)

because: k2h > k
2
h�1 by induction hypothesis, f is monotonically increasing and nh � nh�1:

It must be studied now when k0 = k̂n: Once again by (30) and since for this case we have
k11 = k0; then k

2
1 = k0 = k

2
0: If we continue:

k22 =
s

1 + n1
f(k21) +

(1� �)
1 + n1

k21 �
s

1 + n0
f(k20) +

(1� �)
1 + n0

k20 = k
2
1 (32)

Suppose now that 9 h such that k2h � k2h�1: Then with the same algebra of (31) it can be
proved that k2h � k2h�1 and then: k2t � k2t+1 8t � 0:

3. First observe that k̂n < k0 and then:

k21 =
s

1 + n0
f(k20) +

(1� �)
1 + n0

k20 =
s

1 + n0
f(k10) +

(1� �)
1 + n0

k10 = k
1
1 < k

1
0 = k

2
0 (33)

Therefore k21 < k
2
0: It must be proved that exits t̂ 2 N such that

�
k2t
�
t2N is decreasing 8t � t̂

and is monotonically increasing 8t > t̂. Suppose that k2t+1 � k2t 8t � 0: So we have:

k2t+1 � k2t 8t � 0, k2t+1 � k2t � 0 8t � 0, s

1 + nt
f(k2t ) +

(1� �)
1 + nt

k2t � k2t � 0 8t � 0, (34)

, sf(k2t )� (� + nt)k2t � 0 8t � 0 (35)

since
�
k2t
�
t2N is decreasing and bounded, then by the �rst part of this theorem have limit. Let

�k = lim
t
k2t : Since k

2
1 < k

2
0 and

�
k2t
�
t2N is decreasing, we have that: k̂n � �k < k0 � k̂: Then:

lim
t
sf(k2t )� (� + nt)k2t = sf(�k)� ��k � 0)

f(�k)
�k

� �

s
=
f(k̂)

k̂
(36)

Suppose now that �k < k̂; so: sf(�k)� ��k > 0 and then f(�k)
�k

>
�

s
; that contradicts (36). Thus

we can conclude that: �k � k̂: But this inequality contradicts that k̂n � �k < k0 � k̂: Finally, we
proved that 9 t0 > 0 with k2t0+1 > k

2
t0 : Let t̂ the �rst natural that verify the last inequality. It

must be proved now that k2t+1 > k
2
t 8t > t̂: For t = t̂ that relation is true by de�nition. Suppose

now that is true for t = h� 1 > t̂: Then:

k2h+1 =
s

1 + nh
f(k2h) +

(1� �)
1 + nh

k2h >
s

1 + nh�1
f(k2h�1) +

(1� �)
1 + nh�1

k2h�1 = k
2
h

Therefore, k2t+1 > k
2
t 8t > t̂:

4. The proof is similar to the previous parts.
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Theorem 4. If (kt)t2N is a solution of kt+1 =
s

1+nt
f(kt) +

�
1��
1+nt

�
kt, then:

lim
t!+1

kt = k̂:

Proof. From the previous theorem we know that (kt)t2N is monotone and bounded. This implies
that lim

t!+1
kt = �k <1. Then we have that:

�k = k̂ , sf(�k)� ��k = 0:

From now on, we will suppose that (kt)t2N is strictly decreasing for all t � t0. (The proof is similar
when (kt)t2N is strictly increasing). Then we have that:

kt+1 � kt 8t > t0

or equivalently:
sf(kt)� (� + nt)kt � 0 8t > t0:

Taking limits we have that:
sf(�k)� ��k � 0:

Suppose that sf(�k)� ��k < 0; and let A = sf(�k)� ��k < 0: Then 9t1 > t0 such that:

sf(kt)� (� + nt)kt <
A

2
8t � t1

or equivalently

kt+1 � kt <
A

2
8t � t1

Then 8n > t1 we have that
nX
t=t1

(kt+1 � kt) <
nX
t=t1

A

2
=
A

2

(n� t1 + 1)(n+ t1)
2

implying that

kn+1 � kt1 <
A

2

(n� t1 + 1)(n+ t1)
2

;8n > t1:

Taking limits we obtain:

lim
n
(kn+1 � kt1) � limn

A

2

(n� t1 + 1)(n+ t1)
2

= �1;

This contradicts the fact that kt is bounded. Then we have that sf(�k)� ��k = 0:
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