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Abstract

Previous literatures take transaction costs as being negligible when analyzing the futures
basis behavior in linear dynamic framework. However, we argue that the relationship
between the futures and spot prices with the conventional linear cointegration approach may
not be appropriate after taking transaction costs into account. In this paper, an incorporation
of transaction costs presented by Dumas (1992) and Michael (1997) into the exponential
smooth transition autoregressive (ESTAR) model developed by Granger and Terasvita (1993)
is motivated to examine the dynamic relationship between daily gold futures and spot prices
and the nonlinear behavior of the gold futures basis. Transaction costs may lead to the
existence of neutral band for futures market speculation within which profitable trading
opportunities are impossible. Further, our results indicate that the ESTAR model provides
higher forecasting power than the linear AR(1) model.
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1. Introduction 
 

Recently, a large body of both theoretical and empirical research has been 
focusing on the dynamic equilibrium relationships between spot and futures prices of 
some financial derivatives. These studies were often motivated based on the effects of 
arbitrage in futures markets along the lines of models of the type developed by 
Garbade and Silber (1983), where traders induce movements in spot and futures 
prices such that the basis returns to a certain equilibrium level (e.g., see Kawaller, 
Koch, & Koch, 1987; Chan, 1992). However, an incorporation of transaction costs 
into the dynamic model done as in the papers by Dumas (1992) and Michael et al. 
(1997) may capture the nonlinear adjustment process for the basis series within and 
outside bands. 
    Threshold-type models of the type originally proposed by Tong (1990) are 
adopted to empirically characterize the behavior of the futures basis. These threshold 
models allow transactions costs to form bands within which no adjustments take place, 
so that deviations from the basis may display unit root behavior, while outside the 
band the process switches abruptly to become stationarily autoregressive. Dumas 
(1992) suggests that under certain restrictive conditions such as identical transactions 
costs, identical margin requirements and position limits, and homogeneity of agents, 
the jump to mean-reverting behavior will tend to smooth the transition between 
regimes. In examining nonlinear adjustments in real exchange rates, Michael et al. 
(1997) consider transaction costs in an exponential smooth transition autoregressive 
model and find strong evidence of mean-reverting behavior for PPP deviations. 
    Furthermore, some other studies on financial derivatives based on the 
cost-of-carry model have pointed out that there does exist the actual futures prices 
deviating from and even lower than their equilibrium prices, which is equivalently to 
assuming that the futures basis adjusts linearly toward its equilibrium value, but the 
existence of transaction costs makes it possible for the basis to adjust toward its 
equilibrium value nonlinearly rather than linearly. In investigating the dynamic 
behavior of the futures basis in stock index futures markets, Monoyios and Sarno 
(2002) conduct an empirical study which concentrates on the persistence of deviations 
of the futures basis from the equilibrium level implied by the cost-of-carry model, and 
find that nonzero transaction costs on trading the underlying asset of the futures 
contract may lead to the basis displaying a form of nonlinear mean reversion such that 
the basis becomes increasingly mean reverting with the size of the deviation from its 
equilibrium value. The reasoning behind nonlinear mean reversion of the basis is 
straightforward. Transactions costs create a band of no arbitrage for the basis, but the 
basis can stray beyond the thresholds. Once beyond the upper or lower threshold, the 
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basis becomes increasingly mean reverting with the distance from the threshold. 
Within the transactions costs band, when no trade takes place, the process driving the 
basis is divergent since arbitrage is not profitable. Hence, smooth rather than discrete 
adjustment may be more appropriate in the presence of proportional transaction costs, 
and time aggregation and nonsynchronous adjustment by heterogeneous agents are 
likely to result in smooth aggregate regime switching.   

Since the cost-of-carry model with transaction costs predicts that spot and futures 
prices co-move so that their long run equilibrium is defined by the futures basis, 
which implies that the basis is mean-reverting and that nonlinear models with 
transaction costs are more appropriate to characterize the equilibrium relationship 
between the futures price and the spot price than linear models. According to 
Monoyios and Sarno (2002), the basis should become increasingly mean reverting 
with the size of the deviation from the equilibrium level. Intuitively, several factors 
such as the existence of transaction costs and heterogeneity generate no arbitrage 
bands, thus implying that a law of motion for the basis is consistent with nonlinear 
adjustment toward equilibrium. Following the nonlinear models developed by 
Granger and Terasvirta (1993), Terasvirta(1994) along with transaction costs 
presented by Dumas (1992) and Michael et al. (1997), this paper examines the 
dynamic relationship between the futures price and spot price of gold and the 
nonlinear behavior of the gold futures basis. 

