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Abstract

We investigate the startling but real possibility that a reduction in calories can lead to a
increase in longevity. In perhaps the simplest model, it may be evolutionarily optimal for a
permanent reduction in the food supply to cause such an increase in longevity. However, it is
impossible to account for all the data if fertility is a function of the food input alone. We
propose, therefore, a more flexible model, incorporating both metabolic by-products and
infectious disease. Where there is little infectious disease, the only effect of decreased food is
to decrease the production of metabolic by-products, so individuals have increased life
expectancy. On the other hand, where infectious disease is prevalent, decreased food intake
increases mortality because the resulting reduction in immune function increases the impact
of the disease. These predictions are consistent with an empirical model based on income per
capita and calorie intake per capita across modern nations.
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1 INTRODUCTION
Empirical research on a wide range of animals has demonstrated a startling
possibility that has attracted much recent attention: That less food may lead
to an increase in longevity. (See Heilbronn and Ravussin (2003) for a recent
review.) Although the evidence concerning the effect on humans of substantial
calorie reduction is incomplete, since the longevity of humans makes investigat-
ing this experimentally difficult–to say the least, preliminary data concerning
individuals in richer societies is consistent with such an increase in longevity.
These data concern a favorable effect of calorie reduction on serum cholesterol,
for example. (See Walford et al (1992), and Martin et al (1986).) However, from
a wider empirical point of view, these experimental data are rather puzzling.
That is, average life expectancy is surely highly positively correlated with food
consumption per capita, across a large sample of modern nations with widely
varying levels of economic development. How can these apparently conflict-
ing sets of observations be reconciled? What might be the underlying causes of
the effect of food consumption on longevity? Answering such questions not only
has important implications for the description of national economic development
and of individual health status, but also for the interpretation of archaeological
data.
How might evolutionary models help explain these phenomena? To this

end, we adopt the hypothesis that even modern behavior is evolutionarily ap-
propriate, with the sole crucial exception that the last link from behavior and
circumstances to fertility has been weakened or broken, as a result of effective
contraception, in particular. Although we accept that theoretical predictions
concerning fertility might not be empirically borne out, predictions concerning
mortality are intended to be taken at face value.
The present approach should be contrasted with the hypothesis that mod-

ern life expectancy is reduced by overeating. Under this hypothesis, our current
overindulgence in rich and sweet foods arises from tastes that evolved in severely
calorie-restricted circumstances when such tastes were appropriate. It is be-
coming increasing clear, however, that late hunter-gatherers were surprisingly
well-nourished. For example, although it is well-known that that there is an on-
going increase in stature in recent history, it is less well-known that this increase
has so far merely roughly restored the stature humans had during hunting and
gathering. (See Angel (1975, Table 1).) Furthermore, hunter-gatherers seemed
to suffer from relatively little infectious disease, presumably due to the low pop-
ulation densities at which they lived. (See Cohen and Armelagos, (1984), and
Steckel and Rose, (2002).) Since the circumstances faced by hunter-gatherers
were then surprisingly similar to our current circumstances, it is worth consider-
ing how the modern relationship between food intake and longevity could have
arisen as a biologically optimal adaptation.
The first model we consider here–Model I–is perhaps the simplest possible.

It is related to the previous biological literature, and captures the fundamen-
tal biological trade-off between energy expenditure on current reproduction and
energy expenditure to reduce mortality. (The Appendix shows that Model I illu-
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minates some of the discussion in this previous biological literature to Model I.)
If increasing the food supply increases mortality, then expenditure on mortality
reduction is essentially an inferior good.
An apparently quite distinct intuition concerning the effect of food on longevity

runs as follows. Suppose that individuals are subject to stochastic fluctuations
in the food supply. If there is a shortfall in the current food supply, it seems that
such an individual might find it advantageous to dramatically reduce reproduc-
tion in the current period, shifting energy resources instead into survival, with
the aim of holding out until the food supply improves. We show that Model I
can be directly reinterpreted in this light.
For either of these effects to apply in Model I, fertility must be a convex

