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Abstract

This paper analyzes, through Monte Carlo experiments, the robustness of several panel unit
root tests to different specifications of the cross-sectional dependence. Since results show that
the miss-specification of cross-correlation crucially affects the properties of the tests, a
graphical approach is suggested in order to determine the model of dependence which is
likely to have generated the original data.
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1 Introduction

In recent years, the issue of testing for unit root in panel data has been a
much debated topic. The literature about the development of such tests was
initially based upon the assumption of cross-sectional independence between
the units and it produced the so called ”first generation panel unit root
tests”. However, in several empirical applications, this assumption is likely
to be violated and O’Connell (1998) showed that not considering the possible
dependence between units could introduce severe bias in the first generation
panel unit root tests. Hence researchers were interested in developing tests
invariant with respect to the cross-sectional dependence, the so called ”second
generation unit root tests”.

The main problem behind such testing procedures is that cross-sectional
dependence can be specified in several ways. Therefore, assuming a particular
model for cross-correlation, could lead to a miss-specification of the original
DGP which may influence the properties of panel unit root tests, as argued
by Breitung and Pesaran (2005).

The aim of this paper is just to analyze the robustness of several panel unit
root tests to the different specifications of the cross-sectional dependence.
This is not an unimportant issue, since, as argued by Breitung and Pesaran
(2005), ”the application of factor models in the case of weak correlation
does not yield valid testing procedures” (p. 24). Furthermore, a graphical
approach is suggested to determine the model of dependence which is likely
to have generated the original data.

Hence, Section 2 is about the presentation of different cross-sectional
models whereas Section 3 deals with the consequence on panel unit root
tests of a dependence miss-specification, investigated through a Monte Carlo
experiment. Finally, Section 4 presents a graphical analysis which could help
to determine the kind of dependence which affected the data.

2 Specifications of the cross-section depen-

dence

Cross-correlation in a panel data may be due to a variety of factors. Above
all in presence of macro-economic data, the variables may be influenced by
observed common factors, spatial spill over effects, unobserved common fac-
tors, or general residual interdependence that could remain even when all the
observed and unobserved common effects are taken into account. Starting
from the expression

zit = φizi,t−1 + uit (1)
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one of the most general specification for cross-correlation in the error term
uit can be written as:

uit = γ′ift + vit or ut = Γ′ft + vt (2)

where ft is a K×1 vector of serially uncorrelated random common factors and
Γ is a N ×K matrix of random factor loadings defined by Γ = (γ1, . . . , γN)′1.
Without loss of generality, it is assumed that the covariance matrix of ft is
IK and that ft and vit are independently distributed.

Hence, the structure of cross-correlation is described by the covariance
matrix of the composite error ut which, under the above assumptions, is
given by:

Ωu = E(utu
′
t) = ΓΓ′ + Ωv (3)

where Ωv could be diagonal (strict factor model) or not (approximate factor
model). These specifications are usually named ”strong dependence” in or-
der to distinguish them from the ”weak dependence” case which rules out
the presence of unobserved common factors (that is, for a weak dependence
specification, Ωu = Ωv).

3 Panel unit root tests and miss-specification

of the cross-correlation

Second generation panel unit root tests assume one of the three specifica-
tions previously introduced. Actually, only Bai and Ng (2004) developed a
test based on an approximate factor model. However their test requires large
panels, with the power only favorably affected when T is increased. There-
fore, the robustness of testing procedures to different specifications of the
dependence will be investigated only for the trob test provided by Breitung
and Das (2005) and the tα and tβ proposed by Moon and Perron (2004). The
first is a robust version of Dickey-Fuller t-statistic under the assumption of
”weak dependence”. The second ones assume a strict factor model specifi-
cation and are based on eliminating the effect of cross-sectional dependence
by projecting the panel data onto the space orthogonal to the factor load-
ings. The estimation of the common factors, of the factor loadings and of
the choice of their number is very similar to the known procedure proposed
in Bai and Ng (2002)2.

1In the very particular case γ1 = · · · = γN = γ, the common factors components are
equal to γ′ft for all i. Hence thhey reduce to a conventional ”time effect” that can be
removed by subtracting the cross-sectional mean from the data.

