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Abstract

We show that Marshall−Lerner condition holds for Brazilian trade balance, and discard a
J−curve in the short run. We present these results using impulse−response functions in a
variety of (linear and nonlinear) models, including Markov−switching, vector
error−correction models.
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1.  Introduction 
 
The hypothesis of a J-curve arises from the anecdotal evidence that, in response to exchange 
rate depreciation, the trade balance gauged in local currency worsens in the impact period, 
and then improves.  The J-curve thus stands as a short-run departure from Marshall-Lerner 
condition.  A usual rationale for it is that exchange rate depreciation initially means cheaper 
exports and more expensive imports, making the current account worse (a bigger deficit or 
smaller surplus).  After a while the volume of exports will start to rise because of their lower 
price to foreign buyers, and domestic consumers will buy fewer of the costlier imports.  
Eventually the trade balance will improve. 
 Yet the explanation above does not work for Brazilian trade balance because export 
contracts are made in foreign currency (dollars).  But there is room for a J-curve still, 
regardless of contracts.  This is so if habits and durability in consumption are present 
(Mansoorian 1998).  (Antonucci 2003 provides a brief survey of the theoretical literature.) 
 Evidence of a J-curve is mixed.  Empirical research can be usefully classified into two 
groups.  The first one looks for a J-curve in a two-country (domestic and rest-of-the-world) 
framework, as in Felmingham (1988).  The J-curve is an aggregative phenomenon, and then 
such an approach seems appropriate.  However, a currency can simultaneously depreciate and 
appreciate relative to others.  To take this into account, a second group of research focuses on 
trade between two partners only, as in Bahmani-Oskooee and Brooks (1999), and Onafowora 
(2003). 
 This paper belongs to the first line of research.  The problem of simultaneous currency 
depreciation and appreciation is softened, however, as we take real exchange rates between 
Brazil and its 16 biggest trading partners. 
 Onafowora (2003) employs a cointegration approach to the bilateral trade of selected 
Asian countries.  Using Johansen’s methodology, he finds that variables cointegrate.  He then 
estimates a linear, vector error-correction model and makes use of impulse-response 
functions.  He finds a J-curve. 
 We will look for a Brazilian J-curve using a similar cointegration approach.  This will 
enable us to track short- and long-run exchange-rate effects on Brazilian trade balance.  Yet 
we will use a nonlinear Markov-switching, vector error-correction model.  This will capture 
the breaks hitting Brazilian trade balance in the period under scrutiny.  These breaks include 
exchange-rate regime changes, stabilization plans, and shocks from international financial 
crises. 
 The rest of this paper is organized as follows.  Section 2 presents data, Section 3 
analyzes them, and Section 4 concludes. 
 

2.  Data 
 
We take monthly data from January 1990 to December 2003 (168 data points) for each of the 
following variables.  Export-import ratio, real exchange rate, gross domestic product (GDP), 
consumer price index, world imports (as a proxy for income in the rest of the world), and 
world import price index. 
 Data from overall Brazilian exports and imports are used to reckon the export-import 
ratio, which here proxies trade balance (TB).  (The data are from the Foreign Trade Secretary 
of the Ministry of Development, Industry, and Foreign Trade.)  Taking the export-import ratio 
to represent trade balance is common in literature.  One advantage is to allow one to take logs 
of trade balance, and then get growth rates (Brada, Kutan, and Zhou 1997).  Another 
advantage of taking the export-import ratio is that it remains constant as units of measurement 
change.  Indeed taking the difference between exports and imports to stand for trade balance 
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demands the use of a deflator to reckon real trade balance.  Yet this gauge is sensitive to 
alternative deflators.  By contrast, the export-import ratio is able to represent either nominal 
or real trade balance (Bahmani-Oskoee 2001). 
 The real exchange rate (RER) data set is that of Institute of Applied Economics 
Research (IPEA).  Brazilian real-US dollar nominal exchange rates are deflated with the help 
of consumer and wholesale price indices of 16 biggest trading partners, weighted by share of 
each in 2001 Brazilian exports. 
 We take monthly GDP data from Brazilian central bank.  To get real GDP (RGDP), 
GDPs are deflated by the consumer price index (INPC) reckoned by the Brazilian Institute of 
Geography and Statistics (IBGE).  World imports (WI) are obtained from IMF’s International 
Financial Statistics.  They are deflated by world import prices. 
 

