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Abstract

I examine optimal investment policies when there are synergies between two investment
projects, in that joint operation reduces operating costs. These synergies create interactions
between two investments projects, therefore two investments decisions can't be determined
separately. These interactions suggest that decisions of conglomerate firms may be rational.
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1 Introduction

The purpose of this note is to use the real options approach to examine op-
timal investment policies when there are synergies between two investment
projects, in that joint operation reduces operating costs. The real options
approach provides a strong tool to investigate phenomena governed by un-
certainty.1 In the presence of synergy between two projects, a �rm with
both projects, i.e., a diversi�ed �rm, can raise its value by considering joint
operation of the projects, which creates interactions between projects.
My main conclusions are that (i) investment policies for a project are

a¤ected by a synergy project even if business conditions of both projects
are independent; that (ii) a �rm expanding its synergy project (the �rst
investment) can invest in another project (the second investment) in worse
business conditions; that (iii) the �rst investment is promoted by the synergy
e¤ect only when the simultaneous investment is optimal, that is the �rst and
the second investments are undertaken simultaneously.
The remainder of this paper proceeds as follows. The model is presented

in Section 2. Section 3 investigates optimal investment policies for a �rm
facing two synergy projects. Section 4 discusses the possibilities of the si-
multaneous investments. Section 5 concludes.

2 The Model

Consider a competitive �rm facing two projects A and B. I assume that there
are synergies between projects A and B. That is, with joint operation, the
�rm reduces operating costs.
Letting pt denote project A output price at time t, I assume that pt follows

a geometric Brownian motion:

dpt = �ptdt+ �ptdB
Q
t ; (1)

where BQt is a standard Brownian motion under an equivalent martingale
measure Q. The instantaneous expected percentage change � in pt is assumed
to be positive. Constant � represents the instantaneous standard deviation

1Dixit and Pindyck (1994) provide nice treatments of this approach. In the recent
developments, Grenadier (2002), Weeds (2002), Aguerrevere (2003) and Lambrecht (2004)
incorprate game theoretical models into the real options approach.
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of percentage change in pt. In contrast, for simplicity, project B output price
q is assumed to be constant.2

The �rm operating either projects A or B (say, a single-segment �rm)
determines input so as to maximize pro�ts:

�A(pt) � max
yA
[ptyA �

1

2
cy2A] and �B(q) � max

yB
[qyB �

1

2
cy2B];

where yi represents output and 1
2
cy2i represents cost function (i=A, B).

On the other hand, the �rm operating both projects A and B (say, a di-
versi�ed �rm), owing to joint operation, determines output so as to maximize
the joint pro�ts,

�AB(pt; q) � max
yA;yB

�
ptyA + qyB �

1

2
cy2A + �yAyB �

1

2
cy2B

�
; (2)

where 0 < � < c captures the synergy e¤ect resulting from joint operation.3

Solving this equation gives joint pro�t:

�AB(pt; q) =
c

2�
p2t +

�

�
ptq +

c

2�
q2;

where � � c2 � �2:

3 Optimal investment policies for diversi�ed
�rms

This section derives the optimal investment policies for a �rm facing two
synergy projects A and B, i.e., a diversi�ed �rm. There exist two investment
strategies, which are classi�ed by the �rm�s initial project. The �rst is strat-
egy A !B, that is, the �rm invests in project A at TA and then in project
B at TB (� TA). The second is strategy B!A, that is, the �rm invests in
project B at TB and then in project A at TA (� TB).4

2If both projects A and B�s output prices follow stochastic processes, the main result
of the paper does not change.

3The more general cost function with synergies is proposed by Eaton and Lemche
(1991).

4The reason why the investment order is emphasized is that owing to synergy e¤ects,
the �rst investment alters the pro�tabilities of the second investment, thereby a¤ecting
the investment timing of the second. If there is no synergies, TA and TB are determined
independently.
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The �rm selects a strategy so as to maximize its �rm value, which depends
on the business conditions of both projects. Therefore, letting FA!B(TA; TB)
and FB!A(TA; TB) be the values of the strategies A!B and B!A resulting
from the investment policy (TA, TB), respectively, the optimization problem
facing a diversi�ed �rm is expressed as follows

sup
TA;TB

�
max

n
FA!B(TA; TB); FB!A(TA; TB)

o�
:

In fact, this problem has three cases; (i) TA < TB (say, sequential in-
vestments A!B); (ii) TA = TB (say, simultaneous investments AB); (iii)
TA > TB (say, sequential investments B!A). Roughly speaking, sequential
investments A!B (B!A) is optimal when q is low (high). Simultaneous
investments AB is optimal when q is medium.