2The maximum number of common factors allowed is fixed to 8.
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The 1000 Monte Carlo populations of N units and T observations are
generated according to expression (1) with φi = 1 for the size case and
φi = 0.98 for the power case3. The error terms uit are generated according
to the following specifications:
-DGP 1 (no cross-sectional dependence): uit ∼N (0,3);
-DGP 2 (weak dependence): ut = wtS

′ where wt ∼N (0,IN) and sij ∼Uni(0,
9/N );
-DGP 3 (strict 3-factors model): ut = Γ′ft+wt where fjt ∼N (0,1), γij ∼Uni(0,
6/K) with K=number of common factors;
-DGP 4 (approximate 3-factors model): ut = Γ′ft + vt where fjt ∼N (0,1),
γij ∼Uni(0, 6/K) and vt = wtS

′ where wt ∼N (0,IN) and sij ∼Uni(0, 3/N );
This particular choice of settings guarantees that in each case the ex-

pected values of the variance of uit is equal to 3 whereas the expected values
of the covariance between each couple of ij with i 6= j are 3/2 for DGP 2
and 4, and 3/4 for DGP 3.

It is seen (table 1) that the trob test provided by Breitung and Das (2005)
appears to be the most robust to the dependence specification: its estimated
sizes are indeed always close to the nominal level. Also its power is rather
satisfactory and increasing with N and T, even though in DGP 2 and 4 its
value is remarkably smaller than in the other cases.

The same robustness is not present in the tests based on a strict factor
structure. The empirical results show evident over-size problems for both
tα and tβ in all cases when N =10. When N>10, the size of both tests
approaches to the nominal level only in DGP 1 (no dependence) and 3 (strict
factor model), with a power significantly higher than the trob test in case of
strict factor specification. But when the assumption of strict factor model
does not hold, the estimated sizes remain clearly over the nominal level, even
with large N and T.

Looking at the last column of the table, which lists the mean number
of common factors estimated over the 1000 replications, it is possible to
appreciate the robustness of the number of factors selection procedure. In
case of strict factor model, it works quite properly when N is at least 20.
Instead, in case of approximate factor model, it tends to overestimate the
true number of common factors. As expected, in cases of DGP 3 and 4, the
procedure improves remarkably when N and T grows.

Concluding, it seems that simulation results confirm the suggestion of
Breitung and Pesaran (2005). When N = 10, the use of trob is recommended
due to its robustness to all the specifications. But when N > 10, the use
of tα and tβ in case of strict factor models guarantees good size accuracy

3Both tests are indeed optimal against the homogeneous alternative.
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and high power. Then, it is very important to detect which model generates
the cross-correlation in the data, in order to use the proper unit root tests.
Unfortunately, the procedure suggested by Bai and Ng (2002) does not work
properly when N and T are not enough large and when the common factors
assumption does not hold. In the next paragraph, a graphical approach is
introduced in order to determine the model of dependence which is likely to
have generated the original data.

4 IC function and the specification of cross-

section dependence

The estimates of the common factors and the factor loadings are obtained
through the principal components methods applied to the T × T matrix
ûû′, where û is the T ×N matrix of the OLS residuals from regression (1).
The choice of the number of common factors is treated as a model selection
problem and it is based on the optimization of an information criteria. Hence:

K̄ = argmin
r
{ln[tr(V̂ ′r V̂r)/NT ] + r · g(N, T )} (4)

where V̂r is the estimation of the matrix of residuals V with r factors and
g(N, T ) is the penalty term such that: g(N, T )→ 0 as N, T →∞.

Bai and Ng (2002) proved that, in case of strict or approximate common
factor structure, the principal components consistently estimate the common
factors and the factor loadings. Furthermore, they show that the minimiza-
tion of IC(·) consistently estimates the true number of common factors r.
Empirical simulations have shown that this method offers good performance
also in small samples.

But what happens when the data are characterized by weak dependence
or no dependence? Non trivial calculations show that:

tr(V̂ ′r V̂r) =
N∑

i=r+1

âi (5)

where âi is the i -th eigenvalue of the matrix û′û. Therefore:

IC(r) = ln(
N∑

i=r+1

âi) + r · g(N, T ) (6)

