
Discounting and efficiency in coalitional bargaining with
random proposers 

Tomohiko Kawamori
Graduate School of Economics, University of Tokyo

Abstract

This paper analyzes a random−proposer coalitional bargaining game with different discount
factors, which is a generalized version of Okada's (1996) model. We consider limit subgame
efficiency which means that when the discount factors are sufficiently close to unity, the full
coalition is formed in each subgame. In this paper, a negative result is shown: The limit
subgame efficiency is attained if and only if values of the characteristic function are zero for
all coalitions but the grand coalition. This result implies that under different discount factors,
even under a naturally generalized condition of Okada's necessary and sufficient condition
for the limit subgame efficiency, the limit subgame efficiency is not necessarily achieved. On
the other hand, it is shown that under a condition on the region of players' discount factors,
the generalized condition of Okada's condition is almost necessary and sufficient for the limit
subgame efficiency.
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1. Introduction

Okada (1996) introduced a noncooperative coalitional bargaining game with random proposers,
in which a player is randomly recognized as a proposer in each round. He showed that in equilibrium
of the game, no delay occurs. Also, he provided the equivalent condition for the limit subgame
efficiency, which means that when the discount factor is sufficiently close to unity, the full coalition
is formed in each subgame. The condition is that values of coalitions per capita are monotonic
with respect to sizes of coalitions.

This paper analyzes a generalized game of Okada’s model. In the generalized game, players’
discount factors and recognition probabilities are different. Especially, difference of discount factors
is a key factor of this paper. Under different discount factors, even if the equivalent condition for
the limit subgame efficiency of Okada (1996) holds, the limit subgame efficiency is not necessarily
achieved (Example 1). This is intuitively explained as follows: A proposer may obtain a larger
payoff by proposing subcoalitions with less patient players than the full coalition because by
proposing such coalitions, she does not have to give larger allocations to more patient players,
whose approval seems expensive. Thus, under different discount factors, the proposer may have
an incentive to propose subcoalitions. Moreover, however close to 1 each player’s discount factor
is (however small the difference among players’ discount factors is), the difference among players’
discount factors matters.

In this paper, we show a negative result: In the generalized Okada model, the limit subgame
efficiency is attained if and only if values of the characteristic function are 0 for all coalitions but
the grand coalition. On the other hand, it is shown that under a condition on the region of players’
discount factors, a naturally generalized condition of Okada’s condition above is almost necessary
and sufficient for the limit subgame efficiency.

This paper is related to Yan (2002), which generalized a variant of Okada model. In the gener-
alized model, recognition probabilities are different but discount factors are common. According
to Yan (2002), if the core of the underlying characteristic function form game is not empty, the
limit efficiency is attained in a noncooperative game with some recognition probability tuple. The
results of this paper, however, imply that under different discount factors, even if the core is not
empty, the limit efficiency does not hold for any recognition probability tuple.

The paper is organized as follows: Section 2 defines a coalitional bargaining game; Section 3
investigates the efficiency.

2. Model

Take a characteristic function form game (N, v). Suppose that N ≡ {1, . . . , n} for some n ∈ N
such that n ≥ 2. Let C ≡ 2N \ {∅}. Suppose that v ({i}) = 0 for all i ∈ N , v (N) > 0 and
∀S, T ∈ C : S ∩ T = ∅ ⇒ v (S ∪ T ) ≥ v (S) + v (T ).

For δ ≡ (δk)k∈N ∈ (0, 1)n, define a noncooperative bargaining game G (δ), which is a generalized
model of Okada (1996) with different discount factors and different recognition probabilities.

The structure of the game is inductively defined. In the game, there are several states. The set
of states is S ≡ {

S ∈ 2N | v (S) > 0
}
. At state S ∈ S, a player i ∈ S is selected as a proposer with

probability pS
i , where pS ≡ (

pS
k

)
k∈S

∈
{

(pk)k∈S ∈ R|S|++ |
∑

k∈S pk = 1
}

. The proposer i proposes a

1



pair of a coalition including i and a payoff distribution for the coalition,

(C, x) ∈
{

(
C ′, (x′k)k∈C′

) | C ′ ∈ 2S ∧ i ∈ C ′ ∧ (x′k)k∈C′ ∈ R|C
′|

+ ∧
∑

k∈C′
x′k ≤ v (C ′)

}
.