The rest of the paper is structured as follows. Section 2 presents the methodology. 
Section 3 analyzes the empirical results containing evaluation of forecasting 
performance. Section 4 concludes remarks.  

 
2. Methodology 

 
The no-arbitrage condition between the futures and spot prices of the gold 

implied by the cost-of-carry model with zero transaction cost is 

                                             (1) )])(exp[(, tTqrSF tTt −−=

where  is the futures price of the gold underlying a futures contract at time t that 

expires at time T,  is the price at time t on the spot market for the same gold, r is 

the ratio of cost of carry to spot price, and q is the convenience yield. Alternatively, 
the conventional version of the cost of carry model can be written in logarithm form 
as: 

TtF ,

tS

  ttt bSF ++= βα                                                    (2) 
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where  is the log of futures price,  is the log of spot price, and  is a 

stationary error term which denotes the log of the futures basis under the restrictions 

α= 0 and β= 1. The conventional view represents the cost of carry model to hold as 

long as  is stationary. Assume a linear process for  implies that the adjustment 

process is continuous with a constant speed of adjustment. However, Michael et al. 
(1997) indicates that the process of transaction costs implies that a nonlinear 

adjustment process of  has implications for the conventional linear cointegration 

test of the cost of carry model. 

tF tS tb

tb tb

tb

Granger and Terasvirta (1993) suggest that the non-linear adjustment process can 
be characterized based on a smooth transition autoregressive (hereafter STAR) model 
which is specified by: 
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where tε  is an independently and normally distributed random variable with a zero 

mean and constant variance , and is a transition function which, by 

convention, is bounded by zero and one. If the adjustment for a time series is smooth 
instead of jumping abruptly, then the STAR model seems to be the more attractive 

option than the TAR model in describing the non-linear adjustment of .     
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In general, there are two different transition functions in )(⋅F , the exponential 
function and the logistic function, so the STAR model can be distinguished in the 
exponential smooth transition autoregressive (ESTAR) model and the logistic smooth 
transition autoregressive (LSTAR) model : 
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According to Michael et al. (1997), reparameterizing the STAR model (Eqs. (4) - 
(5) ) gives： 
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where 1−−−− −=Δ jtjtjt bbb . In this form, the crucial parameters are ρ  and . *ρ
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Monoyios (2002) further indicates that the incorporation of transaction costs suggests 
that the larger the deviation from the equilibrium value of the basis, the stronger will 
be the tendency to move back to equilibrium, thus implying that while 0≥ρ  is 

admissible, one must have  and . That is, for small deviations    

the adjustment process may be characterized by unit root or even explosive behavior, 
but for large deviations the process is mean reverting. 

0* <ρ )0( * <+ ρρ

  Based on Granger and Teräsvirta (1993) and Teräsvirta (1994) to examine the 
model’s appropriateness, it is required to estimate of the auxiliary regression: 
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where is the residual of the AR(p) model. The linearity test is ty jjjH 3210 : βββ == . 

The rejection of null hypothesis implies the appropriateness of a STAR specification 

in modeling . To choose between the LSTAR and ESTAR models through a 

sequence of test of nested hypotheses, the sequence of hypotheses to be tested is as 
follows: 

ty

    0: 301 =jH β                    (for all j=1,…,p)                (8a) 

    0|0: 3202 == jjH ββ             (for all j=1,…,p)                (8b) 

    0|0: 32103 === jjjH βββ         (for all j=1,…,p)                (8c) 

Rejecting Eq.(8a)  implies selecting the STAR model. If we accept Eq. (8a)  

and reject Eq. (8b) , we choose the ESTAR model. Accepting Eq. (8a)  and 

Eq. (8b)  and rejecting Eq.(8b)  leads to the choice of the LSTAR model. 

01H 01H

02H 01H

02H 03H

Lastly, to investigate the futures basis behavior of the cost-of-carry model with 
transaction costs, the restricted ESTAR model as suggested by Michael (1997) is 
employed and is thus estimated after successively testing and imposing the following 
hypotheses (Eqs. (10a) – (10c)) on the ESTAR model: 
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*,1:0 ρρ −=+bH ii βα −=  (for all i=1,…,p-1) given ,              (10b) aH0

0:0 =ρcH  given and                                      (10c) aH0
bH0

Since the series are the mean-corrected deviations from equilibrium basis, we may 

reasonably expect that the ESTAR model satisfies the restrictions of 

tb

000 === cβα . 