IC(r)− IC(j) = ln

(∑N
i=r+1 âi∑N
i=j+1 âi

)
+ (r − j) · g(N, T ) (7)
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Bai and Ng (2002) proved that, in case of factors models (approximate or
strict), this quantity is asymptotically bigger than 0 whenever j = K and
r 6= K. When, instead, weak dependence (or no dependence) affects the
data, we have:

lim
T→∞

[IC(r)− IC(j)] = ln

(∑N
i=r+1 ai∑N
i=j+1 ai

)
+ (r − j) · g(N, T ) (8)

since û′û is a consistent estimate of the matrix TΩu
4. The first term is smaller

than zero whereas the second is bigger than zero, hence this quantity can be
either positive or negative. If now T →∞ is followed by N →∞, given that
the eigenvalues of Ωu are bounded as N → ∞ as argued by Breitung and
Pesaran (2005), we have:

lim
N→∞

{ lim
T→∞

[IC(r)− IC(j)]} = 0 (9)

Therefore, we can conclude that when a factor structure is wrongly assumed,
the IC(·) function assumes asymptotically a constant value and then it does
not have a minimum. To analyze the behavior of the function in small
samples, we can perform another Monte Carlo experiment in which the path
of IC(r) for 1 < r < (N − 1) is analyzed considering the four different
specifications for the cross-sectional dependence of ut previously introduced.
On this subject, the figures 1, 2, 3, 4, 5, 6 and 7 report the paths of the
averages of IC(r) obtained over 1000 Monte Carlo replications. As suggested
in several applications, the penalty term used for the simulations is:

g(N, T ) =
N + T

NT
ln

(
NT

N + T

)
(10)

It is seen that the behavior of IC(·) functions differ depending on the depen-
dence specification. Starting from the case of no dependence (DGP 1), the
path of IC(·) is convex. In particular, it is strictly decreasing when N =10
and firstly increasing and then decreasing when N>10. In line with the re-
sults of table 1, this means that imposing rmax = 8, the procedure tends to
select in general K̂ = 1.

In case of weak dependence (DGP 2), the path of IC(·) is decreasing, at
least for N<40. Hence, again in accordance with table 1, the procedure tends
to choose K̂ = rmax when N<40, K̂ = 1 when N =80, whereas when N =40
the possible presence of local minimum in the first values of the function
makes the expected behavior of the selection process highly unpredictable.

4In case of no dependence, the N eigenvalues ai are the variances of ui
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It is not worthless to notice how the IC(·) paths for DGP 1 and DGP 2
differ in their final part: in both cases they are indeed decreasing but with a
deeper intensity in the case of weak dependence.

When a factors structure affects the data, the shape of the IC function
in its first values is remarkably different. As expected, in case of DGP 3 it
has a local minimum in r = K when N is at least 20, whereas the remaining
path is similar to that of DGP 1. Instead, in case of DGP 4 it has a change
of slope in r = K + 1 which becomes a local minimum when N =80 whereas
the remaining path is similar to that of DGP 2.

Therefore, above all when N is not big enough, the analysis of the path of
IC function could help to determine the model of dependence which affected
the actual data. A presence of a local minimum or a change of slope in its
first values points out the presence of a common factors structures in the
data. The possible cross-correlation in the idiosyncratic component could
instead be investigated by the analysis of the last part of the IC(·) path. If
it is firstly increasing and then decreasing, it is likely to assume independence
in the idiosyncratic term. Whereas, if it is decreasing with an high negative
slope in its final part, it could be better to assume cross-sectional dependence
in the idiosyncratic component.

5 Conclusion

In this paper, a Monte Carlo experiment shows the consequences of miss-
specification of the cross-sectional specification on several panel unit root
tests. Results confirm the hint of Breitung and Pesaran (2005), highlighting
size bias when miss-specification of the dependence arises, above all for the
tests which assumes strict factors models.

Therefore, the determination of cross-sectional model becomes crucial in
the choice of panel unit tests. Another Monte Carlo experiment suggests that
the graphical analysis of IC path could be useful in order to determine the
kind of dependence. This will help to choose the proper and most powerful
panel unit root tests.

6



References

Bai, J. and S. Ng (2002), ”Determining the number of common factors in
approximate factor model”, Econometrica, 70, 191-221.

Bai, J. and S. Ng (2004), ”A PANIC attack on Unit Roots and Cointegra-
tion”, Econometrica, 72, 1127-1177.

Breitung, J. and S. Das (2005), ”Panel Unit Root tests under Cross-Sectional
Dependence”, Statistica Neerlandica, 59, 414-433.

Breitung, J. and M.H. Pesaran (2005), ”Unit Roots and Cointegration in
Panels”,IEPR Working Papers 05.32, Institute of Economic Policy Research
(IEPR), revised.

