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Abstract

A general class of adaptive strategies in Hart and Mas−Colell (2001) may be extended to
conditional strategies in the same way as smooth fictitious play in Fudenberg and Levine
(1999). We show that a generalized version of universal conditional consistency (UCC)
obtains for conditional adaptive strategies under some assumption.
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1 Introduction

We show that a general class of adaptive strategies in Hart and Mas-Colell (2001)

may be extended to conditional strategies in the same way as smooth fictitious play

in Fudenberg and Levine (1999), and a “classwise generalization” of universal condi-

tional consistency (abbreviated to UCC) obtains for conditional adaptive strategies

under some assumption, as it does for conditional smooth fictitious play (Fudenberg

and Levine (1999) and Noguchi (2000) and (2002)).

Hart and Mas-Colell (2001) shows a general class of adaptive strategies which

has the property of universal consistency by generalizing Blackwell’s approacha-

bility theorem; we say universal consistency because the consistency criterion is

passed against all opposing strategies. On the other hand, Fudenberg and Levine

(1999) extend smooth fictitious play to conditional one by introducing learning rules

called “classification rules,” taking into consideration the case in which a player has

a sophisticated ability of learning regularities of opponent strategies. Then, they

generalize universal consistency in Fudenberg and Levine (1995) to “universal con-

ditional consistency” for conditional smooth fictitious play. Furthermore, Noguchi

(2000) and (2002) generalizes their UCC theorem to a classwise version for smooth

fictitious play. (Generalized) UCC is quite useful to show that a player’s strategy

is a sophisticated learning procedure. Noguchi (2000) makes use of (generalized)

UCC to show that conditional smooth fictitious play passes strong time-average op-

timality criteria for many opposing strategies. Moreover, Noguchi (2002) shows that

generalized UCC implies the same wide range no-regret property as Lehrer (2003)

obtains.

Smooth fictitious play is not included in the Hart and Mas-Colell’s general class

of adaptive strategies, but it may be arbitrarily approximated by adaptive strategies,

as Hart and Mas-Colell point out. This fact leads us to infer that adaptive strategies

in the Hart and Mas-Colell’s sense may also be extended to conditional ones, and

that those have the generalized property of universal conditional consistency. The

purpose of this paper is to show it is correct at least under some assumption.

The paper is organized as follows. In Section 2 we shall give the basic model

and define conditional adaptive strategies. In Section 3 we shall show a classwise

generalization of universal conditional consistency for conditional adaptive strategies

under some assumption. Section 4 concludes.
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2 The Model

2.1 The basic model and notations

We focus on one player who plays an infinitely repeated game against one opponent.

The player’s payoff at a stage game is denoted by u(a, y), where a is a player’s

action in a finite set A and y is an opponent’s action in a finite set Y . Let ∆(S)

denote the set of all mixed actions over S. Let u(λ, π) denote the player’s expected

payoff obtained by playing mixed actions λ ∈ ∆(A) and π ∈ ∆(Y ). A finite history

of actions (up to time T ) is denoted by hT := (a1, y1 · · · , aT , yT ) and an infinite
history of actions is denoted by h∞ := (a1, y1, a2, y2, · · · ). The set of all finite

histories, including the null history h0 := ∅, is denoted by H, and H∞ is the set of

all infinite histories. We denote a behavior strategy of a player by σ : H → ∆(A),

and a behavior strategy of an opponent by ρ : H → ∆(Y ). We write µ(σ,ρ) for the

stochastic process on H∞ induced by playing σ and ρ.

2.2 Conditional adaptive strategies and classification rules

We shall extend adaptive strategies in Hart and Mas-Colell (2001) to conditional

strategies. In this paper we focus on a stationary regret-based action Φ : RA →
∆(A):1 (i) there exists a continuously differentiable function P : RA → R such

that Φ(x) is positively proportional to the derivative ∂P (x) for all x /∈ RA
− and (ii)

Φ(x) · x > 0 for all x /∈ RA
−.