Therefore, is expected to hold. The implication of and  is interesting.  

implies that in the outer regime, when F(‧) = 1,  is a white noise. However, 

implies that when F(‧) = 0, the process of  in the middle regime has a unit root. 

The likelihood ratio statistics

aH 0
bH 0

cH 0
bH 0

tb

cH 0 tb

aLR , bLR and cLR are applied to test the null hypotheses 

of , and , respectively. aH 0
bH 0

cH 0

 
3. Empirical Results 

3.1 Linear Unit Root and Cointegration Tests 
 

Our daily data on futures and spot closing prices of gold are collected from the 
Datastream. The observation period spans over 2001/1/1 through 2005/12/31 during 
which the data patterns on the spot and futures prices of the gold appear to move 
smoothly, and the shape of the estimated transition function of the futures basis of 
gold as shown in Fig. 1 matches the type of ESTAR model. In this paper, the log 
futures basis is calculated as the difference between the log spot price and the log 
futures price.  

We now implement test for unit root behavior of each of the futures price, spot 
price and the futures basis time series for the gold by calculating standard augmented 
Dickey-Fuller (ADF) test statistics, reported in Table I. In keeping with the very large 
number of studies of unit root behavior for these time series and conventional finance 
theory, we are in each case unable to reject the unit root null hypothesis applied to 
each of the futures price and the spot price for both indices at the 5% level of 
significance. However, after differencing the two price series appear to induce 

stationarity in each case, clearly indicating that both  and  are realizations 

from stochastic processes integrated of order one. Furthermore, the results strongly 

tF tS
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suggest a rejection of the unit root of null hypothesis applied to  in levels as well 

as in differences, thus implying stationarity of the basis and possibly the existence of 
a cointegrating relationship between the futures price and the spot price for the gold.   

tb

 
Table I: Unit Root Tests (sample period : 2001/1/1~2005/12/31) 
 )(c

tF  )(c
tFΔ  )(c

tS  )(c
tSΔ  )(c

tb  )(c
tbΔ  

       

Gold -0.306 -37.825* -0.231 -36.373* -21.261* -17.195*

       

Notes. , and denote the log-level of the futures price, the log-level of the spot price, and the demeaned log-level of 

the basis, respectively. Statistics are augmented Dickey-Fuller test statistics for the null hypothesis of a unit root process; the (c) 

superscript indicates that a constant was included in the augmented Dickey-Fuller regression; 

tF tS tB

Δ is the first-difference operator. 

The critical value at the 5% level of significance is -2.864. 

To accomplish the analysis of the long-run properties of the data, we proceed 

with test for cointegration between  and , employing the well-known 

Johansen(1988, 1991) maximum likelihood procedure in a vector autoregression 

comprising  and . Both Johansen likelihood ratio (LR) test statistics based on 

the maximum eigenvalue and on the trace of the stochastic matrix, respectively, 
clearly suggest that a cointegration relationship exists for both price series under 
investigation. The results in Table II show that there exists a unique cointegrating 
vector such that the long-run equilibrium relationship between the futures price and 
the spot price for the gold exists, which implies the two price series for the gold 
co-move in the long run. 

tF tS

tF tS

 
Table II: Johansen Maximum Likelihood Cointegration Procedure 
             (sample period : 2001/1/1~2005/12/31) 
 MAXλ  Trace  

 LR 5% Critical Value LR 5% Critical Value 

     

v=0  200.454  14.265 200.566  15.495 Gold 

(1 Cointegrating 

vector) 

v=1

 0.112*  3.841 0.112*  3.841 
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Notes：1. The numbers in parentheses are the 5% finite-sample critical values, as constructed from the asymptotic 

critical values from Osterwald-Lenum (1992) employing the method in Cheung and Lai (1993). 2. Term v 

indicates the number of cointegrating vectors. 3. Terms MAXλ and are the maximum eigenvalue statistic 

and the trace statistic, respectively. 

Trace

 
3.2  Linearity Tests and Specification of the Nonlinear Model 
 

Table III summarizes the results of linearity tests, which shows that the null of 
linearity has been rejected, at standard significance levels, in favor of the ESTAR 
specification when employing the Granger and Teräsvirta (1993) and Teräsvirta (1994) 
procedure for examining the model’s appropriateness.  
 
Table III: Linearity Test Results and Specification of the Nonlinear Model 
Futures 
basis 

Lag 
(p) 

Delay 
(d) 

0: 301 =jH β

0

|0:

3

202

=

=

j

jH

β

β

0

|0:

32

103

==

=

jj

jH

ββ

β F stat 

/ p lue 

Type of 

model 

Gold 2 1 0.079 0.009* 0.001 
6.94 

/0.000* ESTAR 

Note. The values for the nested test , and are P-values. An asterisk indicates the lowest P-value for the three tests. 