Then, each member in the proposed coalition C other than proposer i announces accepting or
rejecting the proposal according to some predetermined order. If every responder accepts the
proposal, the proposal is enforced and the state goes to state S \ C (if v (S \ C) = 0, the game
ends). Otherwise, the state remains to be S. The game begins with state N . We say that a
proposal is accepted if every responder accepts it and rejected otherwise.

δi is i’s discount factor. Player i obtains a payoff of δt−1
i xi if a proposal

(
C, (xk)k∈C

)
such that

C 3 i is enforced at the t-th round and nothing otherwise.
In this paper, consider pure strategies. The equilibrium concept employed in the paper is the

stationary subgame perfect equilibrium (SSPE), which is the subgame perfect equilibrium such
that each player takes the same actions at all rounds with the same state.

We introduce some notations. For n ∈ N, ε > 0 and a ∈ Rn, let Bn
ε (a) be the ε-open ball of a

in the n-dimensional Euclidean space. For any family a ≡ (aλ)λ∈Λ and λ ∈ Λ, let prλ a ≡ aλ. Let
1 be a tuple whose elements are 1.

By the same logic as Okada (1996), there is no delay in G (δ) for any δ ∈ (0, 1)n.

3. Efficiency

In this section, we consider the efficiency defined according to Okada (1996).

Definition 1. Take any δ ∈ (0, 1)n. G (δ) is a subgame efficient if there exists an SSPE of G (δ)
such that every player proposes full coalition S at a round with any state S ∈ S.

Let D ≡ {
∆ ∈ 2(0,1)n | ∀ε > 0 : ∆ ∩Bn

ε (1) 6= ∅}.

Definition 2. Take any ∆ ∈ D. G is limit subgame efficient on ∆ if there exists ε > 0 such that
for all δ ∈ Bn

ε (1) ∩∆, G (δ) is subgame efficient.

Definition 3. G is a limit subgame efficient if G is a limit subgame efficient on (0, 1)n.

Note that the efficiency is defined for games in the above whereas it is defined for equilibria in
Okada (1996).

In the case that pS
i = 1

|S| for all S ∈ S and all i ∈ S, according to Okada (1996), G is

limit subgame efficient on ∆ if and only if v(S)
|S| ≥ v(T )

|T | for all S, T ∈ C such that S ⊃ T , where

∆ ≡ {
(δ′k)k∈N ∈ (0, 1)n | ∀k, l ∈ N : δ′k = δ′l

}
.

The following example implies that even if the equivalent condition above is satisfied, G is
not limit subgame efficient on some ∆ ∈ D, which obviously implies that G is not limit subgame
efficient.

Example 1. Suppose that n = 3, pS
i = 1

|S| for all S ∈ S and all i ∈ S, and v (N) = 1 and

v ({i, j}) = 2
3

for all i, j ∈ N i 6= j. Obviously, characteristic function v satisfies Okada’s equivalent
condition. Let ∆ ≡ {

(δk)k∈N ∈ (0, 1)n | δ1 = δ2 =
√

δ3

}
.
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We show that G is not limit subgame efficient on ∆. Take any δ ≡ (δk)k∈N ∈ ∆ such that

δ1 > −1+
√

37
6

∈ (0, 1). Let d ≡ δ1. Suppose that G (δ) is subgame efficient. Then, there exists an
SSPE of G (δ) such that every player proposes the full coalition at any round. For i ∈ N , let vi be
player i’s payoff in the equilibrium. Then, by the efficiency and no delay, the equilibrium payoff
profile must satisfy

(v1, v2, v3) =

(
(1− dv2 − d2v3) + 2dv1

3
,
(1− dv1 − d2v3) + 2dv2

3
,
(1− dv1 − dv2) + 2d2v3

3

)
.

Thus, v1 = v2 = 1+d
3+2d

and v3 = 1
3+2d

. At player 1’s proposing node in the first round, player 1

obtains a payoff of 1− d 1+d
3+2d

− d2 1
3+2d

= 3+d−2d2

3+2d
in the equilibrium. Consider player 1’s deviation

from proposing the grand coalition to proposing coalition {1, 3}. By the deviation, player 1 obtains
a payoff of 2

3
− d2 1

3+2d
= 6+4d−3d2

3(3+2d)
. Thus, Player 1’s gain from the deviation is equal to −3+d+3d2

3(3+2d)
,

which is greater than 0 since d > −1+
√

37
6

. Thus, G (δ) is not subgame efficient for all d > −1+
√

37
6

.
Hence, G is not limit subgame efficient on ∆.