function of energy input, over the relevant range. If people in modern richer
societies are subject to these effects, this convexity arises at high energy input
levels, which seems implausible a priori given the presence of other factors of
production involved in reproduction.
Even more basically, it is impossible to account for all of the observations in

terms of food intake alone. For example, the caloric intake for “Biosphere 2” was
about 30% less than planned, as is similar to the cuts used in experiments on
rats. If average US food intake in 2002 were cut by 30%, however, this yields a
food intake near that for Gabon. Far from having a life expectancy 50% greater
than in the US, where the figure is 77.1 years, Gabon’s life expectancy is only
about 56.7 years.
A more direct and flexible approach to this issue is suggested by recent

research on the biochemical determinants of cellular aging. This research shows
that metabolic activity in the cell produces various biochemical by-products,
including, for example, reactive oxygen species, or ROS. These by-products are
implicated in aging, with ROS’s implicated in some serious neurological disease
for example. (See Love and Jenner (1999).) Although it is possible to clean up
such by-products, it seems very costly. It is not impossible to prevent aging,
that is, but it may be too expensive. (McElwee et al. (2004).) In this setting, a
reduction in food supply may increase longevity, simply because the reduction
in metabolic activity entails fewer biochemical by-products being produced.
However, we also argue that it is relevant that the data concerning the

longevity enhancement of rodents by calorie reduction were obtained under lab-
oratory conditions, where the animals were largely sheltered from infectious
diseases. Similarly, individuals who live in developed economies can, to some
extent, protect themselves from exposure to infectious disease and can effec-
tively treat it if it nevertheless occurs. On the other hand, humans living in
less-developed nations are exposed to a variety of infectious diseases, and lack
effective treatment. In these less favored circumstances, metabolic expenditure
by the individual on the immune system must be crucial.
We therefore develop an alternative model–Model II–that incorporates the

effects of both metabolic by-products and of the resistance to infectious disease
by the immune system. At low levels of infectious disease, the production of
metabolic by-products is the dominant effect, and an increase in food intake
leads to a reduction in longevity, as is consistent with the data from rodents
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in laboratories. (The increase in food supply is nevertheless evolutionarily ad-
vantageous, since the increase in fertility outweighs the decrease in longevity.)
At high levels of infectious disease, as apply in poorer modern nations, for ex-
ample, an increase in food intake leads to increased longevity because it leads
to an increase in the energy used by the immune system, and the favorable
effect of this outweighs the deleterious effect from the increase in metabolic by-
products. Again, Model II bears direct reinterpretation in terms of the response
of individuals exposed to a stochastically varying food supply.
The paper finally checks the predictions of Model II for human life ex-

pectancy as a function of food intake and income per capita, using recent na-
tional data. Income is intended as a proxy for public-health measures that
serve to reduce the incidence of infectious diseases, and for the provision of
health care that would treat such diseases if they did arise. Each of the ex-
planatory variables food intake and income indeed have significant linear effects
on longevity, when used in a regression to explain life expectancy. Furthermore,
the coefficient of an interaction term between food intake and income is negative
and statistically significant. Thus increased food intake has a positive effect on
longevity at low income levels, but a negligible or negative effect at high income
levels. The estimated per capita income at which the change in sign occurs
corresponds to a nation near but not at the top of the world per capita income
table. The estimated model thus suggests that increased consumption of food
in richer modern nations actually decreases longevity.

2 MODEL I–REPRODUCTIONVERSUS SUR-
VIVAL

Consider an adult animal that, at age t = 1, 2, ..., has available constant energy
“income” y. An amount st is devoted to improve survival to the next period,
so this probability of survival is p(st), where p0(s) > 0, p00(s) < 0, for all s > 0.
For simplicity, it is assumed that p0(0) = ∞, which serves to rule out s = 0.
Energy cannot be stored, so the remaining energy, y−st ≥ 0, is used to produce
expected offspring according to f(y − st). It is assumed that f 0(c) > 0, for all
c ≥ 0 and that f(0) = 0.
The demographic description of the population is then completed as follows.

