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Abstract

We consider long horizon regressions where the predictor with unknown degree of
persistence follows a process of moderate deviations from a unit root. Some asymptotic
properties of OLS estimator and of the t statistic are presented.
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1. Introduction

Long horizon regression models have been popular in economics and finance, particularly

in the context of return predictability (Ang and Bekaert (2001), Fama and French (1988),

Campbell and Shiller (1988) to name a few). In this paper, we consider the predictive

regression model where the predictor have unknown degree of persistence. In doing so,

we assume that the predictor follows a process of moderate deviation from a unit root

(Phillips and Magdalinos (2005)). Moderate deviations process can generate varying degree

of persistence, depending on how far the predictor deviates from unit root. In addition,

as we construct long horizon variables by taking rolling summation of the regressand and

the regressor, it is known that the long horizon variables are nothing but the partial sum

processes. Thus, one can view this long horizon regression as the regression of non-stationary

regressand on non-stationary predictor.

Given the above setup, we present asymptotic distributions of the OLS estimator and of

the t statistic. Standard functional limit theories are applied to obtain the desired conver-

gences (e.g., Phillips and Solo (1992), Valkanov (2003)). It is found that the OLS estimator

is consistent only when both the regressor and the regressand are overlapped. In such case,

the convergence rate depends on the deviation parameter of the predictor, which determines

the degree of persistence. Also, we find that the t test statistic needs to be normalized by

T 1/2, to have a well-defined limit, which results from a property of spurious regression. We

provide a brief simulation studies, and investigate the effects of persistence on the finite

sample bias of the OLS estimator.

2. Long Horizon Predictive Regression Model

We write a short horizon predictive regression,

yt+1 = α+ βxt + ut+1, (1)

where yt+1 is the regressand at t+1, and xt is the predictor at t. We assume that ut follows

martingale difference or i.i.d. sequence (e.g., Campbell and Shiller (1988), Hodrick (1992),

Ang and Bekaert (2001)). This conventional assumption implies that, for example, the

regressand yt is short memory process under the null of no predictability, α = β = 0. On

the other hand, the predictor variable xt exhibits a certain degree of persistence. Typical

examples of such predictor include the dividend-price ratio or the yield spread in the bond

market (e.g., logarithm of the long rate divided by the short rate). As the predictor carries
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unknown degree of persistence, we assume that xt is a process of moderate deviation from a

unit root (Phillips and Magdalinos (2005))

xt = (1− c

Tα
)xt−1 + vt, c < 0, α ∈ (0, 1), (2)

where vt is i.i.d. sequence. The parameter α governs the degree of persistence. As α gets

close to zero, xt becomes stationary AR(1) process. When α approaches to one, xt behaves

as a local to unity process. In the context of testing predictability, the predictor xt is often

modelled as a local to unity process (e.g., Valkanov (2003), Rossi (2005)).On the other hand,

(2) provides a flexible model for unknown persistence in the predictor, where the local to

unity process is a special case of moderate deviations for xt. For the detailed asymptotic

limit theories regarding the correlation coefficient ρ = (1 − c/Tα) in (2), see Phillips and

Magdalinos (2005).

We state the assumption in (1) and (2).

Assumption 1: Given the model (1) and (2),

zt =

Ã
ut

vt

!
is mean-zero i.i.d. and Eztz

0
t =

Ã
σ2u σuv

σuv σ2v

!
.

The Assumption 1 is sufficient to apply the functional central limit theorem (e.g., Brown

(1971, Theorem 2), Phillips and Solo (1992)).

Here, we note that the short horizon predictive regression in (1) is problematic. First, as

the predictor behaves as local to unity process (or as α is close to one), the regression makes

little sense due to imbalance of the order of integration between xt and yt. Second, it is

widely known in empirical studies that the underlying variables in (1) are quite noisy, which

typically cause insignificant results of the estimate of β and low value of the R2. To partly

overcome this problem, one can consider a long horizon regression model by aggregating yt,

which can strengthen the signal and make the noise relatively negligible. In doing so, the

predictability is interpreted as that of k-th period continuously compounded regressand out

of the predictor at the current period. Write

ykt = δ + βxt + u
k
t , (3)

where ykt =
Pk

i=1 yt+i, and u
k
t =

Pk
i=1 ut+i.
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In order to understand the convergence of the OLS estimator bβ, we treat the long horizon
variable as the difference in two partial sum processes as in Valkanov (2003), say,

ukt =
Pt+k

j=1 uj −
Pt

j=1 uj. (4)

Then, we can apply functional limit theorem to obtain convergence results of the partial sum

processes. Here, we also assume that the number of overlapping observations grows with T.