3.  Analysis 
 
Figures 1a−1d suggest at the naked eye that our series are nonstationary.  We take the series 
both in levels and first differences, and carry out augmented Dickey-Fuller (ADF)-type unit-
root tests only to confirm that (Table 1).  All series possess a unit root in levels and get 
stationary in first differences.  Yet structural breaks are present in the series of exchange rate 
and trade balance.  Such breaks can distort the unit root tests.  We then check for stationarity 
using Perron (1997)’s test, which endogenously determines dates for structural breaks.  
Nonstationarity continues to emerge (Table 2). 
 Because of nonstationarity we check whether the series cointegrate, in which case an 
error correction model can be estimated.  Yet we first should learn how many lags to employ.  
To this end, we estimate a vector auto-regression (VAR) for the variables in levels.  Then we 
pick the best model, having in mind the information criterion of Akaike (AIC) and that of 
Schwarz (BIC) (Table 3).  We find that four lags make it possible to evaluate a model 
dynamics parsimoniously. 
 We thus employ Johansen (1988)’s cointegration test with four lags and find a 
cointegration vector (Table 4).  The cointegration vector in logs is 
 ( )176329.2,383791.1,158394.1,811856.1,1 −−=β . 
And the equation describing the long run relationship between the variables is 
 2.176329 1.811856 1.158394 1.383791TB RER WI RGDP= + − − .                               (1) 
This equation shows that long-run exchange-rate elasticity to trade balance is positive.  Thus 
real depreciation improves real trade balance.  A one-percent depreciation raises trade balance 
to 1.811856 percent on average.  Thus Marshall-Lerner condition holds. 
 Because the cointegration test reveals the existence of a unique long-run relationship 
(equation (1)), we estimate a vector error-correction model (VECM) with four lags (Table 5).  
The coefficient of the error correction term is significant at one percent.  This means that the 
trade balance moves toward the unique long-run equilibrium after a shock.  The equation of 

TB∆  conveys information about the long-run relationship between variables because it 
contains the error correction term.  Short-run trade imbalances are monthly corrected at a pace 
of 20 percent. 
 Impulse-response functions are a convenient way of displaying estimated coefficients 
of a VAR.  Here they are particularly useful to capture short run dynamics of the trade 
balance response to exchange rate shocks.  Figure 2 shows the response of TB  to innovations 
of one standard deviation in RER .  Trade balance increases in the aftermath of a shock.  The 
maximum occurs after roughly four months.  Afterward trade balance reduces, and then 
stabilizes after nearly ten months.  Thus the impulse-response function shows no J-curve in 
this linear error-correction model. 
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 Whenever a time series is plagued with structural breaks, nonlinearity is present.  
Series are also unlikely to be normally distributed as well as stationary.  Markov-switching 
regime models attempt to cope with nonlinearity.  They assume that while parameters are 
time-varying, they also depend on regime changes st.  The process generating the regime 
changes is an ergodic Markov chain with finite number of states st = 1, ..., M.  These are 
defined by transition probabilities, i.e. 

 ( ) { }ij 1
1

Pr ,  1  , 1,...,
M

t t ij
j

p s j s i p i j M+
=

= = = = ∀ ∈∑  

where 1 11 ...  for 1,...,iM i iMp p p i M−= − − − =  (Hamilton 1994). 
 A cointegrated VAR(p) with M Markovian regimes is dubbed MS(M)-VECM(p).  The 
linear VECM(p) collapses to the particular case where M = 1.  Generally, 

 ( ) ( ) ( ) ( ) ( ) ( ) 1
1

p

t t t t t i t i t t t ti
i

y s v s s y s s s y uµ µ α β− − −
=

 ∆ − = + Γ ∆ − + + ∑ , 

where ( )tt sNu Σ,0~  (Krolzig 1997). 
 Here we employ an MS-VECM to tackle the breaks in our series.  Finding the proper 
number of regimes in an MS-VECM is not that straightforward, however.  Thanks to the 
presence of nuisance parameters, we cannot rely on likelihood ratio because it ends up with 
no asymptotic distribution.  Although Hansen (1992) and Garcia (1993) have developed a 
technique to derive the asymptotic distribution in such cases, it is useless for practical 
purposes.  This is because the distribution stands dependent on both data and model 
parameters, and then an asymptotic distribution needs to be reckoned every time one runs a 
test (Krolzig 1997).  Yet both AIC and BIC never underestimate the minimum number of 
regimes (Ryden 1995).  For that reason, we employ such criteria here.  Results are in Table 6. 
 The best nonlinear model seems to be an MSMH(2)-VECM(4).  Here mean and 
variance are dependent on ongoing regime, and after a regime switch there occurs an instant 
jump toward the mean, i.e. 