Newborns, with age t = 0, have no energy budget, and no fertility, but survive
the first period of life with exogenous probability p̄.
Define now V̄ = maxs∈[0,y] [f((y − s) + p(s)/p̄] . If r is defined by 1+r = p̄V̄ ,

then V̄ solves V̄ =
³
maxs∈[0,y]

h
f(y − s) + p(s)

1+r V̄
i´

. That is, since it solves this

Bellman equation, V̄ is maximized expected offspring, discounted at rate 1+ r,
for an adult of any age t = 1, 2, ....
Suppose now that r∗ is a feasible steady state growth rate, such that r∗ > r.

Suppose also that V ∗ is the associated expected offspring for an adult of age t =
1, discounted at rate r∗. In general, the Euler-Lotka equation in the present cir-

cumstances is 1 = p̄f(y−s1)
1+r + p̄p(s1)f(y−s2)

(1+r)2 +.... = p̄
1+r

³
f(y − s1) +

p(s1)f(y−s2)
(1+r) + ...

´
.
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In particular, then 1 + r∗ = p̄V ∗, so that V ∗ > V̄ . Without loss of gen-
erality, r∗ and V ∗ are generated by an age-independent policy, s(·), say, so
V ∗ = [f((y − s(y)) + p(s(y))V ∗/(1 + r∗)] = (f((y − s(y)) + p(s(y))/p̄) , contra-
dicting the definition of V̄ . Hence r is the maximum possible steady state growth
rate for this population.
It follows that the optimal choice of s maximizes 1+ r = p̄f(y− s) + p(s) =

p̄ (f(y − s) + p(s)/p̄) . If this optimum value of s is interior, then the first-order
condition is −f 0(y−s)+ p0(s)

p̄ = 0,with f 00(y−s)+ p00(s)
p̄ < 0 as the second-order

condition. For simplicity, this concavity condition is assumed to hold globally.

Now, d(y−s)dy =
p00(s)
p̄

f 00(y−s)+ p00(s)
p̄

> 0, but ds
dy =

f 00(y−s)
f 00(y−s)+ p00(s)

p̄

< 0 iff f 00(y − s) > 0.

That is, an increase in energy income always leads to an increase in expected
offspring. Such an increase in energy income leads to a decrease in longevity if
and only if the fertility function f is (locally) convex.

2.1 A Stochastic Reinterpretation

Consider instead how the individuals modelled above would respond to transi-
tory shocks in stochastic energy income. Suppose then that the yt are identically
distributed random variables, independent across individuals, age, and time, and
that the population is large. Each individual can condition current behavior on
the current realization of yt, but can condition only on the distribution of future
incomes. Proceeding in an analogous fashion to the nonstochastic case, define

now V̄ = Eyt

³
maxst∈[0,yt]

h
f(yt − st) +

p(st)
p̄

i´
. If r is defined by 1 + r = p̄V̄ ,

then V̄ obviously solves V̄ = Eyt

³
maxst∈[0,yt]

h
f(yt − st) +

V̄ p(st)
1+r

i´
. But, since

it solves this Bellman equation, V̄ is again maximized expected offspring, dis-
counted at rate 1+r, for an adult of any age t = 1, 2, .... Since the population is
large, the law of large numbers implies that V̄ , and hence r, are realized exactly.
It is not hard to show that r is the maximum possible steady state growth rate
for this population.
Thus the optimal choice of st maximizes p̄f(yt−st)+p(st) = p̄ (f(yt − st) + p(st)/p̄) .

Remarkably, this is precisely the same criterion as that describing the response
to non-stochastic income. Hence the short-run individual response to a transi-
tory variation in stochastic income is precisely the same as the long-run aggre-
gate response to a permanent change in non-stochastic income. It follows that
a short run decline in stochastic energy income leads to an increase in survival
only if the fertility function f is locally convex.
The following is an intuition for the close connection between the results

in the two scenarios. Under the assumptions here, producing an offspring that
survives to the next period has precisely the same evolutionary payoff as having
the parent survive to the next period. The optimal strategy for both the short-
run stochastic case and the long-run non-stochastic case is then to equate the
marginal benefit of energy spent to enhance these two options. That is: p0(st) =
p̄f 0(yt − st). Since this optimal choice depends only on the individual’s realized
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income yt, whatever the basis for this, the optimal choice is necessarily the same
in the two cases.
For Model I to generate a reduction in longevity from an increase in food

intake, the production function for offspring must be at least locally convex.
Such convexity, however, seems only plausible at relatively low levels of food
intake.