Assumption 2: k is a portion of overlapping summations; k = [λT ] for λ ∈ (0, 1),

where T is the sample size and [z] is the closest integer to z. In practice, the fraction λ can

be chosen as 0.1 or 0.2.

We establish the following lemma useful to deal with some convergences. Denote ukt =

ukt − uk, where uk = (T − k)−1
PT−k

t=1 u
k
t .

Lemma 1: Suppose Assumptions 1 and 2 hold under the model (3).

(a) σ−1e T
−1/2ukt → U(r + λ)− U(r) = U(r,λ),

(b) σ−1e T
−1/2ukt → U(r,λ)− (1− λ)−1

R 1−λ
0

U(r,λ)dr = U∗(r,λ),

(c) σ−1w T
−α/2xt → Jc(r)

(d) σ−1w T
−α/2xt → Jc(r)− (1− λ)−1

R 1−λ
0

Jc(r)dr = J
∗
c (r)

where Jc(r) is a linear diffusion process defined as

Jc(r) =W (r) + c
R r
0
ec(r−z)dW (z), for c < 0,

and (U(r),W (r))0 are bivariate standard Brownian motions with covariance δ = σuv/(σuσv).

Under the null of β = 0, the lemma 1 (a) and (b) are applied to {ykt } process. The lemma
(c) and (d) make use of the results in Phillips and Magdalinos (2005).

We obtain convergence results for OLS estimator bβ, t statistic, and R2.
Theorem 1: Suppose Assumptions 1 - 2 hold under the model (3). For H0 : β = 0,

(1) T (α−1)/2bβ → ³
σe
R 1−λ
0

U∗(r,λ)J∗c (r)dr
.
σw
R 1−λ
0

J∗c (r)
2dr
´
,

(2) T−1/2t→
hR 1−λ

0
U∗(r,λ)J∗c (r)dr

±
G[U∗(r,λ), J∗c (r)]

1/2
i
, where

G[U∗(r,λ), J∗c (r)] =
³R 1−λ

0
U∗(r,λ)2dr

R 1−λ
0

J∗c (r)
2dr − [R 1−λ

0
U∗(r,λ)J∗c (r)]

2
´

(3) R2 →
h
[
R 1−λ
0

U∗(r,λ)Jc(r)dr]2
i2.nhR 1−λ

0
U∗(r,λ)2dr

i hR 1−λ
0

J∗c (r)
2dr
io
.
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First thing to note is that OLS estimator bβ is not consistent for all values of α ∈ (0, 1).
Thus, we need to consider an alternative modelling to obtain consistent estimate, which will

be covered in the Theorem 2 below. Second, the t statistic diverges at the rate of T 1/2,

which is expected since the long horizon regressions generate spurious regressions. Thus, we

need to consider a scaled test statistic T−1/2t to obtain a well-defined limit, which depends

on unknown locality parameter c. For reference, see Valkanov (2003) for detailed analysis.

Third, the R2 does not converge to zero under the null, which is also expected due to the

spurious regressions.

Now, we consider a long horizon regressions when both yt and xt are overlapped.

ykt = δ + βxkt + u
k
t , (5)

where xkt = x
k
t − xk, where xkt =

Pk−1
i=0 xt+i, and x

k = (T − k)−1PT−k
t=1 x

k
t .

In addition to Lemma 1, we further have following convergence results for overlapped

predictor.

Lemma 1 (continued):

(e) σ−1w T
−(α+2)/2xkt →

R r+λ
r
Jc(z)dz ≡ Jc(r,λ)

(f) σ−1w T
−(α+2)/2xkt → Jc(r,λ)− (1− λ)−1

R 1−λ
0

Jc(r,λ)dr = J
∗
c (r,λ)

Given this, we are led to have convergence results as follows.

Theorem 2: Suppose Assumptions 1 - 2 hold under the model (5). For H0 : β = 0,

(1) T (α+1)/2bβ → ³
σe
R 1−λ
0

U∗(r,λ)J∗c (r,λ)dr
.
σw
R 1−λ
0

J∗c (r,λ)
2dr
´
,

(2) T−1/2t→
hR 1−λ

0
U∗(r,λ)J∗c (r,λ)dr

±
G[U∗(r,λ), J∗c (r,λ)]

1/2
i
, where

G[U∗, J∗c ] is defined as in Theorem 1

(3) R2 →
h
[
R 1−λ
0

U∗(r,λ)J∗c (r,λ)dr]
2
i2.nhR 1−λ

0
U∗(r,λ)2dr

i hR 1−λ
0

J∗c (r,λ)
2dr
io
.