2 P is called a potential of Φ.

First of all, we shall define an important concept: classification rules. Classifi-

cation rules, introduced as learning rules by Fudenberg and Levine (1999), classify

observed samples into categories. Formally, a classification rule R is defined as a

partition of H ×A,3 and an element in R is called a category, denoted by γ; thus, a

category γ may be considered as a subset ofH×A. If a realized history (ht−1, at) ∈ γ,

we say that time t is a γ−effective period or γ is effective at time t; given an infinite
history, each period has exactly one effective category because a classification rule

is a partition of H × A. Given a history hT , let nγT denote the number of times
that γ has been effective up to time T , and Dγ

T denote the empirical distribution of

opponent actions observed in γ−effective periods up to time T .

1Hart and Mas-Colell (2001) call it a stationary regret-based strategy.
2A also denotes the cardinality of itself. RA is an A−dimensional Euclidean space. RA− := {x ∈

RA | x[a] ≤ 0 for all a ∈ A}.
3Fudenberg and Levine (1999) define a classification rule as a function fromH×A to a countable

set of categories. But their definition is equivalent to ours.
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If a player knew in advance that the current period, say time T , was γ−effective,
then he would pick up observed regret vectors gt := (u(b, yt) − u(at, yt))b∈A in past
γ−effective periods, and obtain the conditional average ḡγT−1 of regret vectors on γ

up to time T − 1: ḡγT−1 :=
P

(ht−1,at)∈γ
1≤t≤T−1

gtÁnγT−1. Thus, he would take its stationary

regret-based action Φ(ḡγT−1) at time T . However, an effective category may be

endogenous in the sense that which category is effective in the current period may

depend on which player’s action is realized in the current period. Then, we define

conditional adaptive strategy σ on R by extending the fixed point argument in

Fudenberg and Levine (1999). We first assume a weight function w : H → RA
+; we

will precisely define it in the Appendix.4 Then, let hT−1 is a realized past history

up to the last period. Let γa be the category that is effective at time T if a is

realized at time T : (hT−1, a) ∈ γa. Then, for each a ∈ A, a player obtains ḡγaT−1 and

Φ(ḡ
γa
T−1). Let Z be the matrix in which each column consists of a weighted action

w(hT−1)[a] · Φ(ḡγaT−1): Z := [w(hT−1)[a] · Φ(ḡγaT−1)]a∈A. Note that the magnitudes of
w(hT−1)[a]’s may be different. Thus, let J be the matrix whose diagonal elements

are w(hT−1)[a]’s, and whose off-diagonal elements are all zero. Then, we always find

out a mixed action λ∗ ∈ ∆(A) such that Zλ∗ = Jλ∗.5 Finally, the player takes

σ(hT−1) := λ∗ at time T . We call the procedure conditional (weighted) adaptive
strategy on R.

2.3 Class

A subset of H×A will also be called a class, denoted by β. When a realized history

(ht−1, at) ∈ β, we say that time t is a β−active period, or that β is active at time
t. A class indicates periods when payoffs are evaluated. Given a history hT , let n

β
T

denote the number of times that β has been active up to time T , and Dβ
T denote the

empirical distribution of opposing actions observed in β−active periods up to time
T .

4RA+ := {x ∈ RA | x[a] ≥ 0 for all a ∈ A}.
5Let ϕ(λ) := J−1Zλ

b∈A(J
−1Zλ)[b] . It is a continuous function from ∆(A) to ∆(A). By the fixed point

theorem, there exists a fixed point λ∗ of ϕ. Then, Zλ∗ = αJλ∗, where α =
P

b∈A(J
−1Zλ∗)[b].