Note that there exists an equilibrium in mixed strategies. In the equilibrium, player i ∈ {1, 2}
stochastically proposes grand coalition N and subcoalition {i, 3} at any round with state N .

The inefficiency is intuitively explained as follows: By proposing subcoalitions with less patient
players, a proposer does not have to give larger payoffs to more patient players, whose approval
is expensive. She may obtain a larger payoff by proposing such subcoalitions than the full coali-
tion. Thus, under different discount factors, she may have an incentive to propose subcoalitions.
Moreover, however close to 1 each player’s discount factor is (however small the difference among
players’ discount factors is), the difference among players’ discount factors matters.

In the following, we investigate conditions for the efficiency under different discount factors. To
do so, introduce some notations. For any nonempty and finite set K, any tuple p ≡ (pk)k∈K ∈ R|K|+

such that
∑

k∈K pk = 1 and any tuple a ≡ (ak)k∈K ∈ R|K|, let Hp (a) and A (a) denote the harmonic

mean of a weighted by p and the arithmetic mean of a, respectively: Hp (a) ≡ (∑
k∈K pka

−1
k

)−1

and A (a) ≡ 1
|K|

∑
k∈K ak. For any S ∈ S, any T ∈ C such that T ⊂ S and any i ∈ T , let

p
T |S
i ≡ pS

iP
k∈T pS

k
, pT |S ≡

(
p

T |S
k

)
k∈T

and pS
T ≡

(
pS

k

)
k∈T

.

The following lemma provides a condition for G (δ) to be subgame efficient given δ.

Lemma 1. Take any δ ≡ (δk)k∈N ∈ (0, 1)n. Then, G (δ) is subgame efficient if and only if

HpS (1− δS)

HpT |S (1− δT )

v (S)

|S| +

(
1∑

k∈T pS
k

− 1

)
HpS (1− δS)

v (S)

|S| ≥ v (T )
A(pS

T )
A(pS)

|T |
(1)

for all S ∈ S and T ∈ C such that T ⊂ S, where δC ≡ (δk)k∈C for C ∈ C.

Remark . Needless to say, A
(
pS

)
= 1

|S| .

Proof. See Appendix A. Q.E.D.

Using Lemma 1, we present a equivalent condition for G to be limit subgame efficient. For
δ ≡ (δk)k∈N ∈ (0, 1)n, S ∈ S and T ∈ C such that T ⊂ S, let L (δ, S, T ) be the left hand side of
(1).
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Theorem 1. G is limit subgame efficient if and only if v (S) = 0 for all S ∈ C \ {N}.
Remark . If v (S) = 0 for all S ∈ C \ {N}, G (δ) is essentially the same game as Baron and
Ferejohn’s (1989) model with the unanimity rule.

Proof. See Appendix B. Q.E.D.

According to this theorem, G is limit subgame efficient only under a very strong condition.
The key underlying the theorem is the first fraction of the first term of the left hand side of (1).
If S 6= T , for any r > 0, for any ε > 0, there exists δ ∈ Bn

ε (1) ∩ (0, 1)n such that the fraction
is less than r. This implies that, if there exists S ∈ C \ {N} such that v (S) > 0, for any ε > 0,

there exists δ ∈ Bn
ε (1) ∩ (0, 1)n such that L (δ,N, S) < v(S)

A(pN
S )

A(pN )
|S|

, which means that G is not limit

subgame efficient.
On the other hand, in the following, we show that under a condition on ∆ ∈ D, a generalized

version of Okada’s condition is “almost equivalent” to the limit subgame efficiency on ∆ of G. For
∆ ∈ D, let ∆1 ≡ {pr1 δ | δ ∈ ∆}. For ∆ ∈ D, i ∈ N and δ1 ∈ ∆1, let

f+
∆,i (δ1) ≡ sup {pri δ | δ ∈ ∆ ∧ pr1 δ = δ1}

and

f−∆,i (δ1) ≡ inf {pri δ | δ ∈ ∆ ∧ pr1 δ = δ1} .