It is clear that bβ is consistent for α ∈ (0, 1). The convergence rate depends on α in a

sense that the greater the value of α, the faster the convergence rate. Given the correlation

between disturbance and the predictor, we expect that as α increases, the finite sample bias

decreases. This is shown through simulations in the later section. Convergences of the t

statistic and of the R2 are pretty similar to those in Theorem 1.
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3. Simulation

Finally we investigate a finite sample bias of the OLS estimator and empirical distribu-

tions of scaled t statistic through simulations. In the long horizon regressions in (5), {ut}Tt=1
is generated from i.i.d. N(0, 1). The predictor {xt}Tt=1 is generated from (2), where c = −1
and vt ∼i.i.d. N(0, 1). We denote a contemporaneous correlation between ut and vt as δ.
The values of deviation parameter α are chosen from 0.1 to 0.9 to allow different degree

of persistence. Further, the portion of overlapping summation k is set as k = [0.1T ] and

= [0.2T ], to see the effect of k on the finite sample performance. Two sample sizes n = 200

and 500 are considered and 5, 000 replications are conducted.

Table 1 shows the finite sample bias of OLS estimator according to different values of α,

and of the number of horizon, given δ = −0.9. First, as α increases, the bias reduces, which
is well expected from Theorem 2. This bias reduction with increase in α is more pronounced

for the larger sample size. Second, the effect of k on the bias is negligible, particularly for

larger sample size of T = 500.

Next, we present the empirical distributions of the scaled t test T−1/2t. In practice,

empirical distributions using finite sample are more useful than the asymptotic distributions,

specially when there exist correlations between disturbance and the predictor (See Mishkin

(1995)). The distributions are simulated under the null of β = 0 with k = [0.1T ] and

T = 500 in Tables 2. Selective values of percentiles are given according to different values of

α and δ. We note some findings. First, when δ = 0, the distribution is shown to be nearly

symmetric around zero. As α gets larger, the variance of scaled t test increases, so the

distribution becomes more flattened. Second, negative correlation δ shifts the distribution

to the negative range as expected. The effect of negative correlations, however, are mitigated

as the persistence of the predictor increases. We do not report empirical distributions with

other choices of k, δ, and T, which are available upon request.

4. Conclusion

We present some asymptotic properties of OLS estimator and of the test statistic in long

horizon regressions when the predictor follows a process of moderate deviation from unity.

It is shown that OLS estimator is consistent under the regression of overlapped regressand

on the overlapped predictor. In this case, the convergence rate of the estimator depends on

how far the predictor variable deviates from unit root process. Our simulation studies verify

the theoretical conjecture.
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Appendix

Proof of Theorem 1: We write

bβ − β =

PT−k
t=1 u

k
t xtPT−k

t=1 (xt)
2
, (A.1)

where ukt = u
k
t − uk, xt = xt − x with uk = (T − k)−1

PT−k
t=1 u

k
t .

Using the lemma 1, we obtain

bβ − β =
T (3+α)/2[T−1

PT−k
t=1 (T

−1/2ukt )(T
−α/2xkt )]

T 1+α[T−1
PT−k

t=1 (T
−α/2xt)2]

= T (1−α)/2
[T−1

PT−k
t=1 (T

−1/2ukt )(T
−α/2xkt )]

[T−1
PT−k

t=1 (T
−α/2xt)2]

, (A.2)

thus

T (α−1)/2(bβ − β)→ σe
R 1−λ
0

U∗(r,λ)J∗c (r)dr

σw
R 1−λ
0

J∗c (r)2dr
, (A.3)

under the H0 : β = 0.

For the t statistic, we can write

t =
bβ[PT−k

t=1 (xt)
2]1/2h

T−1
PT−k

t=1 (y
k
t − bβxt)2i1/2

=
bβ[PT−k

t=1 (xt)
2]h

T−1
PT−k

t=1 (y
k
t )
2
PT−k

t=1 (xt)
2 − T−1(PT−k

t=1 y
k
t xt)

2
i1/2 . (A.4)

Making use of lemma 1 for the denominator, we have

t =
T (3+α)/2[T−1

PT−k
t=1 (T

−1/2ykt )(T
−α/2xt)]

(AT −BT )1/2 , (A.5)

where

AT = T−1
PT−k

t=1 (y
k
t )
2PT−k

t=1 (xt)
2

= T 2+α
n
[T−1

PT−k
t=1 (T

−1/2ykt )
2][T−1

PT−k
t=1 (T

−α/2xkt )
2]
o
,

and

BT = T−1[
PT−k

t=1 y
k
t xt]

2

= T−1
n
T (3+α)/2[T−1

PT−k
t=1 (T

−1/2ykt )(T
−α/2xt)]

o2
= T 2+α[T−1

PT−k
t=1 (T

−1/2ykt )(T
−αxkt )]