Note that
P

b∈A(Zλ
∗)[b] =

P
a∈A w(hT−1)[a]λ

∗[a] =
P

b∈A(Jλ
∗)[b]. Thus, α = 1. Therefore,

Zλ∗ = Jλ∗. Hart and Mas-Colell (2000) call this type of procedure eigenvector procedures.
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3 Universal classwise conditional consistency

3.1 Definition and main result

We shall generalize universal conditional consistency in Fudenberg and Levine (1999)

to a classwise version for adaptive strategies. Let us first define classwise condi-

tional consistency for a countable set Ω of classes; Ω is always countable in the

following. The criterion requires that conditional consistency hold in active peri-

ods of any class in Ω (if that class is active infinitely many times). To define it

precisely, when a realized history (ht−1, at) ∈ β
T

γ, i.e., both β is active and γ

is effective at time t, we say that time t is βγ−effective. Given a history hT , let
nβγT denote the number of βγ−effective periods up to time T , and Dβγ

T denote the

empirical distribution of opponent actions observed in βγ−effective periods up to
time T . Let Ūβ

T designate time-average payoff in β−active periods (up to time
T ): Ūβ

T :=
P

(ht−1,at)∈β
1≤t≤T

u(at, yt)ÁnβT . The maximum payoff against π is given by

V (π) := maxa u(a, π).

Definition 1 We say that conditional (weighted) adaptive strategy σ on R passes

classwise conditional consistency for Ω against ρ, if for all β ∈ Ω, if nβT → ∞ as

T →∞, then

lim sup
T→∞

X
γ∈R

nβγT
nβT
V (Dβγ

T )− Ūβ
T ≤ 0, µ(σ,ρ) − a.s.

When Ω = {H ×A}, classwise conditional consistency is reduced to conditional
consistency. To obtain universal classwise conditional consistency, we impose two

assumptions on R and Ω. The first assumption requires that a classification rule be

eventually finer than any class.

Assumption (A1) For all h∞ ∈ H∞ and all β ∈ Ω, there exists T0 such that for

all γ ∈ R, either

for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) ∈ β,

or for all T ≥ T0, if (hT−1, aT ) ∈ γ, then (hT−1, aT ) /∈ β.

The second one requires that the number of effective categories grow quite slowly

in active periods of any class. Given a history hT , let K
β
T denote the number of

categories that have been effective in β−active periods (up to time T ).
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Assumption (A2) For all h∞ ∈ H∞ and all β ∈ Ω, if nβT →∞ as T →∞, then

lim
T→∞

Kβ
T

nβT
= 0.

When Ω = {H×A}, Assumption (A1) is automatically satisfied and Assumption
(A2) is reduced to Assumption 1 in Fudenberg and Levine (1999). Assumptions (A1)

and (A2) may be natural requirements about a classification rule and a countable set

of classes, but the following last assumption about a stationary regret-based action

Φ is rather restrictive.

Assumption (B1) A potential P of Φ satisfies that ∂P (x)·x ≥ P (x) for all x /∈ RA
−.

lp−potentials (1 < p < ∞) and separable potentials with a monotone property
are typical examples that satisfy Assumption (B1).6 We shall show that under the

assumptions above, conditional (weighted) adaptive strategy on R has universal

classwise conditional consistency for Ω.

Theorem Suppose that a classification rule R and a countable set Ω of classes

satisfy Assumptions (A1) and (A2) and a stationary regret-based action Φ satis-

fies Assumption (B1). Then, conditional weighted adaptive strategy σ on R has

universal classwise conditional consistency for Ω: σ passes classwise conditional

consistency for Ω against all opposing strategies.

3.2 Proof of Theorem

According to Lemma 2.3 in Hart and Mas-Colell (2001), any potential P of a sta-

tionary regret-based action Φ has the following property: there exists a constant

c0 such that P (x) > c0 for all x /∈ RA
− and P (x) = c0 for all x ∈ bd(RA

−).
7 Thus,

without loss of generality, we may assume that any potential P of Φ satisfies (P1)

∂P (x) is positively proportional to Φ(x) for all x /∈ RA
−, (P2) P (x) ≥ 0 for all x,

and (P3) P (x) = 0 if and only if x ∈ RA
−.