 ( ) ( )
4

1
1

t t i t i t i t t
i

y s v y s z uµ µ α− − −
=

 ∆ − = + Γ ∆ − + + ∑ , 

where st = 1, 2, and tt yz β ′= .  After normalizing the model to make TB  the dependent 
variable, we estimate elasticities (Table 7). 
 The coefficient of the exogenous series conveys information about the long run 
relationship between variables and stands significant at the one-percent level.  Mean of 
regime 1 is greater than that of regime 2.  And standard deviation of regime 2 is 37 percent 
higher than that of regime 1.  As can be seen, only the trade balance coefficient of first lag is 
significant at 5 percent.  Table 8 presents starting and final dates estimated for each regime, 
and Table 9 shows the transition probability matrix together with duration of regimes.  
Figures 3a and 3b display smooth probabilities of the regimes. 
 Note that although our data set starts at January 1990 and ends at December 2003, we 
miss the five initial data points thanks to the four lags and differentiation of data.  Historical 
facts roughly match the regimes in Table 8 and are described elsewhere (e.g. Bonomo and 
Terra 1999, and monthly central bank reports at http://www.bcb.gov.br/?RELCAMBIO). 
 Again, we rely on impulse-response functions to evaluate the results of the MSMH(2)-
VECM(4).  Figure 4 shows that there is no J-curve in our nonlinear model.  There is no such 
thing as an impact-period worsening of the trade balance.  Marshall-Lerner still holds, 
because the full impact of the exchange rate shock to trade balance only occurs after one year 
has elapsed. 
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4.  Conclusion 
 
We find evidence that Marshall-Lerner condition holds true for Brazilian trade balance, and 
no evidence of a short-run J-curve.  We show that a nonlinear model outperforms a linear 
model of our data set, and select a Markov-switching, vector error-correction model (i.e. an 
MSMH(2)-VECM(4)) as the best nonlinear model. 
 Impulse-response functions from both linear and nonlinear models are clear-cut.  
There is no J-curve, and Marshall-Lerner condition holds.  Brazilian trade balance does 
improve following exchange rate depreciation.  And there is no room for short-run dynamics 
of temporary worsening of the trade balance. 
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Table 1  Augmented Dickey-Fuller Test 
 

 Levels First Differences 

 
Series 

      

TB −2.118219 −2.261872 −1.888342 −18.7365 −18.74535 −18.80222 

RER −2.12053 −1.665742 1.171722 −9.561508 −9.597206 −9.502779 

RGDP −3.413373 −3.212559 −0.305698 −7.547178 −10.62408 −10.65189 

WI −2.533028 −0.359855 1.322549 −6.868682 −3.921123 −16.24827 

Note 
Bold values mean rejection of the null hypothesis of unit root at the 5 percent significance level. 
 
 
Table 2  Unit-Root Perron Test 
 

Model TB RER RGDP WI 

1 −4.26519 −3.89801 −6.86492 −3.75716 

2 −4.52955 −5.33981 −8.78159 −3.39941 

3 −2.96843 −4.32458 −4.23698 −2.69416 

Note 
Bold values mean rejection of the null hypothesis of unit root at the 5 percent significance level. 
 
 
Table 3  Selection of Number of Lags Using AIC and BIC 
 
Number of Lags AIC BIC 

7 −10.9106 −8.690424 

6 −11.1417 −9.235736 

5 −11.0883 −9.493935 

4 −10.8902 −9.604841 

3 −10.7539 −9.775046 

2 −10.5183 −9.843404 

1 −10.1921 −9.818636 

 
Table 4  Cointegration Tests 
 

H0 
   

Eigenvalue 0.190723 0.134642 0.02508 

Trace 62.23588 27.7427 4.170876 

Critical Value at 5% 47.21 29.68 15.41 

 
 

ττ ττµτ µττ τ

0r = 1r ≤ 2r ≤
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Table 5  Estimation of a VECM with Four Lags 
 