3 MODEL II–METABOLICBY-PRODUCTS,
INFECTIOUS DISEASE ANDMORTALITY

Even more importantly, recall that it is simply impossible to account for all
the experimental and national aggregate data using a model in which fertility
depends on food intake alone. A more realistic model then requires at least one
more explanatory variable.
Also recall that recent research has established the production of metabolic

by-products as an underlying cause of aging. Model II then builds in an appro-
priate effect along these lines. Suppose then that each adult has deterministic
and constant energy income y ∈ [0, ȳ], for some bound ȳ > 0. The production
function for offspring from energy devoted to this, c, is again f where f 0(c) > 0,
for all c ∈ [0, ȳ]; f(0) = 0 but f is now concave, so f 00(c) < 0, for all c ∈ [0, ȳ].
The probability of survival is now P (y, α, s). Here, y ∈ [0, ȳ] is energy income
from the previous period. Its inclusion in the survival function represents the
deleterious effect of metabolic by-products, so Py < 0. The parameter α repre-
sents the incidence of infectious disease, so that Pα < 0. As in Model I, s ∈ [0, ȳ]
represents energy expenditure on survival. In Model II, this expenditure is
more specifically on the immune system, to counteract infectious disease, so
that Ps > 0, Pss ≤ 0, and Pαs > 0, whenever α > 0. In the absence of infectious
disease, when α = 0, however, investment in the immune system has no benefit,
so that Ps(y, 0, s) = 0.
Reasoning as in Model I, define now V̄ = maxs∈[0,ȳ] [f((y − s) + P (y, α, s)/p̄] .

If r is defined by 1+r = p̄V̄ , then V̄ solves V̄ =
³
maxs∈[0,y]

h
f(y − s) + P (y,α,s)

1+r V̄
i´

.

That is, since it solves this Bellman equation, V̄ is maximized expected off-
spring, discounted at rate 1 + r, for an adult of any age t = 1, 2, .... It follows,
furthermore, that r is the maximum possible steady state growth rate for this
population.
Hence the expression p̄f(y − s) + P (y, α, s) = 1 + r is to be maximized

over s. If α = 0, the optimal s = 0, as seems relevant to a laboratory rat,
or to an individual in a prosperous nation, both benefiting from a low disease
environment. In this case, where there is no choice to be made, an increase in
the food supply enhances current fertility, but reduces survival.
However, when α > 0, it may be optimal to choose s > 0. The first-order

condition for this is p̄f 0(y − s) = Ps(y, α, s). It follows that ds
dy =

p̄f 00−Psy
p̄f 00+Pss

. If

Psy ≥ 0, it follows that ds
dy > 0, so an increase in y leads to an increase in s.
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Under the present assumptions, in particular the concavity of f , if y did not
appear in P, an increase in y would increase s. The assumption that Psy ≥ 0
assures that the appearance of y in P reinforces this effect.
It is a reasonably weak assumption that there exist ,m, n > 0 such that

Pαs ≥ , dv
dy =

p̄f 00−Psy
p̄f 00+Pss

≥ m, and Py ≥ −n, for all α > ᾱ, where ᾱ > 0 is any

lower bound, and for all s, y ∈ [0, ȳ]. It then follows that dP (y,α,s)
dy = Py+Ps

ds
dy ≥

−n+α m > 0, for α > max
£
n
m , ᾱ

¤
. Thus, the net effect of an increase in food

intake, y, is to increase survival, whenever infectious disease is a sufficiently
important factor, as is presumably true for animals in the wild, and for humans
in less-developed modern nations.
Despite the direct effect of increasing y in lowering survival, the overall fitness

effect of greater food is assumed to be always positive, whether the optimal value
of s is zero or not. A sufficient condition for this is p̄f 0(y) + Py(y, α, s) > 0, for
all s, y ∈ [0, ȳ]. Under this condition, it would never pay for the organism to
consume only some of the available food.