For S ∈ C, let f+
∆,S (δ1) ≡

(
f+

∆,k (δ1)
)

k∈S
and f−∆,S (δ1) ≡

(
f−∆,k (δ1)

)
k∈S

.
Using these notations, we introduce the following concept:

Definition 4. ∆ ∈ D is limit-equivalent if for all i ∈ N\{1}, limδ1→1
1−f+

∆,i(δ1)

1−δ1
= limδ1→1

1−f−∆,i(δ1)

1−δ1
=

1, i.e., ∀r > 0∃δ̄1 ∈ ∆1 : δ1 ∈
(
δ̄1, 1

) ∩ ∆1 ⇒
∣∣∣∣
1−f+

∆,i(δ1)

1−δ1
− 1

∣∣∣∣ < r and ∀r > 0∃δ̄1 ∈ ∆1 : δ1 ∈
(
δ̄1, 1

) ∩∆1 ⇒
∣∣∣∣
1−f−∆,i(δ1)

1−δ1
− 1

∣∣∣∣ < r.

For example,
{
(δk)k∈N ∈ (0, 1)n | ∀i ∈ N \ {1} : log δ1 + 1 ≤ δi ≤ eδ1−1

}
is limit-equivalent.

The following theorem states that if ∆ ∈ D is limit-equivalent, a generalized version of Okada’s
condition is “almost equivalent” to the limit subgame efficiency on ∆ of G.

Theorem 2. Take any ∆ ∈ D. Suppose that ∆ is limit-equivalent. Then, (i) G is limit subgame
efficient on ∆ only if

v (S)

|S| ≥ v (T )
A(pS

T )
A(pS)

|T |

for all S ∈ S and T ∈ C such that T ⊂ S; and (ii) G is limit subgame efficient on ∆ if

v (S)

|S| >
v (T )

A(pS
T )

A(pS)
|T |

for all S ∈ S and T ∈ C such that T ⊂ S.
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Proof. See Appendix C. Q.E.D.

If ∆ is limit-equivalent, for any r > 0, there exists ε > 0 such that for all δ ∈ Bn
ε (1) ∩∆, the

first fraction of the first term of the left hand side of (1) is in the r-open ball of 1 for all S and T .
From this, the theorem is obtained.

The results of this paper imply importance of similarity of time preferences. Theorems 1 and
2 mean that in general, the efficiency of coalitional bargaining is scarcely attained, but if players’
time preferences are similar, the efficiency is achieved under a moderate condition.
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Appendix

A. Proof of Lemma 1

Proof. (Necessity) Suppose that there exists an SSPE σ of G (δ) such that every player proposes
the full coalition at any round. Take any S ∈ S and any T ∈ C such that T ⊂ S. For i ∈ N , let
vi be player i’s payoff by σ in any subgame with state S. By the efficiency and no delay,

vi = pS
i


v (S)−

∑

k∈S\{i}
δkvk


 +

∑

k∈S\{i}
pS

k δivi = pS
i

(
v (S)−

∑

k∈S

δkvk

)
+ δivi. (2)

This implies

vi =
pS

i

1− δi

(
v (S)−

∑

k∈S

δkvk

)
. (3)

(2) and (3) yield
∑

i∈S vi = v (S) =
(∑

i∈S
pS

i

1−δi

) (
v (S)−∑

k∈S δkvk

)
. Thus,

v (S)−
∑

k∈S

δkvk = HpS (1− δS) v (S) . (4)

From (3) and (4), we have

vi =
HpS (1− δS)

1− δi

pS
i v (S) . (5)

By the efficiency, v (S) −∑
k∈S\{i} δkvk ≥ v (T ) −∑

k∈T\{i} δkvk must hold for i ∈ T . Add δivi to

both sides of the above inequality. Then, v (S)−∑
k∈S δkvk ≥ v (T )−∑

k∈T δkvk. Substitute (4)
and (5) into the left hand side and the right hand side of the above inequality, respectively. Then,

HpS (1− δS) v (S) ≥ v (T )−
(∑

k∈T

δkp
S
k

1− δk

)
HpS (1− δS) v (S) .

Add and subtract
(∑

k∈T

pS
k

1−δk

)
HpS (1− δS) v (S) to and from the right hand side of the above

inequality. Then,

HpS (1− δS) v (S) ≥ v (T )−
(∑

k∈T

pS
k

1− δk

)
HpS (1− δS) v (S) +

(∑

k∈T

pS
k

)
HpS (1− δS) v (S) .