2.
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It follows that

T−1/2t→
R 1−λ
0

U∗(r,λ)J∗c (r)drhR 1−λ
0

U∗(r,λ)2dr
R 1−λ
0

J∗c (r)2dr − [
R 1−λ
0

U∗(r,λ)J∗c (r)]2
i1/2 . (A.6)

By similar reasoning, we further obtain

R2 =
bβ2PT−k

t=1 (xt)
2PT−k

t=1 (y
k
t )
2
→ [

R 1−λ
0

U∗(r,λ)Jc(r)dr]2

[
R 1−λ
0

U∗(r,λ)2dr][
R 1−λ
0

J∗c (r)2dr]
. (A.7)

Proof of Theorem 2: Under the lemma 1 (e)-(d), we have

bβ − β =

PT−k
t=1 u

k
t x
k
tPT−k

t=1 (x
k
t )
2
, (A.8)

where xkt = x
k
t − xk with xk = (T − k)−1

PT−k
t=1 x

k
t .

By similar fashion as in (A.1) to (A.4), we obtain

bβ − β =
T (5+α)/2[T−1

PT−k
t=1 (T

−1/2ukt )(T
−(α+2)/2xkt )]

T 3+α[T−1
PT−k

t=1 (T
−(α+2)/2xkt )2]

,

then

T (α+1)/2(bβ − β)→ σe
R 1−λ
0

U∗(r,λ)J∗c (r,λ)dr

σw
R 1−λ
0

J∗c (r,λ)2dr
, (A.9)

under the H0 : β = 0.

For the convergence of the t statistic, we write

t =
T (5+α)/2[T−1

PT−k
t=1 (T

−1/2ykt )(T
−α/2xt)]

(AT −BT )1/2 ,

where

AT = T
4+α

n
[T−1

PT−k
t=1 (T

−1/2ykt )
2][T−1

PT−k
t=1 (T

−(α+2)/2xkt )
2]
o
,

and

BT = T
4+α[T−1

PT−k
t=1 (T

−1/2ykt )(T
−(α+2)/2xkt )]

2.

Thus,

T−1/2t→
R 1−λ
0

U∗(r,λ)J∗c (r,λ)drhR 1−λ
0

U∗(r,λ)2dr
R 1−λ
0

J∗c (r,λ)2dr − [
R 1−λ
0

U∗(r,λ)J∗c (r,λ)]2
i1/2 . (A.10)

The convergence of R2 is the same as that in Theorem 1.
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Table 1: Finite sample bias of OLS estimator:

DGP: The model (3) under the null β = 0.

T=200

k\α 0.1 0.3 0.5 0.7 0.9

[0.1T ] -0.2793 -0.0971 -0.0335 -0.0118 -0.0040

[0.2T ] -0.2819 -0.0981 -0.0341 -0.0123 -0.0045

T=500

[0.1T ] -0.2624 -0.0760 -0.0221 -0.0067 -0.0020

[0.2T ] -0.2645 -0.0766 -0.0222 -0.0067 -0.0021

Note: (a) 5000 replications.

(b) k is the portion of rolling summations of xt and yt.

(c) The locality parameter c is set to −1.
(d) The correlation δ is set to −0.9.
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Table 2: Percentiles of the simulated distribution of the scaled t statistic:

DGP: The model (5) with k = [0.1T ], T = 500 under the null β = 0.

1% 2.5% 5% 50% 95% 97.5% 99%

α δ = 0

0.1 -0.7046 -0.5796 -0.4785 0.0031 0.4843 0.5798 0.6751

0.3 -0.7402 -0.6237 -0.4950 0.0056 0.5061 0.6021 0.7114

0.5 -0.7822 -0.6625 -0.5440 0.0005 0.5349 0.6395 0.7597

0.7 -0.8419 -0.7010 -0.5821 -0.0092 0.5637 0.6891 0.8168

0.9 -0.8606 -0.7154 -0.5910 -0.0122 0.5684 0.6996 0.8273

δ = −0.9
0.1 -1.8737 -1.7000 -1.5393 -0.8378 -0.3153 -0.2274 -0.1277

0.3 -1.7559 -1.5838 -1.4287 -0.7586 -0.2496 -0.1630 -0.0556

0.5 -1.4292 -1.2728 -1.1293 -0.5441 -0.0759 0.0121 0.1051

0.7 -1.0762 -0.9238 -0.8108 -0.2929 0.1539 0.2334 0.3293

0.9 -0.8650 -0.7235 -0.6139 -0.1186 0.3285 0.3908 0.4977

Note: (a) 5000 replications.

(b) k is the portion of rolling summations of xt and yt.

(c) The locality parameter c is set to −1.
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