3.1 A Stochastic Reinterpretation

It is worth noting that Model II can also be reinterpreted as an optimal individ-
ual response to transitory shocks in energy income. Suppose then that the yt are
identically distributed random variables, independent across individuals, age,
and time, and that the population is large. Proceeding in an analogous fashion to

the nonstochastic case, define now V̄ = Eyt

³
maxst∈[0,yt]

h
f(yt − st) +

P (yt,α,st)
p̄

i´
.

If r is defined by 1 + r = p̄V̄ , then V̄ is again maximized expected offspring,
discounted at rate 1 + r, for an adult of any age t = 1, 2, .... It follows, again,
moreover, that r is the maximum possible steady state growth rate for this
population.
Since the expression p̄f(yt−st)+P (yt, α, st) is to be maximized over st, and

the short run individual response to a transitory variation in stochastic income
is precisely the same as the long run aggregate response to a permanent change
in non-stochastic income. That is, in the range where a fall in the permanent
energy income leads to a decrease in mortality, individuals who experience idio-
syncratic energy shortfalls will also have lower mortality. The intuition for this
result is the same as for Model I.

3.2 What do National Data Reveal about Food Intake and
Longevity?

We test the implications of our structural Model II by analyzing data on calo-
rie intake by humans. A randomized trial concerning the longevity of humans
with several levels of calorie intake and several levels of exposure to infectious
diseases would clearly be unethical and would take a very long time, given
the longevity of humans. In any case, the relationship that exists in the real
world between these variables may differ from that arising in a controlled lab-
oratory environment, and is of independent interest. We therefore use recent
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national data. In particular, as a negatively correlated proxy for exposure to
infectious disease (and the lack of health care) we use gross national income per
capita (GNI). (Gross national income per capita, at purchasing power parity,
for 2002, from the World Bank at http://devdata.worldbank.org/data-query/.)
The model of the last section predicts a negative cross-partial between calorie
intake and income. We estimate the following model.

Life expectancy = β1 ∗ (Calorie) + β2 ∗ (GNI per capita) + β3 ∗ (GNI per capita)2

+β4∗(Calorie*GNI per capita) + β5 + error term,

where the error term is uncorrelated with any of the explanatory variables.
The variable “Calorie” refers to the average daily calorie intake in a particu-
lar country. (Calorie data for 2002 the Food and Agriculture Organization at
http://faostat.fao.org/faostat/. Life expectancy data for 2002 from the World-
bank, http://worldbank.org/data/.) Using ordinary least squares, we find the
following.

Table 1 Regression of Life Expectancy on Calorie Intake and Income
Variable Coefficient Standard error t-statistic Probability
Calorie 0.012877 0.002447 5.262832 0.0000
GNI per capita 0.003077 0.000632 4.869533 0.0000
GNI per capita squared -1.90E-08 1.22E-08 -1.550202 0.1232
Calorie ∗ GNI per capita -6.23E-07 2.47E-07 -2.520368 0.0128
Constant 23.69238 5.592733 4.236280 0.0000
R2 = 0.641361

Thus, the coefficients of the linear terms in calorie intake per capita and
GNI are positive and significant, as anticipated. Moreover, the estimate of
the cross partial derivative of life expectancy with respect to to the product
of calorie intake and GNI is negative and statistically significant at the 95%
confidence level. Thus, the empirical results using data on humans confirm a
key implication of our structural model–that the relationship between calorie
intake and longevity depends on the prevalence of infectious diseases (and the
lack of good health care).
Although this value is clearly rather imprecisely estimated, it is interesting