3.1 Optimal investment policies in strategy A!B
The �rst investment (in project A) with initial sunk costs IA yields pro�t
�ows �A until the second investment (in project B) has been undertaken.
Once the �rm invests in project B with initial sunk costs IB, it obtains joint
pro�ts �AB. Therefore the optimization problem facing the �rm is given as

FA!B � sup
TA;TB

EQt

h Z TB

TA

e�r(��t)�A(p� )d� � IAe�r(TA�t)

+

Z 1

TB

e�r(��t)�AB(p� ; q)d� � IBe�r(TB�t)
i
s:t: TB � TA; (3)

where r is risk-free rate. Provided that TA(px) � inf f� : p� = pxg and
TB(p

y) � inf f� : p� = pyg, as shown in Appendix A, the optimization prob-
lem (3) is reduced to

sup
px;py

��
p

px

��
[VA(p

x)� IA] +
�
p

py

��
[VAB(p

y; q)� VA(py)� IB]
�

s:t: py � px; (4)

where the constraint TB(py) � TA(px) is substituted by py � px because the
lower the threshold is, the shorter the hitting time is.
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Letting  be Lagrange multiplier, the �rst order conditions with respect
to px and py are given as�

p

px

��
�

px

��
1� 2

�

�
1

2c

(px)2

�A
� IA

�
+  = 0; (5)

�
p

py

��
�

py

��
1� 2

�

�
�2

2c�

(py)2

�A
+

�
1� 1

�

�
�

�

pyq

�
+

c

2�

q2

r
� IB

�
� = 0; (6)

respectively. The complementary-slackness condition is given as

(px � py) = 0:

There exist two cases: binding or not, which, depend on the constant para-
meter q.
In not binding case (TB > TA): sequential investments A!B, the complementary-

slackness condition gives py > px and  = 0. Substituting these conditions
into the �rst order conditions gives threshold levels px and py (say, threshold
A!B):

1

2c

(px)2

�A
=

�

� � 2IA; (7)

�
1� 2

�

�
�2

2c�

(py)2

�A
+

�
1� 1

�

�
�

�

pyq

�
+

c

2�

q2

r
= IB; (8)

respectively. As shown in Appendix B, since dpy=dq < 0 and px is con-
stant, the condition satisfying the constraint py > px is replaced by q > q
where q is determined by py = px.
In the case q < q , it is optimal to invest in project A when p � px and

then invest in project B when p � py: This looks like suggesting that synergy
promotes the investment in only project B because equation (7) does not
contain synergy parameter �. Further discussions are presented in section 4.
In binding case (TA = TB) q � q, the complementary-slackness condition

gives px = py � ps. Eliminating  from (5) and (6) gives ps, say threshold
AB �

1� 2

�

�
c

2�

(ps)2

�A
+

�
1� 1

�

�
�

�

psq

�
+

c

2�

q2

r
= IA + IB: (9)

4



In the case q � q, it is optimal to invest in both projects A and B simulta-
neously when p � ps. Section 4 discusses the implications of simultaneous
investments and threshold AB.

3.2 Optimal investment policies in strategy B!A
In this strategy, the optimization problem facing the �rm is given by

FB!A = sup
TA;TB

EQt

h Z TA

TB

e�r(��t)�B(q)d� � IBe�r(TB�t)

+

Z 1

TA

e�r(��t)�AB(p� ; q)d� � IAe�r(TA�t)
i
s:t: TA � TB: (10)

Provided that TB(pz) � inf f� : p� = pzg and TA(pw) � inf f� : p� = pwg, as
the same way in Section 3.1, in the case pw > pz thresholds pw and pz (say,
threshold B!A) are given by

1

2c

q2

r
= IB; (11)

�
1� 2

�

�
c

2�

(pw)2

�A
+

�
1� 1

�

�
�

�

pwq

�
+
�2

2c�

q2

r
= IA: (12)

Equation (11) is a simple NPV rule and furthermore implies that when q > �q,
the �rm should invest in project B regardless of p. Therefore the condition
pw > pz is equivalent to q > �q. It is optimal for the �rm operating in project
B to invest in project A when p � pw.
In binding case q � �q, the complementary condition gives pw = pz � ps;

which is reduced to equation (9).