Divide both sides of the above inequality by |S|∑k∈T pS
k . Then,

1∑
k∈T pS

k

HpS (1− δS)
v (S)

|S| ≥ v (T )
A(pS

T )
A(pS)

|T |
− HpS (1− δS)

HpT |S (1− δT )

v (S)

|S| + HpS (1− δS)
v (S)

|S| .

Obviously, this inequality is equivalent to (1).
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(Sufficiency) Suppose that (1) holds for all S ∈ S and T ∈ C such that T ⊂ S. Consider
strategy profile σ such that at a round with state S ∈ S, (i) every proposer i ∈ S offers

(
S, (xi

k)k∈S

)
with xi

i ≡ v (S)−∑
k∈S\{i} δkv

S
k and xi

j ≡ δjv
S
j for j 6= i, and (ii) every responder i accepts proposal

(
T, (yk)k∈T

)
with T 3 i if and only if yi ≥ δiv

S
i , where vS

i ≡ H
pS (1−δS)

1−δi
pS

i v (S) for i ∈ S. In σ,
every proposer offers the full coalition at any round. We want to show that σ is an SSPE. The
stationarity obviously holds. Take any S ∈ S. Player i’s payoff at a round with state S by σ is

pS
i

(
v (S)−∑

k∈S\{i} δkv
S
k

)
+

∑
k∈S\{i} pS

k δiv
S
i , which is equal to vS

i by the definition of vS
i . Thus,

each player’s responding actions of σ are unimprovable. At player i’s proposing node at a round
with state S, player i’s gain by one deviation from σ to offering proposal to be accepted with
coalition T ⊂ S is at most


v (T )−

∑

k∈T\{i}
δkv

S
k


−


v (S)−

∑

k∈S\{i}
δkv

S
k




= v (T )− A
(
pS

T

) |T | HpS (1− δS)

HpT |S (1− δT )
v (S)− (

1− A
(
pS

T

) |T |) HpS (1− δS) v (S) ,

which is less than or equal to 0 by (1). At the node, player i’s gain by one deviation from σ to

offering a proposal to be rejected is δiv
S
i −

(
v (S)−∑

k∈S\{i} δkv
S
k

)
= −HpS (1− δS) v (S) < 0.

Thus, each player’s proposing actions of σ are unimprovable. From the argument above, the One
Deviation Principle implies that σ is an SPE. Q.E.D.

B. Proof of Theorem 1

Proof. (Necessity) Prove the contraposition. Suppose that there exists S ∈ C \ {N} such that
v (S) > 0. For i ∈ N and x ∈ (0, 1), let

δi (x) ≡
{

1−√1− x2 if i ∈ S

x if i ∈ N \ S.

Let δ (x) ≡ (δk (x))k∈N and δS (x) ≡ (δk (x))k∈S. Then,

HpN (1− δ (x))

HpS|N (1− δS (x))
=

{∑
k∈S pN

k

√
1− x2

−1
+

∑
k∈N\S pN

k (1− x)−1
}−1

√
1− x2

=
1

∑
k∈S pN

k +
(∑

k∈N\S pN
k

) √
1−x2

1−x

.

Notice that limx→1

√
1−x2

1−x
= limx→1

x√
1−x2 = +∞ by L’Hôpital’s Rule. Then,

lim
x→1

HpN (1− δ (x))

HpS|N (1− δS (x))
= 0.
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Thus, limx→1 L (δ (x) , N, S) = 0. Notice that v(S)

A(pN
S )

A(pN )
|S|

> 0. Then, there exists x̄ ∈ (0, 1) such that

for all x > x̄, L (δ (x) , N, S) < v(S)

A(pN
S )

A(pN )
|S|

. Now, take any ε > 0. Let x̂ ≡ max

{
x̄,

√
max

{
1− ε2

n
, 0

}}
.

Obviously, x̂ ∈ (0, 1). Take an x∗ ∈ (x̂, 1). Consider δ (x∗). Note that

||δ (x∗)− 1|| =
√
|S| (1− x2∗) + (n− |S|) (1− x∗)

2 <
√

n (1− x2∗)

<
√

n (1− x̂2) ≤
√

n

(
1−max

{
1− ε2

n
, 0

})
≤ ε.