Moon, R. and B. Perron (2004), ”Testing for Unit Root in Panels with Dy-
namic Factors”, Journal of Econometrics, 122, 81-126.

O’Connell, P. (1998) ”Overvaluation of Purchasing Power Parity”, Journal
of International Economics, 44, 1-19.

7



Table 1: Size and power of 5% panel unit root tests for different specifications
of the cross-sectional dependence

size power
N T DGP tα tβ trob tα tβ trob K̄
10 50 1 15.6 26.3 4.0 60.5 66.6 66.9 8.0

2 30.1 34.1 5.5 68.5 68.3 20.9 8.0
3 23.0 33.0 5.8 68.2 73.7 31.8 8.0
4 31.0 38.6 6.4 72.0 72.7 20.5 8.0

100 1 22.1 25.0 4.5 88.0 85.4 97.6 8.0
2 36.2 35.8 5.7 89.2 83.2 33.7 8.0
3 26.8 30.3 4.3 90.5 87.0 53.4 8.0
4 34.0 34.1 5.2 90.3 85.8 30.3 8.0

20 50 1 2.1 6.7 3.3 92.9 95.7 93.2 1.0
2 25.7 40.0 6.1 87.9 91.4 26.9 8.0
3 3.5 10.7 5.8 94.3 96.4 37.2 2.6
4 26.7 40.5 6.9 88.1 91.0 23.5 8.0

100 1 4.6 7.9 5.1 100.0 100.0 100.0 1.0
2 26.8 33.7 5.0 99.2 98.7 35.5 8.0
3 5.9 8.2 6.3 100.0 99.9 58.7 2.7
4 26.9 33.1 6.6 99.4 99.1 35.1 8.0

40 50 1 0.9 5.1 2.6 100.0 100.0 99.9 1.0
2 24.0 35.0 6.6 97.4 98.5 29.7 5.1
3 2.1 9.8 5.5 99.7 99.9 45.2 2.9
4 32.1 46.0 7.2 97.2 98.5 21.4 7.2

100 1 3.1 5.7 3.6 100.0 100.0 100.0 1.0
2 28.4 34.9 9.0 100.0 100.0 42.8 5.4
3 3.2 8.0 6.4 100.0 100.0 60.8 3.0
4 30.5 37.2 7.4 100.0 100.0 37.9 7.3

80 100 1 1.1 4.2 2.4 100.0 100.0 100.0 1.0
2 12.1 17.4 7.7 100.0 100.0 47.5 1.1
3 3.5 9.1 8.7 100.0 100.0 66.6 3.0
4 25.0 31.9 8.7 100.0 100.0 42.8 4.2

Notes: the DGPs are generated according to the expressions (1) with φi=1 ∀i in the size
case and φi = 0.98 for the power case. The residuals uit are defined as:
DGP 1 (no cross-sectional dependence): uit ∼N (0,3);
DGP 2 (weak dependence): ut = wtS

′ where wt ∼N (0,IN ) and sij ∼Uni(0, 9/N );
DGP 3 (strict 3-factors model): ut = Γ′ft + wt where fjt ∼N (0,1), γij ∼Uni(0, 6/K)
with K=number of common factors;
DGP 4 (approximate 3-factors model): ut = Γ′ft + vt where fjt ∼N (0,1), γij ∼Uni(0,
6/K) and vt = wtS

′ where wt ∼N (0,IN ) and sij ∼Uni(0, 3/N )
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Figure 1: Path of IC(r) function for 1 < r < (N − 1) when N=10 and T=50
(DGP as in table 1)

Figure 2: Path of IC(r) function for 1 < r < (N−1) when N=10 and T=100
(DGP as in table 1)
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Figure 3: Path of IC(r) function for 1 < r < (N − 1) when N=20 and T=50
(DGP as in table 1)

Figure 4: Path of IC(r) function for 1 < r < (N−1) when N=20 and T=100
(DGP as in table 1)
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Figure 5: Path of IC(r) function for 1 < r < (N − 1) when N=40 and T=50
(DGP as in table 1)

Figure 6: Path of IC(r) function for 1 < r < (N−1) when N=40 and T=100
(DGP as in table 1)

11



Figure 7: Path of IC(r) function for 1 < r < (N−1) when N=80 and T=100
(DGP as in table 1)

Figure 8: Zoom in of figure 7
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