that the level of GNI at which the marginal gain from increased food intake
becomes zero is implied to be about $ 20,670 (‘International Dollars’). This is
just over the GNI of Spain ($ 20,460) which ranks 24th out of the sample of 154
countries for which all data were available. That is, the data suggest a small
negative effect for higher food intake for the most prosperous 20 or so countries.
How large is the estimated effect of calorie restriction in rich modern soci-

eties? If the US food intake in 2002 of 3765.6 calories were cut by 30%, while
maintaining the US 2002 GNI of $ 35,060, this generates approximately a 10
year increase in life expectancy, along the fitted curve. This represents much
less than the 50% increase in life expectancy often seen in laboratory settings,
but it is substantial nevertheless.
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APPENDIX–MODEL I AND THE PREVIOUS BIOLOGICAL
LITERATURE

Shanley and Kirkwood (2000) consider the evolutionary effect of a stochas-
tically variable food supply. A key feature of their model is a reproductive
overhead, or fixed cost, for reproduction. They claim, on the basis of simula-
tions that are not fully described, that it is optimal for a temporary shortfall in
the food supply to induce a large reduction in resources used for current repro-
duction, thereby increasing resources devoted to survival. It is optimal, that
is, for the animal to bide its time until the current temporary shortage is over.
Why then does a mouse that has a fixed restricted food supply for its entire
life live longer? The answer that Kirkwood (1999, Chapter 12, especially p.
181) gives can be paraphrased as follows: This response is favored by evolution
in the short run. It is also optimal in the long run, he argues, just because
what happens in the long run in response to such a permanent reduction in
food is irrelevant. That is, such a mouse would not survive to reproduce at all.
This answer is not convincing, since if there are animals that exhibit increased
longevity in response to a mild permanent reduction in food, but still reproduce,
this exact response is evolutionarily relevant.
The present Model I illuminates this issue, since reproduction there enjoys

increasing returns to scale, as a generalization of reproductive overhead. On the
other hand, this model is also otherwise simpler than Shanley and Kirkwood’s
in that it omits consideration of juvenile mortality, for example. Its properties
can be obtained analytically, in contrast to the simulations used by Shanley and
Kirkwood. In Model I, if a shortfall in individual stochastic energy income
produces a decrease in mortality, a permanent reduction in the non-stochastic
food supply also induces an increase in longevity. (This contrasts with the claim
by Finch and Kirkwood 2000, p. 68, that the effect exemplifies the key role of
chance in life history.) This effect does not arise because it is irrelevant what
happens in the long run, but is the only appropriate evolutionary response. The
claim of Shanley and Kirkwood (2000) is therefore more robust than asserted
by Kirkwood (1999).
In order to further illuminate the Shanley and Kirkwood model, consider

then the effect of a threshold, or “reproductive overhead” in Model I. Suppose
this is at energy level e > 0, say, so that f(c) = 0, for all c ≤ e. Suppose
that the function f is increasing and concave beyond this point, so f 0(c) > 0
and f 00(c) < 0, for all c > e. The reproductive overhead thus bears the entire
burden of generating a drop in longevity with an increase in income. Note that
f must have a kink at c = e, but it is assumed that limc↓e f

0(e) <∞.
What is the general form of the functions st and ct? There is an initial range

of energy incomes within which st = yt. At some critical energy income level,
st falls discontinuously, and ct rises discontinuously. For higher energy income
levels, both st and ct are strictly positive and increasing. Note that, once
expenditure on current reproduction becomes positive, this expenditure strictly
exceeds e. All reproduction can be deferred even when this is not forced by the
existence of the overhead. Note finally that the functions st and ct are well-
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defined even when the energy income is less than the reproductive overhead: It
is optimal in these cases to devote all energy income to survival.
At first, this might seem paradoxical, since there is then no reproduction.

However, this choice makes the best of a bad situation. The growth rate of
the population is r = p(0) − 1 < 0 when there is no energy income. Indeed,
as long as energy income is less than the reproductive overhead, it is simply
impossible to ever reproduce. However, enhancing survival does pay and so
all energy should be devoted to this, even though growth rates must remain
negative. Even when energy income is a little above the reproductive overhead,
it will still pay to concentrate on survival.
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