Since x∗ > x̂ ≥ x̄, we have L (δ (x∗) , N, S) < v(S)

A(pN
S )

A(pN )
|S|

. Thus, from Lemma 1, G (δ (x∗)) is not

subgame efficient. Hence, G is not limit subgame efficient.
(Sufficiency) Suppose that v (S) = 0 for all S ∈ C \ {N}. Then, for any (δk)k∈N ∈ (0, 1)n, for

any S ∈ S = {N} and any T ∈ C such that T ⊂ S, (1) holds. Thus, from Lemma 1, for any
δ ∈ (0, 1)n, G (δ) is subgame efficient. Hence, G is limit subgame efficient. Q.E.D.

C. Proof of Theorem 2

Proof. For any S ∈ S and T ∈ C such that T ⊂ S, for any δ ≡ (δk)k∈N ∈ ∆,

HpS

(
1− f−∆,S (δ1)

)

HpT |S
(
1− f+

∆,T (δ1)
) v (S)

|S| +

(
1∑

k∈T pS
k

− 1

)
HpS (1− δS)

v (S)

|S|

≤ L (δ, S, T ) ≤ HpS

(
1− f+

∆,S (δ1)
)

HpT |S
(
1− f−∆,T (δ1)

) v (S)

|S| +

(
1∑

k∈T pS
k

− 1

)
HpS (1− δS)

v (S)

|S|

holds, where δS ≡ (δk)k∈S. Since ∆ is limit-equivalent,

lim
δ1→1

HpS

(
1− f−∆,S (δ1)

)

HpT |S
(
1− f+

∆,T (δ1)
) = lim

δ1→1

H
pS(1−f−∆,S(δ1))

1−δ1

H
pT |S(1−f+

∆,T (δ1))
1−δ1

= 1.

Similarly, limδ1→1
H

pS(1−f+
∆,S(δ1))

H
pT |S(1−f−∆,T (δ1))

= 1. Thus, for any S ∈ S and T ∈ C such that T ⊂ S, for any

r > 0, there exists ε > 0 such that for all δ ∈ Bn
ε (1) ∩∆,

v (S)

|S| − r ≤ L (δ, S, T ) ≤ v (S)

|S| + r. (6)

(On (i)) Prove the contraposition. Suppose that v(S)
|S| < v(T )

A(pS
T )

A(pS)
|T |

for some S ∈ S and T ∈ C such

that T ⊂ S. Then, there exists ρ ∈ R such that 0 < ρ < v(T )

A(pS
T )

A(pS)
|T |
− v(S)

|S| . Take v(T )

A(pS
T )

A(pS)
|T |
− v(S)

|S| −ρ > 0
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as r of (6). Then, there exists ε > 0 such that for any δ ∈ Bn
ε (1) ∩∆, L (δ, S, T ) ≤ v(T )

A(pS
T )

A(pS)
|T |
− ρ.

Thus, there exists ε > 0 such that for any δ ∈ Bn
ε (1) ∩ ∆, L (δ, S, T ) < v(T )

A(pS
T )

A(pS)
|T |

by ρ > 0.

Therefore, there exists ε > 0 such that for any δ ∈ Bn
ε (1)∩∆, G (δ) is not subgame efficient. This

implies that G is not limit subgame efficient on ∆.
(On (ii)) Take any S ∈ S and any T ∈ C such that T ⊂ S. Take v(S)

|S| − v(T )

A(pS
T )

A(pS)
|T |

> 0 as r of (6).

Then, there exists ε (S, T ) > 0 such that for any δ ∈ Bn
ε(S,T ) (1) ∩∆, L (δ, S, T ) ≥ v(T )

A(pS
T )

A(pS)
|T |

. Since

{(S, T ) ∈ S× C | S ⊃ T} is finite, function ε has a minimizer. Let ε∗ be the minimum of ε. By

definition, for all δ ∈ Bn
ε∗ (1), for all S ∈ S and all T ∈ C such that T ⊂ S, L (δ, S, T ) ≥ v(T )

A(pS
T )

A(pS)
|T |

.

Lemma 1 implies that for all δ ∈ Bn
ε∗ (1) ∩ ∆, G (δ) is subgame efficient. Therefore, G is limit

subgame efficient on ∆. Q.E.D.
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