4 Possibilities of simultaneous investments

This section provides complete investment policies comparing two investment
strategies and discusses the possibilities of simultaneous investments. Section
3.1 provides that FA!B > FAB if q < q; and FA!B > FAB if q < q; where
FAB is the �rm value resulting from the simultaneous investment strategy ps.
On the other hand, Section 3.2 provides that FB!A < FAB if q < �q; and
FB!A � FAB if q � �q:
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Therefore in the case q < q, the sequential investments A!B are the
best. In the case q � q < �q, the simultaneous investments AB are the best.
In the case of q � �q, the sequential investments B!A are the best. As a
result, three lemmas are provided as follows.

Lemma 1
In the case q < q, optimal investment policies for the diversi�ed �rm are to
invest in project A when p � px and to invest in B when p � py.

When business conditions of project B are bad, the diversi�ed �rm should
invest in project A �rst and wait the chance of further expansions of project
A to undertake the project B pro�tably. See the threshold A! B in Figure
1.

Lemma 2
In the case q � q < �q, optimal investment policies for the diversi�ed �rm are
to invest in both projects A and B simultaneously when p � ps.

When the business conditions of project B are not so bad, the diversi�ed
�rm should wait the chance to invest in both projects A and B simultaneously.
See the threshold B ! A and the region B(1) in Figure 1.

Lemma 3
In the case q > �q, optimal investment policy for the diversi�ed �rm is to
invest in project B immidiately and in project A when p � pw.

In the case the business conditions of project B are good, the diversi�ed
�rm should invest in project B immediately and wait the chance that the
investment in project A can be pro�tably undertaken. See the threshold AB
and the region AB(1) in Figure 1.
Lemma 1 and 2 imply that synergy e¤ect promotes not the �rst but the

second investments. Lemma 2 implies that synergy e¤ect promotes the �rst
investment only when the simultaneous investments are optimal. The reason
is that the synergy e¤ect reveals only when the �rm operates in both projects.

5 Conclusion

This note investigates the e¤ects of synergy on optimal investment policies.
Boom of the one business segment allows a �rm to invest in the project of
the other segment facing the worse business condition. Moderate business
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conditions of the both segments induce intensive investments: simultaneous
investment. These �ndings may explain the investment policies of diversi�ed
�rms.

Appendix A

This appendix derives equation (4) and associated �rst order conditions (5)
and (6). Equation (3) is reduced to

sup
TA;TB

�
EQt

�
e�r(TA�t)

Z 1

0

e�r�
�
�A(p��)d�

� � IAe�r(TA�t)
�

+ EQt

�
e�r(TB�t)

Z 1

0

e�r�
��
(�AB(p��� ; q)� �A(p���))d� �� � IBe�r(TB�t)

��
s:t: TB � TA;

where � � � ��TA and � �� � ��TB. From the de�nitions TA(px) and TB(py),
this is reduced to

sup
px;py

�
EQt [e

�r(TA(px)�t)]EQt

�Z 1

0

e�r�
�
�A(p��)d�

� � IA
�

+ EQt [e
�r(TB(py)�t)]EQt

�Z 1

0

e�r�
��
(�AB(p��� ; q)� �A(p���))d� �� � IB

��
s:t: py � px;

As shown in Harrison (1985), the expected present values of 1 dollar delivered
at the uncertain future dates TA(px) and TB(py) are given by

EQt [e
�r(TA(px)�t)] =

�
p

px

��
and EQt [e

�r(TB(py)�t)] =

�
p

py

��
;

respectively, where � is positive root of the quadratic equation:

Q(�) � 1

2
�2�(� � 1) + �� � r = 0:

The expected current values of future pro�t �ows �A and �AB are given
by

EQt

�Z 1

0

e�r�
�
�A(p��)d�

�
�
=
1

2c

(px)2

�A
� VA(px);
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EQt

�Z 1

0

e�r�
��
�AB(p��� ; q)d�

��
�
=

c

2�

(py)2

�A
+
�

�

pyq

�
+

c

2�

q2

r
� VAB(py; q);

respectively, where �A � r� 2�� �2 which is assumed to be positive for the
convergence of VA and � � r � �. Using above results yields (4)

Appendix B

This appendix shows that there exist q such that py > px is equivalent to
q < q. Di¤erentiating equation (8) with respect to q gives the following
relation:

dpy=dq = � cq=r + (1� 1=�)�py=�
(1� 2=�)�2py=c�A + (1� 1=�)�q=�

:

Since � > 2, the sign of dpy=dq is negative. See Figure 1. From (7), px is
constant and independent of q. On the other hand, py is a decreasing function
in q. Therefore there exists q such that py > px is equivalent to q > q where
q is determined by px = py.
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Figure 1: Optimal policy for the first investment
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