8 In order to obtain Theorem, it suffices

6lp(x) := (
P

a x+[a]
p)

1
p where x+[a] := max{0, x[a]}. Let {ψa}a∈A be continuous functions

from R to R such that ψa(z) = 0 for all z ≤ 0 and ψa(z) > 0 for all z > 0. Then, a separable

potential is defined as P (x) :=
P
a∈AΨa(x[a]), where Ψa(x[a]) :=

R x[a]
−∞ ψa(z)dz for all a ∈ A.

For example, when {ψa}a are non-decreasing, ∂P (x) · x ≥ P (x) for all x /∈ RA−. See Hart and
Mas-Colell (2001) for more examples.

7bd(RA−) is the boundary of RA−: bd(RA−) = {x ∈ RA | x[a] ≤ 0 for all a ∈ A, and x[a] = 0 for
some a ∈ A}.

8Let P̃ (x) := (P (x)− c0)2 if x /∈ RA− and P̃ (x) := 0 if x ∈ RA−. Then, P̃ is a potential of Φ and
satisfies (P1), (P2) and (P3).
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to show two lemmas. We first extend an important result in Hart and Mas-Colell

(2001) to a classwise conditional version: conditional average of P in active periods

of any class converges to zero.

Lemma 1 Suppose that a classification rule R and a countable set Ω of classes

satisfy Assumptions (A1) and (A2), and a stationary regret-based action Φ satisfies

Assumption (B1). Then, conditional weighted adaptive strategy σ on R has the

following property: for all ρ and all β ∈ Ω, if nβT →∞ as T →∞, then

lim
T→∞

X
γ∈R

nβγT
nβT
P (ḡβγT ) = 0, µ(σ,ρ) − a.s.

where ḡβγT is the conditional average of regret vectors on βγ up to time T : ḡβγT :=P
(ht−1,at)∈β∩γ

1≤t≤T
gtÁnβγT .

Proof. See the Appendix.

The key is that the above lemma induces classwise conditional consistency.

Lemma 2 If limT→∞
P

γ∈R
n
βγ
T

n
β
T

P (ḡβγT ) = 0, then classwise conditional consistency

obtains:

lim sup
T→∞

X
γ∈R

nβγT
nβT
V (Dβγ

T ) −
1

nβT

X
(ht−1,at)∈β

1≤t≤T

u(at, yt) ≤ 0.

Proof. We may assume that the domain of P is bounded because the range of

regret vectors are bounded; thus P is uniformly continuous. Then, (P2) and (P3)

imply that for all ε > 0 there exists δε > 0 such that P (x) < δε ⇒ maxa x[a] < ε.

Given a history hT , let Rβ
T (P ; δ) := {γ ∈ R | P (ḡβγT ) < δ}. Then, it follows from the

assumption that for all δ, η > 0 there exists Tδη such that
P

γ∈Rβ
T (P ;δ)

n
βγ
T

n
β
T

≥ 1 − η

for all T ≥ Tδη.
Take any ε > 0. Let δ∗ := δ ε

2
and η∗ := εÁ4ū, where ū := maxa,y | u(a, y) |.

Then, for all T ≥ Tδ∗η∗ ,
P

γ∈Rβ
T (P ;δ∗)

nβγT
n
β
T

≥ 1 − η∗. Note that for all T ≥ Tδ∗η∗,

all γ ∈ Rβ
T (P ; δ

∗), and all a ∈ A, ḡβγT [a] = u(a,Dβγ
T ) − Ūβγ

T < ε
2
, where Ūβγ

T :=P
(ht−1,at)∈β∩γ

1≤t≤T
u(at, yt)ÁnβγT . Thus, for all T ≥ Tδ∗η∗ and all γ ∈ Rβ

T (P ; δ
∗), V (Dβγ

T )−
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Ūβγ
T < ε

2
. Therefore, for all T ≥ Tδ∗η∗

X
γ∈R

nβγT
nβT
V (Dβγ

T )−
1

nβT

X
(ht−1,at)∈β

1≤t≤T

u(at, yt)

=
X

γ∈Rβ
T (P ;δ∗)

nβγT
nβT
[V (Dβγ

T )− Ūβγ
T ] +

X
γ /∈Rβ

T (P ;δ∗)

nβγT
nβT
[V (Dβγ

T )− Ūβγ
T ]

≤ ε

2
+

ε

4ū
2ū

≤ ε.