Variable Coefficient Standard 
Deviation t-Statistics 

Constant −0.0075 −0.01039 −0.72165 

( )1TB∆ −  −0.345346 −0.08286 −4.16791 

( )2TB∆ −  −0.005552 −0.08486 −0.06543 

( )3TB∆ −  0.078976 −0.08396  0.94066 

( )4TB∆ −  0.059713 −0.07797  0.76580 

( )1RER∆ −  0.105307 −0.24902  0.42288 

( )2RER∆ −  0.158494 −0.27091  0.58505 

( )3RER∆ −  0.296454 −0.25768  1.15046 

( )4RER∆ −  −0.377392 −0.24223 −1.55799 

( )1WI∆ −  −0.071862 −0.21965 −0.32717 

( )2WI∆ −  0.244983 −0.25481  0.96142 

( )3WI∆ −  0.34979 −0.23943  1.46093 

( )4WI∆ −  0.258443 −0.19742  1.30909 

( )1RGDP∆ −  0.303673 −0.25922  1.17150 

( )2RGDP∆ −  0.022641 −0.20727  0.10923 

( )3RGDP∆ −  −0.210954 −0.20083 −1.05040 

( )4RGDP∆ −  −0.029536 −0.20425 −0.14461 

Error Correction Term −0.207923 −0.04995 −4.16258 
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Table 6  Selecting a Model 
 

Model AIC BIC 

MSIAH(3) −12.558 −7.775 
MSMAH(3) −7.293 −2.510 

MSIA(3) −12.020 −7.617 
MSMA(3) −7.539 −3.135 
MSIH(3) .............. ............... 

MSMH(3) −11.863 −9.661 
MSI(3) −11.761 −9.939 

MSM(3) .............. ............... 

MSIAH(2) −11.754 −8.604 
MSMAH(2) −8.023 −4.872 

MSIA(2) −11.710 −8.749 
MSMA(2) −8.146 −5.185 
MSIH(2) −12.090 −10.230 

MSMH(2) −12.115 −10.255 
MSI(2) −11.571 −9.900 

MSM(2) −11.479 −9.809 
Linear −11.494 −9.937 
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Table 7  Estimates from the MSMH(2)-VECM(4) 
 

Variable TB∆  
Standard 
Deviation t-Statistics 

Mean (Regime 1) 0.795951 0.2065 3.8544 

Mean (Regime 2) 0.788046 0.2044 3.8554 

( )1TB∆ −  −0.3183 0.094 −3.3852 

( )2TB∆ −  0.009631 0.0768 0.1253 

( )3TB∆ −  0.119602 0.077 1.5541 

( )4TB∆ −  0.121797 0.0738 1.6494 

( )1RER∆ −  0.012341 0.2768 −0.0446 

( )2RER∆ −  0.29702 0.2955 1.0053 

( )3RER∆ −  0.350168 0.2881 1.2154 

( )4RER∆ −  −0.32299 0.2394 −1.3492 

( )1WI∆ −  −0.12236 0.1965 −0.6227 

( )2WI∆ −  0.136474 0.2329 0.5860 

( )3WI∆ −  0.147492 0.2370 0.6223 

( )4WI∆ −  0.180132 0.1800 1.0010 

( )1RGDP∆ −  0.224533 0.2437 0.9214 

( )2RGDP∆ −  0.002029 0.2105 0.0096 

( )3RGDP∆ −  −0.19808 0.1994 −0.9932 

( )4RGDP∆ −  −0.16155 0.1981 −0.8154 

Error Correction Term −0.21396 0.0502 −4.2631 
Standard Deviation 

(Regime 1) 0.100029   

Standard Deviation 
(Regime 2) 0.137412   

 
 
Table 8  Regime Dates 
 

Regime 1 Regime 2 

Low Volatility High Volatility 

1991:01  1991:02 1990:06  1990:12 

1991:07  1991:09 1991:03  1991:06 

1992:01  1994:06 1991:10  1991:12 

1994:08  1995:02 1994:07  1994:07 

1995:07  1998:12 1995:03  1995:06 

1999:11  2001:02 1999:01  1999:10 

2003:05  2003:12 2001:03  2003:04 
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Table 9  Transition probability matrix and duration of regimes 
 

 Regime 1  Regime 2 Data Points Probability Duration 

Regime 1 0.9381 0.0619 106.8 0.6797 16.14 

Regime 2 0.1315 0.8685 56.2 0.3203 7.61 
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               Figure 1a  Trade balance                                            Figure 1b  Real exchange rate 
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                 Figure 1c  World imports                                 Figure 1d  Real gross domestic product 
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Figure 2  Linear model: response of trade balance to innovations 
of one standard deviation in real exchange rate 
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Figure 3a  Smooth Probabilities of Regime 1 
 

 

 

Figure 3b  Smooth Probabilities of Regime 2 
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Figure 4  Impulse-Response Functions in the MSMH(2)-VECM(4) 
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