The threshold value for the linearity and the specification of the STAR model is 0.05. 

01H 02H 03H

Table VI only reports the most parsimonious form of the estimated equations. 
Obviously, most of the estimated coefficients are significant at the 5% level, and the 
likelihood ratio statistics aLR , bLR and cLR are applied to test the null hypothesis 

of , and  respectively. Results from these statistics unanimously indicate 

that the relevant restrictions are clearly supported by the data of gold, which implies 
that when the equilibrium relationship between the futures price and spot price of 
gold exists, they fall within stochastic bands where the futures price seems to be 
mispriced and transaction costs may result in the existence of neural band for gold 
futures market speculation within which profitable trading opportunities are 
impossible. However, when the futures basis are outside neutral bands, the existence 
of arbitrage opportunities induces traders to buy long positions of gold futures 
contracts and sell short positions of spot contracts.  . 

aH 0
bH 0

cH 0

We are also interested in the behavior of the estimated residuals. The residual 
diagnostic tests are satisfactory apart from the failure of the normality test. In general, 
it is difficult to pass the normality test in nonlinear modeling as evidenced by Michael 
et al. (1997). The estimated transition function for the basis is plotted in Figure 1. It 
seems to be a reasonable number of observations above and below the equilibrium. 
We therefore are reasonably confident in our selection of the ESTAR model 
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(Teräsvirta, 1994). 
 

Table VI: The Estimates of the Restricted ESTAR Model 
 Futures basis 
ρ  -0.663 (0.000)*

1β  -0.221 (0.000)*

γ  6.815 (0.116) 
c  -0.001(0.0498)* 

Diagnostic tests： 
JB 0.000*

Q(10) 0.341 
ARCH(4) 0.032 

aLR  3.741 
bLR  2.136 
cLR  0.545 

Note: 1.The number in parentheses is the standard deviation of the estimate. 2. , , are likelihood ratio 

test statistics corresponding to the tests of Eqs. (12a)-(12c)(with degrees of freedom three, p, and one), respectively. 

3. JB, Q(n) and ARCH(n) are the Jarque-Bera normality test, the Ljung-Box autocorrelation test and the 

autoregressive conditional heteroscedasticity test of Engle(1982). 

aLR bLR cLR

                      Fig. 1. Estimated Transition Function 

Basis

Transition Variable

Tr
an

si
tio

n 
Fu

nc
tio

n

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
0.00

0.25

0.50

0.75

1.00

 

 
3.3 Forecasting Performance 
 

The results of our forecasts are presented in Table V. This table contains the root 
mean square error (RMSE) and mean absolute error (MAE) of the forecasts for the 
linear and nonlinear models. Our results indicate that both values of RMSE and 
MAE from the ESTAR model are smaller than those from the linear models, and the 
ESTAR model clearly provides higher forecasting power than the linear AR(1) 
model. 
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Table V: RMSE and MAE of the Forecasts for the Linear and Nonlinear Model 

(2006/1/1 ~ 2007/05/20)  
 Linear model 

(AR(1)) 
Nonlinear model 
(ESTAR) 

Root mean squared error (RMSE) 
0.010027 0.007708 
Mean absolute error (MAE) 

Futures basis of gold 

0.007365 0.005673 
 
4. Concluding Remarks 
    

Previous studies on financial derivatives based on the cost-of-carry model have 
pointed out that there exist the actual futures prices deviating from and even lower 
than their equilibrium prices, and that the futures basis adjusts linearly toward its 
equilibrium value. However, the existence of transaction costs makes it possible for 
the basis to adjust toward its equilibrium value nonlinearly rather than linearly. 
Following the nonlinear ESTAR model developed by Granger and Terasvirta(1993), 
Terasvirta(1994) along with Dumas (1992) and Michael et al. (1997), this paper finds 
the nonlinearly cointegrating relation between the futures price and spot price of 
gold, which indicates that they are within stochastic bands where the futures price 
seems to be mispriced. However, the existence of transaction costs tends to eliminate 
profitable arbitrage opportunities, but there exists the tendency for market traders 
to arbitrage to restore to equilibrium levels when the basis falls outside the band. In 
evaluating out-of-sample forecasting performance, this paper also finds that the 
ESTAR model provides higher forecasting power than the linear model.  
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