Proof of Theorem. It is immediate from Lemmas 1 and 2. ¥

4 Concluding Remark

We conclude with giving a remark. We have shown universal classwise conditional

consistency by imposing some assumption (i.e., Assumption (B1)) on a stationary

regret-based action. However, we may conjecture that universal classwise condi-

tional consistency obtains without Assumption (B1). Indeed, Noguchi (2003) shows

generalized UCC obtains (without Assumption (B1)) in an uncalibrated case that a

classification rule and classes do not depend at all on player’s current actions.

Appendix

Proof of Lemma 1. We may assume that the domain of P is bounded because

the range of regret vectors are bounded; thus, ∂P is uniformly continuous. Let

Sβ
T :=

P
γ∈R

nβγT
nβT
P (ḡβγT ). We define a random variable XT [β](h∞) as

XT [β](h∞) := n
β
TS

β
T − nβT−1S

β
T−1 − cβγnβγT − o

βγ

n
βγ
T

, if (hT−1, aT ) ∈ β,

XT [β](h∞) := 0, otherwise

where cβγ
nβγT

:= (∂P (ḡβγT−1)−∂P (ḡγT−1))·gT , oβγnβγT := nβγT (P (ḡ
βγ
T )−P (ḡβγT−1))−∂P (ḡβγT−1)·

(gT − ḡβγT−1), and γ is the effective category at time T , i.e., (hT−1, aT ) ∈ γ. Note that

oβγm uniformly converges to 0 as m→∞.
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Let X̄T [β] :=
1

nβT

PT
t=1Xt[β] and [X̄T ]+(h∞)[β] := max{0, X̄T (h∞)[β]}. Take any

probability distribution p = (pβ)β on Ω such that pβ > 0 for all β ∈ Ω. Then, we

define a weight function w : H → RA
+ as follows:

w(hT )[a] := (
X

β3(hT ,a)

pβ · [X̄T ]+[β] · 1

nβT+1

) · (
X
b∈A

∂P (ḡ
γa
T )[b]), if ∃β ∈ Ω(β 3 (hT , a)),

w(hT )[a] := 0, otherwise

where γa is the category that is effective at time T +1 if a is realized at time T +1:

(hT , a) ∈ γa. Let h, i denote an inner product on L2.9 The product measure of µ(σ,ρ)

and p is denoted by µ× p.

Step 1: When (hT−1, aT ) ∈ β, it follows from (P3) and Assumption (B1) that

XT [β](h∞) = ∂P (ḡβγT−1) · (gT − ḡβγT−1) + P (ḡ
βγ
T−1) + o

βγ

n
βγ
T

− cβγ
n
βγ
T

− oβγ
n
βγ
T

≤ ∂P (ḡγT−1) · gT + cβγnβγT − c
βγ

nβγT

≤ ∂P (ḡγT−1) · gT .

Let δβT := nβT − nβT−1. Note that δ
β
T = 1 if β is active at time T , and δβT = 0

otherwise. Let Eµ[· | hT ] be conditional expectation on hT (with respect to µ(σ,ρ)).

Then, it follows from the inequality above, (P1), and the definition of conditional

weighted adaptive strategy that

Eµ[h[X̄T ]+,
δβT+1

nβT+1

XT+1i | hT ]

= Eµ[
X
β

pβ · [X̄T ]+[β] · 1

nβT+1

·XT+1[β] | hT ]

≤
X
a

X
y

σ(hT )[a] · ρ(hT )[y] · (
X

β3(hT ,a)

pβ · [X̄T ]+[β] · 1

nβT+1

· ∂P (ḡγaT ) · gT+1)

= u(Zσ(hT ), ρ(hT ))− u(Jσ(hT ), ρ(hT ))
= 0.

Step 2: Define [X̄T ]− := X̄T−[X̄T ]+ and projL2
−(X̄T )(h∞) := argminY ∈L2

− kX̄T (h∞)−
Y k.10 Then, projL2

−(X̄T ) = [X̄T ]− and h[X̄T ]+(h∞), [X̄T ]−(h∞)i = 0. Thus, letting

9hX, Y i := P
β pβ ·X[β] · Y [β] and L2 := {Y ∈ RΩ | P

β pβ · (Y [β])2 <∞}.
10L2− := {Y ∈ L2 | Y [β] ≤ 0 for all β ∈ Ω}.
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Eµ×p[·] be expectation with respect to µ×p, the second inequality in Step 1 implies

that

∞X
t=1

Eµ×p[(X̄t − projL2
−(X̄t)) · ( δ

β
t+1

nβt+1

(Xt+1 − projL2
−(X̄t)))]

=

∞X
t=1

Eµ[hX̄t − projL2
−(X̄t),

δβt+1

nβt+1

(Xt+1 − projL2
−(X̄t))i]

=
∞X
t=1

Eµ[h[X̄t]+, δ
β
t+1

nβt+1

Xt+1i]

≤ 0.

Therefore, we can apply a conditional version of the strong law of large numbers

(see Theorem 4 (and Corollary 1) in Lehrer (2002)), so that for all β ∈ Ω, if nβT →∞,
[X̄T ]+(β)→ 0, µ(σ,ρ) − a.s.
Step 3: Given a history hT , let Rβ

T (²) := {γ ∈ R | 1

n
βγ
T

≤ ²}. Then, Assumption
(A2) is equivalent to the following condition: (∗) for all h∞ ∈ H∞, if nβT →∞, then
for all ², η > 0, there exists T²η such that

P
γ∈Rβ

T (²)

nβγT
nβT
≥ 1 − η for all T ≥ T²η.

Thus, for all h∞ ∈ H∞, if nβT →∞, then

lim
T→∞

1

nβT

X
γ∈Rβ

T

n
βγ
TX

m=1

oβγm = lim
T→∞

X
γ∈Rβ

T

nβγT
nβT
[
1

nβγT

n
βγ
TX

m=1

oβγm ] = 0

where Rβ
T is the set of all categories that have been effective in β−active periods up

to time T .

Step 4: The range of regret vectors is bounded. It, together with Assumption (A1),

implies that there exists a constant C1 > 0 such that for any effective category γ in

β−active periods from time T0 on, kḡβγT − ḡγT k ≤ T0

nγT
· C1 for all T ≥ T0, where T0 is

a calendar time in Assumption (A1). Further, there exists C2 > 0 such that for all

γ and all T , | cβγ
nβγT

|≤ C2 · k∂P (ḡβγT−1)− ∂P (ḡγT−1)k. From these and Condition (∗) it
follows that for all h∞ ∈ H∞, if nβT →∞, limT→∞ 1

n
β
T

P
γ∈Rβ

T

Pn
βγ
T
m=1 c

βγ
m = 0.
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Step 5: Finally, from Steps 2, 3 and 4 it follows that for all β ∈ Ω, if nβT →∞,

lim sup
T→∞

X
γ∈R

nβγT
nβT
P (ḡβγT )

= lim sup
T→∞

[
1

nβT

TX
t=1

(nβt S
β
t − nβt−1S

β
t−1)−

1

nβT

X
γ∈Rβ

T

nβγTX
m=1

cβγm −
1

nβT

X
γ∈Rβ

T

nβγTX
m=1

oβγm ]

= lim
T→∞

X̄T [β]

≤ lim
T→∞

[X̄T ]+[β]

= 0, µ(σ,ρ) − a.s.

Further, by (P2), lim infT→∞
P

γ∈R
n
βγ
T

n
β
T

P (ḡβγT ) ≥ 0 for all h∞ ∈ H∞. Thus the

desired result obtains. ¥
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